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Janne Korvenpää · Tuomo Kuusi ·
Giampiero Palatucci

Qualche tempo dopo Stampacchia, partendo sempre dalla sua disequazione variazionale,

aperse un nuovo campo di ricerche che si rivelò importante e fecondo. Si tratta di quello
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tions driven by nonlocal, possibly degenerate, integro-di↵erential operators,
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1 Introduction

In the present paper, we study the obstacle problem related to the following
nonlocal and nonlinear operator, defined formally as

Lu(x) = p. v.

Z

Rn

K(x, y)|u(x)� u(y)|p�2

�

u(x)� u(y)
�

dy, x 2 Rn; (1)

we take di↵erentiability of order s 2 (0, 1) and growth p > 1. The kernel K
is of order (s, p) (see (5)) with merely measurable coe�cients. The integral
in (1) may be singular at the origin and must be interpreted in an appropriate
sense. Since we assume that coe�cients are merely measurable, the involved
equation has to have a suitable weak formulation; see Section 2 below for the
precise assumptions on the involved quantities.

The obstacle problem involving fractional powers of the Laplacian operator
naturally appears in many contexts, such as in the analysis of anomalous
di↵usion ([3]), in the so called quasi-geostrophic flow problem ([9]), and in
pricing of American options regulated by assets evolving in relation to jump
processes ([10]). In particular, the last application made the obstacle problem
very relevant in recent times in all its forms; the obstacle problem can be
indeed stated in several ways. Roughly speaking, a solution u to the fractional
obstacle problem is a minimal weak supersolution to the equation

Lu = 0 (2)

above an obstacle function h.

In the linear case when p = 2 and when the kernel K reduces to the Ga-
gliardo kernel K(x, y) = |x � y|�n�2s without coe�cients, a large treatment
of the fractional obstacle problem can be found for instance in the fundamen-
tal papers by Ca↵arelli, Figalli, Salsa, and Silvestre (see, e. g., [42,7,5] and
the references therein). See also [16,15] for the analysis of families of bilat-
eral obstacle problems involving fractional type energies in aperiodic settings;
the paper [37] for the fractional obstacle problems with drift; and the recent
papers [24,33] for related estimates and approximations results. This topic,
despite its relatively short history, has already evolved into quite an elaborate
theory, with connections to numerous branches of Analysis. It is impossible
to provide here a complete list of references. We refer the interested reader to
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the exhaustive recent lecture notes by Salsa ([40]), for the obstacle problem
in the pure fractional Laplacian case, with the natural connection to the thin
obstacle problem in low dimensions (for which we refer to [1]).

However, in the more general framework considered here, the panorama
seems rather incomplete, if not completely deficient in results. Clearly, the
main di�culty into the treatment of the operators L in (1) lies in their very
definition, which combines the typical issues given by its nonlocal feature to-
gether with the ones given by its nonlinear growth behavior; also, further
e↵orts are needed due to the presence of merely measurable coe�cients in
the kernel K. For this, some very important tools recently introduced in the
nonlocal theory, as the by-now classic s-harmonic extension ([8]), the strong
three-term commutators estimates ([11]), and other successful tricks as e. g.
the pseudo-di↵erential commutator approach in [34,35], cannot be plainly ap-
plied and seem di�cult to adapt to the nonlinear framework considered here
(mainly due to the non-Hilbertian nature of the involved fractional Sobolev
spaces W s,p).

Nevertheless, some related regularity results have been very recently achieved
in this context, in [4,12,23,13,25,26,27,28,41] and many others, where often
a fundamental role to understand the nonlocality of the nonlinear operators L
has been played by a special quantity,

Tail(u;x
0

, r) :=

✓

rsp
Z

Rn\Br(x0)

|u(x)|p�1|x� x
0

|�n�sp dx

◆

1
p�1

; (3)

that is, the nonlocal tail of a function u in the ball of radius r > 0 centered in
x
0

2 Rn. This quantity, introduced by two of the authors with A. Di Castro
in [13], have been subsequently became a relevant factor in many instances
when one requires a fine quantitative control of the long-range interactions,
which naturally arise when dealing with nonlocal operators (see Section 2
below).

For what concerns the main topic in the present paper, i. e., the nonlinear
fractional obstacle problem with coe�cients, we will prove a series of both
qualitative and quantitative results. Amongst them, we will formulate the
natural variational framework for the obstacle problem, and we will prove both
the existence and uniqueness of the solution u to this variational formulation
(Theorem 1). We will show that such a solution is a weak supersolution and
that it is the smallest supersolution above the obstacle in a suitable sense
(Proposition 1). We will also demonstrate that the solution u inherits the
regularity of the obstacle, namely the boundedness (Theorem 2), continuity
(Theorem 4), and Hölder continuity (Theorem 3). As a consequence, assuming
that the obstacle function h is continuous, u is a weak solution to (2) in the
open set {u > h} (Corollary 1). These results are in clear accordance with
the aforementioned results for the obstacle problems in the pure fractional
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Laplacian (��)s case. However, our approach here is di↵erent and, though we
are dealing with a wider class of nonlinear integro-di↵erential operators with
coe�cients, the proofs are even somehow simpler, since we can make e↵ort of a
new nonlocal set-up together with the recent quantitative estimates obtained
in [12,13,23], by also extending to the fractional framework some important
tools in the classical Nonlinear Potential Theory.

Finally, we will deal with the regularity up to the boundary (Theorems 6-
7). As well known, in the contrary with respect to the interior case, boundary
regularity for nonlocal equations driven by singular, possibly degenerate, oper-
ators as in (1) seems to be a di�cult problem in a general nonlinear framework
under natural assumptions on the involved quantities (while we refer to the
recent paper [39] and to the forthcoming survey [38] for the case p = 2). In
this respect, a first (and possibly the solely currently present in the literature)
result of global Hölder regularity has been obtained very recently in the in-
teresting paper [27], where the authors deal with the equation in (2), in the
special case when the operator L in (1) coincides with the nonlinear fractional
Laplacian (��)s

p

, by considering exclusively zero Dirichlet boundary data, and
by assuming a strong C1,1-regularity up to the boundary for the domain ⌦.
Indeed, their proof is strongly based on the construction of suitable barriers
near @⌦, starting from the fact that, under their restrictive assumptions, the
function x 7! xs

+

is an explicit solution in the half-space. Clearly, one cannot
expect to plainly extend such a strategy in the general framework considered
here, in view of the presence of merely measurable coe�cients in (1). Also, we
will allow nonzero boundary Dirichlet data to be chosen, and we will assume
the domain ⌦ only to satisfy a natural measure density condition (precisely,
just on the complement of ⌦; see Formula (50) on Page 29); the latter being
as expected in accordance with the classical Nonlinear Potential Theory (that
is, when s = 1). For this, we will need a new proof, that will extend up to the
boundary part of the results in [12,13] together with a careful handling of the
tail-type contributions (see Section 5). Once again, it is worth stressing that
all these results are new even in the pure fractional p-Laplacian case when the
operator L does coincide with (��)s

p

, and in the case of the (linear) fractional
Laplacian with coe�cients.

