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Abstract. We deal with the obstacle problem for a class of nonlinear integro-

differential operators, whose model is the fractional p-Laplacian with mea-

surable coefficients. In accordance with well-known results for the analog for
the pure fractional Laplacian operator, the corresponding solutions inherit

regularity properties from the obstacle, both in the case of boundedness, con-

tinuity, and Hölder continuity, up to the boundary.
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1. The fractional obstacle problem

The obstacle problem is a fundamental topic in Partial Differential Equations
and Potential Theory, with crucial implications in many contexts in Biology, in
Elasticity, in Financial Mathematics, and so on. See for instance the books [12]
and [27], where many of these applications are described, as well as the classical
literature on this problem. It can be stated in several ways. Roughly speaking,
there is an elliptic operator L and a function h (the obstacle), so that the solution u
to the obstacle problem in a domain Ω is a minimal supersolution to L = 0 above
the obstacle; i. e., 

Lu ≥ 0
everywhere in the domain Ω,

u ≥ h
(boundary conditions).

The operator L can be a classical second order elliptic operator, an integro-
differential operator, and even a nonlinear one. The study of the obstacle problem
originated in the context of Elasticity as the equation that models the shape of an
elastic membrane which is pushed by an obstacle from one side affecting its shape.
The same equation also arises in Control Theory, specifically as the question of
finding the optimal stopping time for a stochastic process with payoff function.
In origin, in both these cases, possibly after linearization, the involved operator L
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coincides with the Laplacian operator. A special very important case is when the
operator L is the fractional Laplacian (−∆)s; that is,

(−∆)su(x) = p.v.

∫
Rn

(
u(x)− u(y)

)
|x− y|−n−2s dy, x ∈ Rn;

see [9]. The obstacle problem involving the fractional Laplacian operator indeed
appears in many contexts, such as in the analysis of anomalous diffusion, in the
quasi-geostrophic flow problem, and in pricing of American options regulated by
assets evolving in relation to jump processes; in particular, this important applica-
tion in Financial Mathematics made the obstacle problem very important in recent
times. A large treatment of the fractional obstacle problem can be found in the
important papers by Caffarelli, Figalli, Salsa, and Silvestre (see, e. g., [1–3, 30]);
see also [10] for the analysis of families of bilateral obstacle problems involving
fractional type energies in aperiodic settings; and the paper [26] for the fractional
obstacle problems with drift. However, despite its relatively short history, this
problem has already evolved into an elaborate theory with several connections to
other branches; the literature is too wide to attempt any reasonable comprehen-
sive treatment in a single paper. We refer the interested reader to the exhaustive
lecture notes [29], and to the forthcoming work by Danielli and Salsa ([6]), and
the references therein.

2. The nonlinear integro-differential obstacle problem

Here we are interested in a very general class of nonlinear nonlocal obstacle prob-
lems; i. e., those related to the operator L defined on suitable fractional Sobolev
functions by

(2.1) Lu(x) = p. v.

∫
Rn
K(x, y)|u(x)− u(y)|p−2

(
u(x)− u(y)

)
dy, x ∈ Rn.

The nonlinear nonlocal operator L in the display above is driven by its kernel
K : Rn×Rn → [0,∞), which is a measurable function of differentiability order s ∈
(0, 1) and summability exponent p > 1,

Λ−1 ≤ K(x, y)|x− y|n+sp ≤ Λ for a. e. x, y ∈ Rn,

for some Λ ≥ 1. Clearly, in the linear case when p = 2 and without coefficients
when Λ = 1, we recover the aforementioned fractional Laplacian operator (−∆)s.