All in all, let us summarize the contributions of the present paper:
- We prove new regularity results in terms of boundedness, continuity, and
Hölder continuity for the solutions to a very general class of nonlocal obstacle
problems, by extending previous results in the literature valid only for the
pure linear fractional Laplacian case (��)s without coe�cients, also giving
new proofs even in that case;
- We obtain new regularity results up to the boundary for nonlocal operators,
and, since we allow the obstacle function h to be an extended real-valued
function, the degenerate case when h ⌘ �1 (i. e., no obstacle is present)
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does reduce the problem to the standard Dirichlet boundary value problem,
so that the results proven here are new even when L does coincide with the
fractional p-Laplacian (��)s

p

. Also, since we assume that the boundary data
merely belong to an appropriate tail space Lp�1

sp

(Rn) and locally to W s,p only
close to the set ⌦, all the (inner and boundary) results here reveal to be an
improvement with respect to the previous ones in the literature when the data
are usually given in the whole fractional Sobolev space W s,p(Rn);
- By solving the fractional obstacle problem together with some of the expected
basic results proven here, we provide an important tool for several further
investigations and applications. Indeed, as well known, the obstacle problem
is deeply related to the study of minimal surfaces and the capacity of a set
in Nonlinear Potential Theory. Thus, by means of our framework, we possibly
give the basis for the development of a nonlocal Nonlinear Potential Theory.
This can be already seen in some subsequent forthcoming papers, as, e. g.,
in [21] where part of the results here are the key for the viscosity approach for
nonlocal integro-di↵erential operators, and in [23] where the whole nonlocal
obstacle set-up is needed to extend the classical Perron method to a nonlocal
nonlinear setting.

Finally, let us comment about some immediate open problems naturally
arising in this framework. Firstly, one can argue about the optimal regularity
for the solutions to the nonlocal obstacle problem. We recall that for the
classical obstacle problem, when L coincides with the Laplacian operator ��,
the solutions are known to belong to C1,1. The intuition behind this regularity
result goes as follows: in the contact set one has ��u = ��h, while where u >

h one has ��u = 0; since the Laplacian jumps from ��h to 0 across the free
boundary, the second derivatives of u must have a discontinuity, so that C1,1

is the maximum regularity class that can be expected. In the contrary, when
L ⌘ (��)s, despite the previous local argument does suggest that the solutions
u belong to C2s, the optimal regularity is C1,s, and this is quite surprising since
the regularity exponent is higher than the order of the equation. In the general
nonlocal framework, starting from the Hölder regularity proven here, we still
expect higher regularity results as for the linear case; nevertheless, in view of
the interplay between local and nonlocal contributions and without having the
possibility to rely on the s-harmonic extension, it is not completely evident
what the optimal exponent could be as the nonlinear growth does take its
part.1

Secondly, it could be interesting to investigate the regularity in a generic
point of the free boundary (known to be analytic in the case of the Laplacian,

1 For preliminary results in this direction, it is worth mentioning the very recent paper [6],
where optimal regularity results of the solution to the obstacle problem, and of the free
boundary near regular points, have been achieved for linear integro-di↵erential operators as
in (1) in the case when p = 2.
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except on a well defined set of singular points, and smooth in the case of the
fractional Laplacian).

Thirdly, a natural goal is to investigate the parabolic version of the nonlo-
cal obstacle problem, as it is inspired in the so-called optimal stopping problem
with deadline, by corresponding to the American option pricing problem with
expiration at some given time. An extension in the setting presented here could
be of relevant interest as it could describe a situation which also takes into
account the interactions coming from far together with a natural inhomogene-
ity. Accordingly with the optimal stopping problem model, a starting point in
such an investigation could be the special case when the obstacle h coincides
with the boundary value g.

The paper is organized as follows. In Section 2 below, we fix the notation
by also stating some general assumptions on the quantities we will deal with
throughout the whole paper. In Section 3, we introduce the nonlinear fractional
obstacle problem, and state and prove the existence and uniqueness of the
related solutions. The last two sections are devoted to the proofs of all the
aforementioned boundedness and continuity results (Section 4), and up to the
boundary (Section 5).

2 Preliminaries

In this section, we state the general assumptions on the quantities we are
dealing with. We keep these assumptions throughout the paper.

First of all, we recall that the class of integro-di↵erential equations in which
we are interested is the following

Lu(x) =
Z

Rn

K(x, y)|u(x)� u(y)|p�2

�

u(x)� u(y)
�

dy = 0, x 2 Rn. (4)

The nonlocal operator L in the display above (being read a priori in the prin-
cipal value sense) is driven by its kernel K : Rn ⇥ Rn ! [0,1), which is a
measurable function satisfying the following property:

⇤�1  K(x, y)|x� y|n+sp  ⇤ for a. e. x, y 2 Rn, (5)

for some s 2 (0, 1), p > 1, ⇤ � 1. We immediately notice that in the special
case when p = 2 and ⇤ = 1, we recover the well-known fractional Laplacian
operator (��)s. Also, notice that the assumption on K can be weakened, and
in (4) the dependence of u(x)�u(y), in turn, can be weakened from t 7! |t|p�2t