We need now to recall the definition of the nonlocal tail Tail(f ; z, r) of a function
f in the ball of radius r > 0 centered in z ∈ Rn; see [7, 8]. For any function f

initially defined in Lp−1
loc (Rn),

(2.2) Tail(f ; z, r) :=

(
rsp
∫
Rn\Br(z)

|f(x)|p−1|x− z|−n−sp dx

) 1
p−1

.
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In accordance, we recall the definition of the corresponding tail space Lp−1
sp (Rn),

Lp−1
sp (Rn) :=

{
f ∈ Lp−1

loc (Rn) : Tail(f ; z, r) <∞ ∀z ∈ Rn,∀r ∈ (0,∞)
}

;

see [17]. As expected, one can check thatW s,p(Rn) ⊂ Lp−1
sp (Rn), where we denoted

by W s,p(Rn) the usual fractional Sobolev space of order (s, p), defined by the norm

‖v‖W s,p(Rn) := ‖v‖Lp(Rn) + [v]W s,p(Rn)

=

(∫
Rn
|v|p dx

) 1
p

+

(∫
Rn

∫
Rn

|v(x)− v(y)|p

|x− y|n+sp
dxdy

) 1
p

.

We finally observe that, since we assume that coefficients are merely measurable,
the involved equation has to have a suitable weak formulation. For this, we recall
the definitions of sub and supersolutions u to

(2.3) Lu = 0 in Rn.

A function u ∈W s,p
loc (Ω)∩Lp−1

sp (Rn) is a fractional weak p-supersolution of (2.3) if

〈Lu, η〉 ≡
∫
Rn

∫
Rn
K(x, y)|u(x)− u(y)|p−2

(
u(x)− u(y)

)(
η(x)− η(y)

)
dxdy

≥ 0

for every nonnegative η ∈ C∞0 (Ω). Notice that the summability assumption of
u ∈ Lp−1

sp (Rn) is what one expects in the nonlocal framework considered here;

see [15]. A function u ∈ W s,p
loc (Ω) ∩ Lp−1

sp (Rn) is a fractional weak p-subsolution if
−u is a fractional weak p-supersolution. A function u is a fractional weak p-solution
if it is both fractional weak p-sub and supersolution.

2.1. The variational framework and first results. From now on, we report
the main facts from [14], to which we refer for a more complete presentation and for
detailed proofs. First, we recall that the obstacle problem can be reformulated as
a standard problem in the theory of variational inequalities on Banach spaces, by
seeking the energy minimizer in convex sets of suitable functions. Let us introduce
the variational framework of our problem. Let Ω b Ω′ be open bounded subsets
of Rn, let the obstacle function h : Rn → [−∞,∞) be an extended real-valued
function, and let g ∈W s,p(Ω′)∩Lp−1

sp (Rn) be the boundary values. We define the
(non-empty) set

Kg,h(Ω,Ω′) :=
{
u ∈W s,p(Ω′) : u ≥ h a. e. in Ω, u = g a. e. on Rn \ Ω

}
,

and the functional A : Kg,h(Ω,Ω′)→ [W s,p(Ω′)]′ as follows

Au(v) :=

∫
Ω′

∫
Ω′
L(u(x), u(y))

(
v(x)− v(y)

)
K(x, y) dxdy

+ 2

∫
Rn\Ω′

∫
Ω

L(u(x), g(y))v(x)K(x, y) dxdy,



4 J. KORVENPÄÄ, T. KUUSI, AND G. PALATUCCI

for every u ∈ Kg,h(Ω,Ω′) and v ∈ W s,p(Ω′). Notice that the functional Au really
belongs to the dual of the fractional Sobolev space W s,p(Ω′); see [14, Remark 1].
We are now ready to provide the natural definition of solutions to the obstacle
problem in the general nonlocal framework considered here.

Definition 2.1. We say that u ∈ Kg,h(Ω,Ω′) is a solution to the obstacle problem
in Kg,h(Ω,Ω′) if

Au(v − u) ≥ 0

whenever v ∈ Kg,h(Ω,Ω′).

The existence and uniqueness of the solution to the obstacle problem and the
fact that such a solution is a weak supersolution to (2.3) is proven in the following

Theorem 2.2. ([14, Theorem 1]). There exists a unique solution to the obstacle
problem in Kg,h(Ω,Ω′). Moreover, the solution to the obstacle problem is a weak
supersolution to (2.3) in Ω.