(see, for instance, [25]). However, for the sake of simplicity, we will take (4)
and we will work under the assumption in (5), since the weaker assumptions
would bring no relevant di↵erences in all the forthcoming proofs.
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We now recall the definition of the nonlocal tail Tail(f ; z, r) of a function

f in the ball of radius r > 0 centered in z 2 Rn. We have

Tail(f ; z, r) :=

✓

rsp
Z

Rn\Br(z)

|f(x)|p�1|x� z|�n�sp dx

◆

1
p�1

, (6)

for any function f initially defined in Lp�1

loc

(Rn). As mentioned in the intro-
duction, this quantity will play an important role in the rest of the paper. The
nonlocal tail has been introduced in [13], and used subsequently in several
recent papers (see e.g., [4,12,18,25,26,27,28] and many others2), where it has
been crucial to control in a quantifiable way the long-range interactions which
naturally appear when dealing with nonlocal operators of the type considered
here in (4). When having to control the positive and negative interactions sep-
arately, we denote the positive part and the negative part of a function u by
u
+

:= max{u, 0} and u� := max{�u, 0}, respectively. In the following, when
the center point z will be clear from the context, we shall use the shorter no-
tation Tail(f ; r) ⌘ Tail(f ; z, r). Now, in clear accordance with the definition
in (6), for any p > 1 and any s 2 (0, 1), one can consider the corresponding
tail space Lp�1

sp

(Rn) given by

Lp�1

sp

(Rn) :=
n

f 2 Lp�1

loc

(Rn) : Tail(f ; z, r) < 1 8z 2 Rn, 8r 2 (0,1)
o

.

Notice that

Lp�1

sp

(Rn) =
n

f 2 Lp�1

loc

(Rn) :

Z

Rn

|f(x)|p�1(1 + |x|)�n�sp dx < 1
o

.

As expected, one can check that W s,p(Rn) ⇢ Lp�1

sp

(Rn), where we denoted
by W s,p(Rn) the usual fractional Sobolev space of order (s, p), defined by the
norm

kvk
W

s,p
(Rn

)

:= kvk
L

p
(Rn

)

+ [v]
W

s,p
(Rn

)

=

✓

Z

Rn

|v|p dx
◆

1
p

+

✓

Z

Rn

Z

Rn

|v(x)� v(y)|p

|x� y|n+sp

dxdy

◆

1
p

, (7)

where s 2 (0, 1) and p � 1. The local fractional Sobolev space W s,p(⌦) for
⌦ ⇢ Rn is defined similarly. By W s,p

0

(⌦) we denote the closure of C1
0

(⌦) in
W s,p(Rn). Conversely, if v 2 W s,p(⌦0) with ⌦ b ⌦0 and v = 0 outside of ⌦
almost everywhere, then v has a representative in W s,p

0

(⌦) as well (see, for
instance, [14]).

2 When needed, our definition of Tail can also be given in a more general way by replacing
the ball Br and the corresponding rsp term by an open bounded set E ⇢ Rn and its rescaled
measure |E|sp/n, respectively. This is not the case in the present paper.
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We now recall the definitions of sub and supersolutions u to the class of
integro-di↵erential problems we are interested in. A function u 2 W s,p

loc

(⌦) \
Lp�1

sp

(Rn) is a fractional weak p-supersolution of (4) if

hLu, ⌘i ⌘
Z

Rn

Z

Rn

K(x, y)|u(x)� u(y)|p�2

�

u(x)� u(y)
��

⌘(x)� ⌘(y)
�

dxdy

� 0 (8)

for every nonnegative ⌘ 2 C1
0

(⌦). Here ⌘ 2 C1
0

(⌦) can be replaced by
⌘ 2 W s,p

0

(⌦0) with every ⌦0 b ⌦. It is worth noticing that the summability
assumption of u belonging to the tail space Lp�1

sp

(Rn) is what one expects in
the nonlocal framework considered here (see [23]).
A function u 2 W s,p

loc

(⌦)\Lp�1

sp

(Rn) is a fractional weak p-subsolution if �u is
a fractional weak p-supersolution. Finally, a function u is a fractional weak p-

solution if it is both fractional weak p-sub and supersolution. In the following,
we simply refer to those u as (weak) supersolutions, subsolutions and solutions.

Moreover, let us remark that we will assume that the kernelK is symmetric,
and once again this is not restrictive, in view of the weak formulation presented
above, since one may always define the corresponding symmetric kernel Ksym

given by

Ksym(x, y) :=
1

2

⇣

K(x, y) +K(y, x)
⌘

.

We conclude this section by presenting some basic estimates which will be
useful in the course of the forthcoming proofs. As customary when dealing
with nonlinear operators, we will often have to treat in a di↵erent way the
superquadratic case when p > 2 and the subquadratic case 1 < p < 2. In
order to simplify the notation in the weak formulation in (8), from now on we
denote by

L(a, b) := |a� b|p�2(a� b), a, b 2 R. (9)

Notice that L(a, b) is increasing with respect to a and decreasing with respect
to b.

Lemma 1 Let 1 < p  2 and a, b, a0, b0 2 R. Then

|L(a, b)� L(a0, b0)|  4|a� a0 � b+ b0|p�1. (10)

Proof Denoting by

f(t) := L
�

ta+ (1� t)a0, tb+ (1� t)b0
�

,
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we obtain by the chain rule

|L(a, b)� L(a0, b0)| =
�

�

�

Z

1

0

f 0(t) dt
�

�

�

=
�

�

�

Z

1

0

(a� a0)@
a

L+ (b� b0)@
b

L dt
�

�

�

= (p� 1)|a� a0 � b+ b0|
Z

1

0

|t(a� b) + (1� t)(a0 � b0)|p�2 dt,

(11)

where we also used that

@
a

L(a, b) = (p� 1)|a� b|p�2 and @
b

L(a, b) = �(p� 1)|a� b|p�2.

Now, for ↵ 2 [�1, 1], define

g(↵) :=

Z

1

0

|t↵+ 1� t|p�2 dt.

Note that g(1) = 1. If ↵ < 1, then changing variables as ⌧ = t↵+ 1� t yields

g(↵) =
1

1� ↵

Z

1

↵

|⌧ |p�2 d⌧  2

Z

1

0

⌧p�2 d⌧ =
2

p� 1
.

By using the estimate above for ↵ := �/� with |�|  |�|, we obtain

|� � �|
Z

1

0

|t� + (1� t)�|p�2 dt = |� � �||�|p�2g(↵)

 4

p� 1
|� � �|p�1. (12)

Finally, by combining (12) with (11), letting � = a � b and � = a0 � b0, we
obtain the desired result.