Sketch of the proof. First, one can prove by computations that A is monotone
on Kg,h(Ω,Ω′). Second, by applying the Hölder inequality together with some
basic estimates in [14, Lemmata 1 and 2], and by carefully treating in a different
way the superquadratic case when p ≥ 2 and the subquadratic case when 1 <
p < 2, one can prove the weak continuity of A. Then, by using again the Hölder
inequality together with some fractional Sobolev embeddings, one can prove thatA
is coercive. This will permit to apply the standard theory of monotone operators
in order to deduce the existence of a solution u to the obstacle problem. The
uniqueness is easily proven via a contradiction argument. Finally, one can show
that the function u is a weak supersolution to (2.3) by noticing that for any
nonnegative function ϕ ∈ C∞0 (Ω), the function u+ ϕ belongs to Kg,h(Ω,Ω′). �

Also, under natural assumptions on the obstacle h, one can prove that the
solution to the obstacle problem is fractional harmonic (see [15] for the definition
and several related properties) away from the contact set, in clear accordance with
the classical results when s = 1.

Corollary 2.3. ([14, Corollary 2]). Let u be the solution to the obstacle problem
in Kg,h(Ω,Ω′). If Br ⊂ Ω is such that

ess inf
Br

(u− h) > 0,

then u is a weak solution to (2.3) in Br. In particular, if u is lower semicontinuous
and h is upper semicontinuous in Ω, then u is a weak solution to (2.3) in Ω+ :={
x ∈ Ω : u(x) > h(x)

}
.

The solution to the obstacle problem is the smallest supersolution above the
obstacle in the sense precised below.
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Proposition 2.4. ([14, Proposition 1]). Let Ω b Ω′′ ⊂ Ω′. Let u be the solution
to the obstacle problem in Kg,h(Ω,Ω′) and let v be a weak supersolution in Ω′′ such
that min{u, v} ∈ Kg,h(Ω,Ω′). Then u ≤ v almost everywhere.

Sketch of the proof. It will suffice to notice that, since u is the solution to the
obstacle problem and min{u, v} = u in Rn \ Ω, we have

0 ≤ 〈Au,min{u, v} − u〉;

and, since v is a weak supersolution in Ω′′ and u − min{u, v} ∈ W s,p
0 (Ω) is non-

negative, we have,

0 ≤
∫
Rn

∫
Rn
|v(x)− v(y)|p−2

(
u(x)− u(y)

)(
u(x)−min{u, v}(x)− u(y)

+ min{u, v}(y)
)
K(x, y) dxdy.

By summing the preceding inequalities, one can deduce that |{u > v}| = 0. �

Remark 2.5. It is worth noticing that the obstacle function h is an extended real-
valued function. In particular, in our results we are also including the case when
h ≡ −∞; i. e., no obstacle at all, whose interpretation is

Kg(Ω,Ω′) ≡ Kg,−∞(Ω,Ω′) :=
{
u ∈W s,p(Ω′) : u = g a. e. on Rn \ Ω

}
,

that is, the class where we are seeking solutions to the Dirichlet boundary value
problem. Moreover, in view of Theorem 2.2, by solving the obstacle problem in
Kg,−∞(Ω,Ω′) one obtains a unique weak solution to (2.3) in Ω with boundary
values g ∈W s,p(Ω′) ∩ Lp−1

sp (Rn) in the complement of Ω.

3. Interior regularity results

The regularity of the solution to the obstacle problem inherits the regularity of
the obstacle, both in the case of boundedness, continuity, and Hölder continuity.

Theorem 3.1. ([14, Theorem 2]). Let u be the solution to the obstacle problem
in Kg,h(Ω,Ω′). Assume that Br(x0) ⊂ Ω′ and set

M := max

{
ess sup
Br(x0)∩Ω

h, ess sup
Br(x0)\Ω

g

}
.