Lemma 2 Let p � 2 and a, b, a0, b0 2 R. Then

|L(a, b)� L(a0, b)|  c |a� a0|p�1 + c |a� a0||a� b|p�2 (13)

and

|L(a, b)� L(a, b0)|  c |b� b0|p�1 + c |b� b0||a� b|p�2, (14)

where c depends only on p.
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Proof Denoting by f(t) := L
�

ta0 + (1� t)a, b
�

, we obtain by the chain rule

|L(a, b)� L(a0, b)| =
�

�

�

Z

1

0

f 0(t) dt
�

�

�

=
�

�

�

Z

1

0

(a0 � a)@
a

L(ta0 + (1� t)a, b) dt
�

�

�

= (p� 1)|a� a0|
Z

1

0

|ta0 + (1� t)a� b|p�2 dt

 c |a� a0|p�1 + c |a� a0||a� b|p�2,

where we also used that

@
a

L(a, b) = (p� 1)|a� b|p�2.

Thus, the inequality in (13) does hold. Similarly, one can prove the inequality
in (14).

Finally, we would like to make the following observation. In the rest of the
paper, we often use the fact that there is a constant c > 0 depending only on
p such that

1

c

�

|a|p�2a� |b|p�2b
�

(a� b)

(|a|+ |b|)p�2(a� b)2
 c, (15)

when a, b 2 R, a 6= b. In particular,
�

|a|p�2a� |b|p�2b
�

(a� b) � 0, a, b 2 R. (16)

3 The obstacle problem

As mentioned in the introduction, by solving the fractional obstacle problem
we will provide an important tool in the development of the fractional Nonlin-
ear Potential Theory, and, in order to present such a topological approach, we
start by introducing a necessary set of notation. Let ⌦ b ⌦0 be open bounded
subsets of Rn. Let h : Rn ! [�1,1) be an extended real-valued function,
which is considered to be the obstacle, and let g 2 W s,p(⌦0) \ Lp�1

sp

(Rn) be
the boundary values. We define

K
g,h

(⌦,⌦0) :=
n

u 2 W s,p(⌦0) : u � h a. e. in ⌦, u = g a. e. on Rn \⌦
o

.

The interpretation for the case h ⌘ �1 is that

K
g

(⌦,⌦0) ⌘ K
g,�1(⌦,⌦0) :=

n

u 2 W s,p(⌦0) : u = g a. e. on Rn \⌦
o

,

i. e., the class where we are seeking solutions to the Dirichlet boundary value
problem. A few observations are in order. First, a natural assumption for any
existence theory is that K

g,h

(⌦,⌦0) is a non-empty set. This is a property
of functions g and h. Second, we are assuming that g has bounded fractional
Sobolev norm in a set ⌦0 which is strictly containing the set ⌦, and not
necessarily in the whole Rn as previously in the literature.
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3.1 Existence of solutions

The obstacle problem can be reformulated as a standard problem in the theory
of variational inequalities on Banach spaces, by seeking the energy minimizers
in the set of suitable functions defined above. For this, by taking into account
the nonlocality of the involved operators here, it is convenient to define a
functional A : K

g,h

(⌦,⌦0) ! [W s,p(⌦0)]0 given by

Au(v) := A
1

u(v) +A
2

u(v) (17)

for every u 2 K
g,h

(⌦,⌦0) and v 2 W s,p(⌦0), where

A
1

u(v) :=

Z

⌦

0

Z

⌦

0
L(u(x), u(y))

�

v(x)� v(y)
�

K(x, y) dxdy

and

A
2

u(v) := 2

Z

Rn\⌦0

Z

⌦

L(u(x), g(y))v(x)K(x, y) dxdy.

The motivation for the definitions above is as follows. Assuming that v 2
W s,p

0

(⌦), and u 2 W s,p(⌦0) is such that u = g on Rn \⌦0, we have that

Z

Rn

Z

Rn

L(u(x), u(y))
�

v(x)� v(y)
�

K(x, y) dxdy

=

Z

⌦

0

Z

⌦

0
L(u(x), u(y))

�

v(x)� v(y)
�

K(x, y) dxdy

+ 2

Z

Rn\⌦0

Z

⌦

L(u(x), g(y))v(x)K(x, y) dxdy.

⌘ A
1

u(v) +A
2

u(v). (18)

In the following we will use the usual brackets, as e. g. hA
1

(u)�A
1

(w), vi to
denote A

1

u(v)�A
1

w(v), and so on.

Remark 1 The functional Au really belongs to the dual of W s,p(⌦0). Indeed,
we have

|A
1

u(v)| 
Z

⌦

0

Z

⌦

0
|u(x)� u(y)|p�1|v(x)� v(y)|K(x, y) dxdy

 c

✓

Z

⌦

0

Z

⌦

0
|u(x)� u(y)|p dxdy

|x� y|n+sp

◆

p�1
p

⇥
✓

Z

⌦

0

Z

⌦

0
|v(x)� v(y)|p dxdy

|x� y|n+sp

◆

1
p

 c kukp�1

W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

(19)
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by Hölder’s Inequality. Also,

|A
2

u(v)|  2

Z

Rn\⌦0

Z

⌦

|u(x)� g(y)|p�1|v(x)|K(x, y) dxdy

 c

Z

Rn\⌦0

Z

⌦

|u(x)|p�1|v(x)||x� y|�n�sp dxdy

+ c

Z

Rn\⌦0

Z

⌦

|g(y)|p�1|v(x)||x� y|�n�sp dxdy

 c r�sp

✓

Z

⌦

|u(x)|p dx
◆

p�1
p
✓

Z

⌦

|v(x)|p dx
◆

1
p

+ c

✓

Z

Rn\⌦0
|g(y)|p�1|z � y|�n�sp dy

◆

Z

⌦

|v(x)| dx

 c r�sp

⇣

kukp�1

W

s,p
(⌦

0
)

+Tail(g; z, r)p�1

⌘

kvk
W

s,p
(⌦

0
)

(20)

holds, where z 2 ⌦ and r := dist(⌦, @⌦0) > 0, and c depends on n, p, s,⇤,⌦,⌦0.

Remark 2 In the definition (17), we could replace A
2

u(v) by

2

Z

Rn\⌦0

Z

⌦

00
L(u(x), g(y))v(x)K(x, y) dxdy (21)

for ⌦00 satisfying ⌦ ⇢ ⌦00 b ⌦0. Anyway, we need a strictly positive distance
between @⌦00 and @⌦0 to deduce Au 2 [W s,p(⌦0)]0, as seen in the calculations
for (20) above.