Here the interpretation is that ess supA f = −∞ if A = ∅. If M is finite, then u
is essentially bounded from above in Br/2(x0) and

ess sup
Br/2(x0)

(u−m)+ ≤ δTail((u−m)+;x0, r/2) + c δ−γ

(∫
Br(x0)

(u−m)t+ dx

) 1
t

holds for all m ≥ M , t ∈ (0, p) and δ ∈ (0, 1] with constants γ ≡ γ(n, p, s, t) and
c ≡ c(n, p, s, t,Λ).
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Theorem 3.2. ([14, Theorem 3]). Suppose that h is locally Hölder continuous
in Ω. Then the solution u to the obstacle problem in Kg,h(Ω,Ω′) is locally Hölder
continuous in Ω as well. Moreover, for every x0 ∈ Ω there is r0 > 0 such that

osc
Bρ(x0)

u ≤ c
(ρ
r

)α [
Tail(u− h(x0);x0, r) +

(∫
Br(x0)

|u− h(x0)|p dx

) 1
p

]

+ c

∫ r

ρ

(ρ
t

)α
ωh

(
t

σ

)
dt

t

for every r ∈ (0, r0) and ρ ∈ (0, r/4], where ωh(ρ) ≡ ωh(ρ, x0) := oscBρ(x0) h, and
α, c and σ depend only on n, p, s, and Λ.

Slightly modifying the proof of the preceding theorem (for which we refer also
to Section 5 below), one can easily obtain the following

Theorem 3.3. ([14, Theorem 4]). Suppose that h is continuous in Ω. Then the
solution to the obstacle problem in Kg,h(Ω,Ω′) is continuous in Ω as well.

All the results presented in this section are consistent with their counterparts
for the obstacle problems in the pure fractional Laplacian case. This said, the re-
lated proofs are different and, though we are dealing with a wider class of nonlinear
integro-differential operators with coefficients, to a certain extent these proofs are
even simpler, since we can make use of the new nonlocal set-up and the recent
quantitative estimates in [7, 8], by combining them with some well-known tools
from the classical nonlinear Potential Theory. Moreover, since we allow the obsta-
cle function h to be an extended real-valued function, the degenerate case when
no obstacle is present does reduce the problem to the standard Dirichlet boundary
value problem, so that the results proven in [14] are new even when L does coincide
with the fractional p-Laplacian (−∆)sp. Also, as noticing in Remark 2.5, we assume

that the boundary data merely belong to an appropriate tail space Lp−1
sp (Rn), so

that our results are an improvement with respect to all the previous results in the
literature when the data are usually given in the whole W s,p(Rn).

4. Regularity up to the boundary

The results in the previous sections can be extended up to the boundary of Ω.
For this, one has to assume that the complement of Ω satisfies the following mea-
sure density condition: there exist δΩ ∈ (0, 1) and r0 > 0 such that for every
x0 ∈ ∂Ω

(4.1) inf
0<r<r0

|(Rn \ Ω) ∩Br(x0)|
|Br(x0)|

≥ δΩ.

This requirement is in the same spirit of the classical nonlinear Potential Theory,
and – as expected in view of the nonlocality of the involved equations – is translated
into an information given on the complement of the set Ω. Also, it is worth noticing
that this is an improvement with respect to the previous boundary regularity
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results in all the fractional literature when much stronger Lipschitz regularity or
smoothness of the sets are usually assumed.

When the obstacle and the boundary values are bounded on the boundary, so
is the solution to the obstacle problem.

Theorem 4.1. ([14, Theorem 5]). Suppose that u ∈ Kg,h(Ω,Ω′) solves the obstacle
problem in Kg,h(Ω,Ω′). Let x0 ∈ ∂Ω and suppose that

ess sup
Br(x0)

g + ess sup
Br(x0)∩Ω

h <∞ and ess inf
Br(x0)

g > −∞

for r ∈ (0, r0) with r0 := dist(x0, ∂Ω′). Then u is essentially bounded close to x0.