Now, we are ready to provide the natural definition of solutions to the
obstacle problem in the general nonlocal framework considered here.

Definition 1 We say that u 2 K
g,h

(⌦,⌦0) is a solution to the obstacle prob-

lem in K
g,h

(⌦,⌦0) if

Au(v � u) � 0

whenever v 2 K
g,h

(⌦,⌦0).

Below, we state and prove the uniqueness of the solution to the obstacle prob-
lem and the fact that such a solution is a weak supersolution to (4). Also,
under natural assumptions on the obstacle h, one can prove that the solution
to the obstacle problem is (fractional) harmonic away from the contact set, in
clear accordance with the classical results when s = 1. We have

Theorem 1 There exists a unique solution to the obstacle problem in K
g,h

(⌦,⌦0).
Moreover, the solution to the obstacle problem is a weak supersolution to (4)
in ⌦.
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Corollary 1 Let u be the solution to the obstacle problem in K
g,h

(⌦,⌦0). If
B

r

⇢ ⌦ is such that

ess inf
Br

(u� h) > 0,

then u is a weak solution to (4) in B
r

. In particular, if u is lower semicontin-

uous and h is upper semicontinuous in ⌦, then u is a weak solution to (4) in
⌦

+

:=
�

x 2 ⌦ : u(x) > h(x)
 

.

Remark 3 When solving the obstacle problem in K
g,�1(⌦,⌦0), we obtain a

unique weak solution to (4) in ⌦ having the boundary values g 2 W s,p(⌦0) \
Lp�1

sp

(Rn) in Rn \ ⌦. This is a generalization of the existence results stated
in [13], where g 2 W s,p(Rn), and – as already mentioned in the introduction
– in general of all the analyses of fractional obstacle problems in the previous
literature when ⌦0 does coincide with the whole Rn.

Before going into the related proofs, we need to state and prove some
properties of the operator A defined in (17). We have the following

Lemma 3 The operator A is monotone, coercive and weakly continuous on

the set K
g,h

(⌦,⌦0).

Proof We start with the monotonicity, that is, we show that hAu�Av, u�vi �
0 holds for every u, v 2 K

g,h

(⌦,⌦0). To this end, let u, v 2 K
g,h

(⌦,⌦0). We
have

hA
1

u�A
1

v, u� vi

=

Z

⌦

0

Z

⌦

0

�

|u(x)� u(y)|p�2(u(x)� u(y))� |v(x)� v(y)|p�2(v(x)� v(y))
�

⇥
�

u(x)� u(y)� v(x) + v(y)
�

K(x, y) dxdy

and this quantity is nonnegative in view of (16). Similarly, for A
2

,

hA
2

u�A
2

v, u� vi

= 2

Z

Rn\⌦0

Z

⌦

⇣

|u(x)� g(y)|p�2

�

u(x)� g(y))� |v(x)� g(y)|p�2

⇥ (v(x)� g(y)
�

⌘

�

u(x)� g(y)� v(x) + g(y)
�

K(x, y) dxdy

� 0.

Hence A is monotone.

Next, we prove the weak continuity. Let {u
j

} be a sequence in K
g,h

(⌦,⌦0)
converging to u 2 K

g,h

(⌦,⌦0) in W s,p(⌦0). The weak continuity condition is
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that hAu
j

� Au, vi ! 0 for all v 2 W s,p(⌦0). Thus, let v 2 W s,p(⌦0). Then
for A

1

and 1 < p  2, applying (10) and Hölder’s Inequality, we obtain

|hA
1

u
j

�A
1

u, vi|


Z

⌦

0

Z

⌦

0

�

�L(u
j

(x), u
j

(y))� L(u(x), u(y))
�

�|v(x)� v(y)|K(x, y) dxdy

 c

Z

⌦

0

Z

⌦

0
|u

j

(x)� u
j

(y)� u(x) + u(y)|p�1|v(x)� v(y)| dxdy

|x� y|n+sp

 c ku
j

� ukp�1

W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

,

which vanishes as j ! 1. On the other hand, when p > 2, by using (15), we
have, again by Hölder’s Inequality, that

|hA
1

u
j

�A
1

u, vi|


Z

⌦

0

Z

⌦

0

�

�L(u
j

(x), u
j

(y))� L(u(x), u(y))
�

�|v(x)� v(y)|K(x, y) dxdy

 c

Z

⌦

0

Z

⌦

0

�

|u
j

(x)� u
j

(y)|+ |u(x)� u(y)|
�

p�2

⇥ |u
j

(x)� u
j

(y)� u(x) + u(y)||v(x)� v(y)| dxdy

|x� y|n+sp

 c

Z

⌦

0

Z

⌦

0

✓

|u
j

(x)� u
j

(y)|p�2

|x� y|s(p�2)

+
|u(x)� u(y)|p�2

|x� y|s(p�2)

◆

⇥ |u
j

(x)� u
j

(y)� u(x) + u(y)|
|x� y|s

|v(x)� v(y)|
|x� y|s

dxdy

|x� y|n

 c

✓

Z

⌦

0

Z

⌦

0

|u
j

(x)� u
j

(y)|p

|x� y|n+sp

+
|u(x)� u(y)|p

|x� y|n+sp

dxdy

◆

p�2
p

⇥
✓

Z

⌦

0

Z

⌦

0

|u
j

(x)� u(x)� u
j

(y) + u(y)|p

|x� y|n+sp

dxdy

◆

1
p

⇥
✓

Z

⌦

0

Z

⌦

0

|v(x)� v(y)|p

|x� y|n+sp

dxdy

◆

1
p

 c
�

ku
j

k
W

s,p
(⌦

0
)

+ kuk
W

s,p
(⌦

0
)