The regularity of the solution to the obstacle problem inherits the regularity
of the obstacle, both in the case of continuity and Hölder continuity, up to the
boundary.

Theorem 4.2. ( [14, Theorem 6]). Suppose that u solves the obstacle problem
in Kg,h(Ω,Ω′) and assume x0 ∈ ∂Ω and B2R(x0) ⊂ Ω′. If g ∈ Kg,h(Ω,Ω′) is
Hölder continuous in BR(x0) and Ω satisfies (4.1) for all r ≤ R, then u is Hölder
continuous in BR(x0) as well.

Theorem 4.3. ( [14, Theorem 7]). Suppose that u solves the obstacle problem
in Kg,h(Ω,Ω′) and assume x0 ∈ ∂Ω and B2R(x0) ⊂ Ω′. If g ∈ Kg,h(Ω,Ω′) is
continuous in BR(x0) and Ω satisfies (4.1) for all r ≤ R, then u is continuous in
BR(x0) as well.

Remark 4.4. We notice that one has to assume that the datum g belongs to
Kg,h(Ω,Ω′), since otherwise the solution may be discontinuous on every boundary
point, as one can see by taking Ω = B1(0), Ω′ = B2(0), and (s, p) such that
sp < 1. It plainly follows that the characteristic function χΩ solves the obstacle
problem in Kg,h(Ω,Ω′) with constant functions g ≡ 0 and h ≡ 1. Indeed, χΩ ∈
W s,p(Ω′), and one can check that it is a weak supersolution. As a consequence, by
recalling Proposition 2.4, the function χΩ is the solution to the obstacle problem
in Kg,h(Ω,Ω′). See [14, Example 1].

Finally, a few observations are in order. Boundary regularity for nonlocal equa-
tions driven by singular, possibly degenerate, operators as in (2.1) seems to be a
difficult problem in a general nonlinear framework under natural assumptions on
the involved quantities (see [19]). The situation simplifies considerably in the lin-
ear case when p = 2; see for instance the forthcoming survey [28] and the references
therein. Coming back to the nonlinear case, to our knowledge, the solely nonlocal
result of global Hölder regularity has been obtained very recently in the interest-
ing paper [20], where the authors deal with the non-homogeneous equation, in the
special case when the operator L in (2.1) does coincide with the nonlinear frac-
tional Laplacian (−∆)sp, by considering exclusively zero Dirichlet boundary data,

and by strongly assuming C1,1-regularity up to the boundary for the domain Ω.
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The proofs there are indeed strongly based on the construction of suitable barriers
near ∂Ω, by relying on the fact that the function x 7→ xs+ is an explicit solution
in the half-space. For this, one cannot expect to plainly extend such a strategy in
the general framework considered here, in view of the presence of merely measur-
able coefficients in (2.1). In [14], nonzero boundary Dirichlet data can be chosen,
and the domain Ω has to satisfy only the natural measure density condition given
in (4.1). Consequently, a new proof is needed which extend up to the bound-
ary part of the results in [7, 8] together with a careful handling of the tail-type
contributions.

5. Some idea from the proofs

As one can expect, the main difficulty into the treatment of the operators L
in (2.1) lies in their very definition, which combines the typical issues given by its
nonlocal feature together with the ones given by its nonlinear growth behavior;
also, further efforts are needed due to the presence of merely measurable coeffi-
cients in the kernel K. For this, some very important tools recently introduced in
the nonlocal theory, as the by-now classic s-harmonic extension, the strong three-
term commutators estimates to deduce the regularity of weak fractional harmonic
maps ([5]), the pseudo-differential commutator and energy estimates in [23–25],
and many other successful tricks seem not to be trivially adaptable to the nonlin-
ear framework considered here. Increased difficulties are due to the non-Hilbertian
structure of the involved fractional Sobolev spaces W s,p when p 6= 2. In spite of
that, some related regularity results have been very recently achieved in this con-
text, in [7,8,13,14,16–18,20] and many others, where often a fundamental role to
understand the nonlocality of the nonlinear operators L has been played by the
nonlocal tail defined by (2.2) in order to obtain fine quantitative controls of the
long-range interactions.

Sketch of the proof of Theorem 3.1. In order to prove the boundedness result, one
can test the equation with a suitable class of functions, by noticing that for any
m ≥ M the function um = u − m solves the corresponding obstacle problem.
Thus, after some careful estimates on the local and the nonlocal contributions
in the energy formulation, one can arrive to prove a Caccioppoli-type inequality
with tail. For similar approach in order to achieve fractional Caccioppoli-type
inequalities, though not taking into account the tail, see also [11, 21, 22]. At this
level, by following the strategy in the proof of [7, Theorem 1.1], it yields a local
boundedness for the truncated functions um. Finally, via a covering argument
which goes back to the one in the proof of [8, Theorem 1.1], together with a
standard iteration argument, one arrives at the desired result. �

Sketch of the proof of Theorem 3.2. The first step is to prove that for any point x0

in the contact set, and for for any r ∈ (0, R), one can find σ ∈ (0, 1) and c, both
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depending only on n, p, s,Λ, such that

osc
Bσr(x0)

u+ Tail(u− h(x0);x0, σr)

≤ 1

2

(
osc

Br(x0)
u+ Tail(u− h(x0);x0, r)

)
+ c ωh(r).(5.1)

In order to do this, we combine the weak Harnack estimates in [8, Theorem 1.2]
with the boundedness estimate in Theorem 3.1 (applied with m = d + 2ωh(r) ≥
supB2ρ(x0) h there). Then we choose the parameter δ in (3.1) interpolating between

the local and nonlocal terms in a suitable way. This gives (5.1). The subsequent
step relies into an iterative argument in order to conclude the analysis on the
contact set. Finally, we analyze the continuity outside the contact set. For this, it
suffices to apply Corollary 2.3 which assures that u is a weak solution in Br0(x0),
so that one can use the results in [7] by noticing that the proofs there are valid
also by assuming that u merely belongs to W s,p

loc (Ω) ∩ Lp−1
sp (Rn) instead than

W s,p(Rn). �

Sketch of the proof of Theorem 4.1. Assume that x0 ∈ ∂Ω. Let w+ := (u − k+)+

and w− := (k− − u)+, where k+ ≥ max
{

ess supBr(x0) g, ess supBr(x0)∩Ω h
}

and
k− ≤ ess infBr(x0) g. We obtain the Caccioppoli-type estimate with tail below,
whose proof is a verbatim repetition of the proof of [7, Theorem 1.4] after noticing
that v = u ∓ w±ϕp, ϕ ∈ C∞0 (Br(x0)), 0 ≤ ϕ ≤ 1, belongs to Kg,h(Ω,Ω′) for all
indicated k±. If follows∫

Br(x0)

∫
Br(x0)

|w±(x)ϕ(x)− w±(y)ϕ(y)|pK(x, y) dxdy

≤ c
∫
Br(x0)

∫
Br(x0)

wp±(x)|ϕ(x)− ϕ(y)|pK(x, y) dxdy

+ c

∫
Br(x0)

w±(x)ϕp(x) dx

(
sup

y ∈ suppϕ

∫
Rn\Br(x0)

wp−1
± (x)K(x, y) dx

)
.