�

p�2ku
j

� uk
W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

,
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which vanishes as j ! 1. Similarly, for A
2

when 1 < p  2, by using again
(10), we have

|hA
2

u
j

�A
2

u, vi|

 2

Z

Rn\⌦0

Z

⌦

�

�L(u
j

(x), g(y))� L(u(x), g(y))
�

�|v(x)|K(x, y) dxdy

 c

Z

Rn\⌦0

Z

⌦

|u
j

(x)� u(x)|p�1|v(x)||x� y|�n�sp dxdy

 c ku
j

� ukp�1

W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

,

which tends to 0 as j ! 1. In the case when p > 2, by using (13)–(14) we get

|hA
2

u
j

�A
2

u, vi|

 c

Z

Rn\⌦0

Z

⌦

|u
j

(x)� u(x)|p�1|v(x)||x� y|�n�sp dxdy

+ c

Z

Rn\⌦0

Z

⌦

|u
j

(x)� u(x)||u(x)� g(y)|p�2|v(x)||x� y|�n�sp dxdy

 c

Z

⌦

|u
j

(x)� u(x)|p�1|v(x)| dx+ c

Z

⌦

|u
j

(x)� u(x)||u(x)|p�2|v(x)| dx

+ c

✓

Z

Rn\⌦0
|g(y)|p�2|z � y|�n�sp dy

◆

Z

⌦

|u
j

(x)� u(x)||v(x)| dx

 c ku
j

� ukp�1

W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

+ c ku
j

� uk
W

s,p
(⌦

0
)

kukp�2

W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

+ c r�sp Tail(g; z, r)p�2ku
j

� uk
W

s,p
(⌦

0
)

kvk
W

s,p
(⌦

0
)

,

which again tends to 0 as j ! 1. Notice that in the display above the nonlocal
integral has been estimated as follows
Z

Rn\⌦0
|g(y)|p�2|z � y|�n�sp dy


✓

Z

Rn\⌦0
|g(y)|p�1|z � y|�n�sp dy

◆

p�2
p�1
✓

Z

Rn\⌦0
|z � y|�n�sp dy

◆

1
p�1

 c r�sp Tail(g; z, r)p�2,

where z 2 ⌦ and r := dist(⌦, @⌦0) > 0. Thus, hAu
j

, vi ! hAu, vi for every
v 2 W s,p(⌦0) as j ! 1, i. e., the weak continuity holds.

Finally, we prove the coercivity, which means that there exists a function
v 2 K

g,h

(⌦,⌦0) such that

hAu�Av, u� vi
ku� vk

W

s,p
(⌦

0
)

! 1 as kuk
W

s,p
(⌦

0
)

! 1.
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Since we are assuming that K
g,h

(⌦,⌦0) is non-empty, there is at least one
v 2 K

g,h

(⌦,⌦0). Let this be fixed. By (19) and (20) we see that

|hAu�Av, vi|  c kukp�1

W

s,p
(⌦

0
)

+ c, (22)

where the constant c is independent of u. We now show that the contribution
from hAu�Av, ui dominates when kuk

W

s,p
(⌦

0
)

is large. For A
1

, we obtain

hA
1

u�A
1

v, ui

=

Z

⌦

0

Z

⌦

0

�

L(u(x), u(y))� L(v(x), v(y))
��

u(x)� u(y)
�

K(x, y) dxdy

� 1

c

Z

⌦

0

Z

⌦

0

|u(x)� u(y)|p

|x� y|n+sp

dxdy

� c

Z

⌦

0

Z

⌦

0
|v(x)� v(y)|p�1|u(x)� u(y)| dxdy

|x� y|n+sp

� 1

c
[u� g]p

W

s,p
(⌦

0
)

� c [g]p
W

s,p
(⌦

0
)

� c

Z

⌦

0

Z

⌦

0
|v(x)� v(y)|p�1|u(x)� u(y)| dxdy

|x� y|n+sp

� 1

c
ku� gkp

W

s,p
(⌦

0
)

� c kgkp
W

s,p
(⌦

0
)

� c kvkp�1

W

s,p
(⌦

0
)

kuk
W

s,p
(⌦

0
)

� 1

c
kukp

W

s,p
(⌦

0
)

� c kgkp
W

s,p
(⌦

0
)

� c kvkp�1

W

s,p
(⌦

0
)

kuk
W

s,p
(⌦

0
)

, (23)

by using in particular Hölder’s Inequality and the fractional Sobolev embed-
dings (see for instance [14, Section 6], and also [36, Appendix 6.3] for a simple
proof). For A

2

, in turn, we obtain

hA
2

u�A
2

v, ui

= 2

Z

Rn\⌦0

Z

⌦

�

L(u(x), g(y))� L(v(x), g(y))
��

u(x)� v(x)
�

K(x, y) dxdy

+ 2

Z

Rn\⌦0

Z

⌦

�

L(u(x), g(y))� L(v(x), g(y))
�

v(x)K(x, y) dxdy

� �2

Z

Rn\⌦0

Z

⌦

�

�L(u(x), g(y))� L(v(x), g(y))
�

�|v(x)|K(x, y) dxdy

� �c

Z

Rn\⌦0

Z

⌦

⇣

|u(x)|p�1|v(x)|+ |g(y)|p�1|v(x)|+ |v(x)|p
⌘ dxdy

|x� y|n+sp

� �c kukp�1

L

p
(⌦

0
)

kvk
L

p
(⌦

0
)

� c r�spTail(g; z, r)p�1kvk
L

p
(⌦

0
)

� kvkp
L

p
(⌦

0
)

(24)
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with z 2 ⌦ and r := dist(⌦, @⌦0), where we also used that the term on
the second line is nonnegative by the monotonicity. By combining the esti-
mates (22), (23) with (24), it yields

hAu�Av, u� vi � 1

c
kukp

W

s,p
(⌦

0
)

� c kukp�1

W

s,p
(⌦

0
)

� c kuk
W

s,p
(⌦

0
)

� c,

for a constant c independent of u, and thus

hAu�Av, u� vi
ku� vk

W

s,p
(⌦

0
)

! 1 as kuk
W

s,p
(⌦

0
)

! 1.

This finishes the proof.

Now, we are ready to prove the existence of a unique solution to the obstacle
problem.

Proof (Proof of Theorem 1) We first notice that K
g,h

(⌦,⌦0) ⇢ W s,p(⌦0)
is nonempty, closed and convex. Also, in view of Lemma 3 the operator A
is monotone, coercive and weakly continuous on K

g,h

(⌦,⌦0). This will per-
mit us to apply the standard theory of monotone operators (see, for instance,
Corollary III.1.8 in [20], or [19]) in order to deduce the existence of a func-
tion u 2 K

g,h

(⌦,⌦0) such that

hAu, v � ui � 0,

whenever v 2 K
g,h

(⌦,⌦0). In order to show the uniqueness, suppose that there
are two functions u

1

and u
2

solving the obstacle problem. As a consequence,

hAu
1

, u
2

� u
1

i � 0 and hAu
2

, u
1

� u
2

i � 0,

and then, by summing the preceding inequalities, we obtain

hAu
1

�Au
2

, u
1

� u
2

i  0.

This is possible only if u
1

= u
2

almost everywhere. Thus, the solution u is
unique.

Now we show that the function u is a weak supersolution to (4) in ⌦.
First, clearly u 2 W s,p

loc

(⌦) \ Lp�1

sp

(Rn). Then, notice that for any given non-
negative function � 2 C1

0

(⌦), the function v := u+� belongs to K
g,h

(⌦,⌦0).
Consequently, we have as in (18) that

0  hAu,�i =
Z

Rn

Z

Rn

L(u(x), u(y))
�

�(x)� �(y)
�

K(x, y) dxdy.

Thus, u is a weak supersolution in ⌦.



18 J. Korvenpää, T. Kuusi, G. Palatucci

Proof (Proof of Corollary 1) By Theorem 1 u is a weak supersolution in
B

r

⇢ ⌦. To show that u is also a weak subsolution in B
r

, let ⌘ 2 C1
0

(B
r

) be a
nonnegative test function that is not identically 0. Set " := k⌘k�1

1 ess inf
Br (u�

h) > 0. Then v = u� "⌘ 2 K
g,h

(⌦,⌦0) and hAu, v�ui � 0 yields hAu, ⌘i  0.
Therefore, by (18) we obtain that u is a weak subsolution in B

r

, and thus a
weak solution there.

The solution to the obstacle problem is the smallest supersolution above
the obstacle in the following sense.

Proposition 1 Let ⌦ b ⌦00 ⇢ ⌦0. Let u be the solution to the obstacle

problem in K
g,h

(⌦,⌦0) and let v be a weak supersolution in ⌦00 such that

min{u, v} 2 K
g,h

(⌦,⌦0). Then u  v almost everywhere.

Proof Since u is the solution to the obstacle problem and min{u, v} = u in
Rn \⌦,

0  hAu,min{u, v}� ui (25)

=

Z

Rn

Z

Rn

L(u(x), u(y))
⇣

min{u, v}(x)� u(x)�min{u, v}(y) + u(y)
⌘

⇥K(x, y) dxdy.

Since v is a weak supersolution in ⌦00 and u � min{u, v} 2 W s,p

0

(⌦) is non-
negative, we have

0 
Z

Rn

Z

Rn

L(v(x), v(y))
⇣

u(x)�min{u, v}(x)� u(y) + min{u, v}(y)
⌘

⇥K(x, y) dxdy. (26)

Summing the preceding inequalities (25) and (26), we obtain

0 
Z

Rn

Z

Rn

�

L(v(x), v(y))� L(u(x), u(y))
�

⇥
�

u(x)�min{u, v}(x)� u(y) + min{u, v}(y)
�

K(x, y) dxdy

=

Z

{u>v}

Z

{u>v}

�

L(v(x), v(y))� L(u(x), u(y))
�

⇥
�

u(x)� v(x)� u(y) + v(y)
�

K(x, y) dxdy

+ 2

Z

{uv}

Z

{u>v}

�

L(v(x), v(y))� L(u(x), u(y))
��

u(x)� v(x)
�

K(x, y) dxdy

 0

since the first term is nonpositive by (16), whereas in the second term, L(v(x), v(y)) <
L(u(x), u(y)) and u(x) > v(x). Consequently, |{u > v}| = 0.
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4 Interior regularity

In this section, we state and prove that the regularity of the solution to the
obstacle problem inherits the regularity of the obstacle, both in the case of
boundedness and (Hölder) continuity. This is in clear accordance with the by-
now classical results for the obstacle problems in the pure fractional Laplacian
(��)s case, as seen e. g. in [1,7,42], via the Dirichlet-to-Neumann extension.
However, our approach here is di↵erent and, though we are dealing with a wider
class of nonlinear integro-di↵erential operators with coe�cients, the proofs are
new and even simpler, since we can make e↵ort of the recent quantitative
estimates presented in the previous sections and in [12,13], by taking care of
the nonlocal tail quantities.

Theorem 2 Let u be the solution to the obstacle problem in K
g,h

(⌦,⌦0). As-
sume that B

r

(x
0

) ⇢ ⌦0 and set

M := max

⇢

ess sup
Br(x0)\⌦

h, ess sup
Br(x0)\⌦

g

�

.

Here the interpretation is that ess sup
A

f = �1 if A = ;. If M is finite, then

u is essentially bounded from above in B
r/2

(x
0

) and

ess sup
Br/2(x0)

(u�m)
+

 �Tail((u�m)
+

;x
0

, r/2) + c ���

 

Z

Br(x0)

(u�m)t
+

dx

!

1
t

(27)
holds for all m � M , t 2 (0, p) and � 2 (0, 1] with constants � ⌘ �(n, p, s, t)
and c ⌘ c(n, p, s, t,⇤).

Proof Suppose that M < 1. Letting k � 0, m � M , and � 2 C1
0

(B
r

(x
0

)),
0  �  1, we see that v = u�m�(u�m�k)

+

�p belongs to K
g�m,h�m

(⌦,⌦0)
and that u

m

:= u � m solves the corresponding obstacle problem. Thus we
have that

Z

Rn

Z

Rn

L(u
m

(x), u
m

(y))
�

(u
m

(x)�k)
+

�p(x)�(u
m

(y)�k)
+

�p(y)
�

⇥K(x, y) dxdy  0.

As observed in the proof of [13, Theorem 1.4], this is enough to prove first
a Caccioppoli-type estimate with tail, and subsequently a local boundedness
result (see [13, Theorem 1.1]) which yields

ess sup
B⇢/2(y)

(u
m

)
+

 �̃Tail((u
m

)
+

; y, ⇢/2) + c �̃��̃

 

Z

B⇢(y)

(u
m

)p
+

dx

!