Then, one can deduce that u is essentially bounded in Br/2(x0) by extending the
proof of Theorem 1.1 in [7] and using the estimate above with w±. �

Sketch of the proof of Theorem 4.2. We may assume x0 = 0 and g(0) = 0. More-
over, we may choose R0 such that oscB0 g ≤ oscB0 u for B0 ≡ BR0(0) since oth-
erwise we have nothing to prove, and we define ω0 := 8 (oscB0 u+ Tail(u; 0, R0)).
The proof of the Hölder continuity up to the boundary relies on a logarithmic es-
timate with tail ([14, Lemma 5]), obtained by suitably choosing test functions and
by carefully estimating the local and nonlocal energy contributions separately in
the super and subquadratic cases. Such a logarithmic lemma can be subsequently
extended to truncations of the solution to the obstacle problem, as follows: let
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BR b Ω′, let Br ⊂ BR/2 be concentric balls and let

∞ > k+ ≥ max

{
ess sup
BR

g, ess sup
BR∩Ω

h

}
and −∞ < k− ≤ ess inf

BR
g;

then the functions w± := ess supBR(u−k±)±− (u−k±)±+ ε satisfy the following
estimate ∫

Br

∫
Br

∣∣∣∣log
w±(x)

w±(y)

∣∣∣∣pK(x, y) dxdy

≤ c rn−sp
(

1 + ε1−p
( r
R

)sp
Tail((w±)−, x0, R)p−1

)
(5.2)

for every ε > 0. Then, we combine the estimate in the display above with a
fractional Poincaré-type inequality ([14, Lemma 7]) together with some estimates
for the tail term thanks to an application of the Chebyshev inequality and in view
of the result in Theorem 4.1. We arrive to prove the existence of τ0, σ and θ
depending only on n, p, s and δΩ, such that if

osc
Br(0)

u+ σTail(u; 0, r) ≤ ω and osc
Br(0)

g ≤ ω

8

hold for a ball Br(0) and for ω > 0, then

osc
Bτr(0)

u+ σTail(u; 0, τr) ≤ (1− θ)ω

holds for every τ ∈ (0, τ0]. Finally, as we can take τ ≤ τ0 such that

osc
τjB0

g ≤ (1− θ)j ω0

8
for every j = 0, 1, . . . ,

an iterative argument will give that u belongs to C0,α(B0). �

6. Further developments

We conclude this paper by briefly commenting about some open problems that
arise in this framework.

A first natural open problem concerns the optimal regularity for the solutions to
the nonlinear nonlocal obstacle problem. We recall that for the classical obstacle
problem, when L coincides with the Laplacian operator, the solutions are known
to be in C1,1. The intuition behind this regularity result is that in the contact set
one has −∆u = −∆h, while where u > h one has −∆u = 0; since the Laplacian
jumps from −∆h to 0 across the free boundary, the second derivatives of u must
have a discontinuity... and thus C1,1 is the maximum regularity class that can
be expected. Surprisingly, when L ≡ (−∆)s, despite the previous local argument
does suggest that the solutions u belong to C2s, the optimal regularity is C1,s;
that is, the regularity exponent is higher than the order of the equation. In the
nonlinear nonlocal framework presented here, starting from the Hölder regularity
proven in [14], one still expects higher regularity results. Notwithstanding, in
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view of the interplay between the local and nonlocal contributions, and without
having the possibility to rely on all the linear tools mentioned at the beginning of
Section 5, it is not completely clear what the optimal exponent could be as the
nonlinear growth does take its part. For preliminary results in this direction, it
is worth mentioning the very recent paper [4], where optimal regularity results of
the solution to the obstacle problem, and of the free boundary near regular points,
have been achieved for integro-differential operators as in (2.1) in the linear case
when p = 2.

Another interesting open problem concerns the regularity in a generic point of
the free boundary, which is known to be analytic in the case of the Laplacian,
except on a well-defined set of singular points, and smooth in the case of the
fractional Laplacian.

Finally, a natural goal is the investigation of the related parabolic version of
the nonlinear nonlocal obstacle problem, as it is inspired in the so-called optimal
stopping problem with deadline, by corresponding to the American option pricing
problem with expiration at some given time. An extension in the setting presented
here could be quite important as it would essentially describe a situation which
also takes into account the interactions coming from far together with a natural
inhomogeneity. Accordingly with the optimal stopping problem model, a start-
ing point in such an investigation could be the special case when the obstacle h
coincides with the boundary value g.
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