1
p

, (28)

whenever B
⇢

(y) ⇢ B
r

(x
0

), for any �̃ 2 (0, 1], and with positive �̃ depending
only on n, p, s and c only on n, p, s,⇤. Now, a covering argument, which goes
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back to the one in the proof of [12, Theorem 1.1], will allow us to prove that (28)
actually implies (27). For this, set ⇢ = (� � �0)r with 1/2  �0 < �  1, and
take y 2 �0B ⌘ B

�

0
r

(x
0

). We can estimate the nonlocal contribution in (28)
as follows

Tail((u
m

)
+

; y, ⇢/2)p�1


⇣⇢

2

⌘

sp

sup
�B

(u
m

)p�1

+

Z

�B\B⇢/2(y)

|x� y|�n�sp dx

+
⇣⇢

2

⌘

sp

sup
x2R\�B

✓

|x� x
0

|
|x� y|

◆

n+sp

Z

Rn\�B
(u

m

)p�1

+

|x� x
0

|�n�sp dx

 c sup
�B

(u
m

)p�1

+

+ c (� � �0)�nTail((u
m

)
+

;x
0

, r/2)p�1. (29)

For what concerns the local contribution in (28), we can apply Young’s In-
equality (with exponents p/t and p/(p� t)) to get

�̃��̃

 

Z

B⇢(y)

(u
m

)p
+

dx

!

1
p

 �̃��̃ sup
B⇢(y)

(u
m

)
p�t
p

+

 

Z

B⇢(y)

(u
m

)t
+

dx

!

1
p

 1

4
sup
�B

(u
m

)
+

+ c �̃�
�̃p
t

 

Z

B⇢(y)

(u
m

)t
+

dx

!

1
t

 1

4
sup
�B

(u
m

)
+

+ c �̃�
�̃p
t (� � �0)�

n
t

✓

Z

Br

(u
m

)t
+

dx

◆

1
t

.

Thus, by reabsorbing with �̃  1/4c we deduce by three last displays that

sup
�

0
B

(u
m

)
+

 1

2
sup
�B

(u
m

)
+

+ c �̃�
�̃p
t (� � �0)�

n
t

✓

Z

Br

(u
m

)t
+

dx

◆

1
t

+ c �̃(� � �0)�
n

p�1Tail((u
m

)
+

;x
0

, r/2),

so that finally a standard iteration argument, see for instance [19, Lemma
3.38], and choosing �̃ = �/c will give the desired result (27).

The solution to the obstacle problem inherits the continuity of the obstacle.

Theorem 3 Suppose that h is locally Hölder continuous in ⌦, or h ⌘ �1.

Then the solution u to the obstacle problem in K
g,h

(⌦,⌦0) is locally Hölder

continuous in ⌦ as well. Moreover, for every x
0

2 ⌦ there is r
0

> 0 such that

osc
B⇢(x0)

u  c
⇣⇢

r

⌘

↵

"

Tail(u� h(x
0

);x
0

, r) +

✓

Z

Br(x0)

|u� h(x
0

)|p dx
◆

1
p

#

(30)

+ c

Z

r

⇢

⇣⇢

t

⌘

↵

!
h

✓

t

�

◆

dt

t
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for every r 2 (0, r
0

) and ⇢ 2 (0, r/4], where !
h

(⇢) ⌘ !
h

(⇢, x
0

) := osc
B⇢(x0)

h,

and ↵, c and � depend only on n, p, s, and ⇤.

Proof Let us first analyze the contact set, by which we mean that x
0

belongs
to the contact set if and only if for every r 2 (0, R), R := dist(x

0

, @⌦), we
have

inf
Br(x0)

(u� h) = 0.

Our first goal is to show that for any such point x
0

and for any r 2 (0, R) we
find � 2 (0, 1) and c, both depending only on n, p, s,⇤, such that

osc
B�r(x0)

u+Tail(u� h(x
0

);x
0

,�r)

 1

2

✓

osc
Br(x0)

u+Tail(u� h(x
0

);x
0

, r)

◆

+ c!
h

(r). (31)

To this end, observe first that u � d := h(x
0

) � !
h

(r) almost everywhere in
B

r

(x
0

). Set u
d

:= u � d, which is then a nonnegative weak supersolution in
B

r

(x
0

) by Theorem 1. Now apply Theorem 2 and the weak Harnack estimate
in [12, Theorem 1.2]. We obtain by (27) (applied with m = d + 2!

h

(r) �
sup

B2⇢(x0)
h) that

sup
B⇢(x0)

u
d

 2!
h

(r) + �Tail((u
d

)
+

;x
0

, ⇢) + c ���

 

Z

B2⇢(x0)

ut

d

dx

!

1
t

(32)

for ⇢ 2 (0, r], t 2 (0, p) and � 2 (0, 1], and the weak Harnack gives

 

Z

B2⇢(x0)

ut

d

dx

!

1
t

 c inf
B4⇢(x0)

u
d

+ c
⇣⇢

r

⌘

sp
p�1

Tail((u
d

)�;x0

, r)

whenever ⇢ 2 (0, r/4]. Since inf
B⇢(x0)

u
d

 !
h

(r) due to ess inf
B⇢(x0)

(u� h) =
0, we obtain from the previous display that

 

Z

B2⇢(x0)

ut

d

dx

!

1
t

 c!
h

(r) + c
⇣⇢

r

⌘

sp
p�1

Tail(u
d

;x
0

, r).

Thus, recalling that u
d

� 0 in B
r

(x
0

), we arrive at

osc
B⇢(x0)

u  c ���!
h

(r) + c �Tail(u
d

;x
0

, ⇢) + c ���

⇣⇢

r

⌘

sp
p�1

Tail(u
d

;x
0

, r).

Now we observe that

Tail(u
d

;x
0

, ⇢)  c sup
Br(x0)

|u
d

|+ c
⇣⇢

r

⌘

sp
p�1

Tail(u
d

;x
0

, r), (33)
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where we can estimate

sup
Br(x0)

|u
d

| = sup
Br(x0)

|u� h(x
0

) + !
h

(r)|  osc
Br(x0)

u+ 2!
h

(r). (34)

Now, for any " 2 (0, 1), we can first choose � small and then e� 2 (0, 1),
correspondingly, so that we have

c �  "

2
and c ���

e�
sp

p�1  "

2
,

and therefore, for ⇢ = e�r,

osc
Be�r(x0)

u  "

✓

osc
Br(x0)

u+Tail(u� h(x
0

);x
0

, r)

◆

+ c
"

!
h

(r) (35)

holds. Using this together with (33), we further have that for any � 2 (0, e�)

Tail(u� h(x
0

);x
0

,�r)  c osc
B�̃r(x0)

u+ c
⇣�

e�

⌘

sp
p�1

Tail(u� h(x
0

);x
0

, e�r)

 c "

✓

osc
Br(x0)

u+Tail(u� h(x
0

);x
0

, r)

◆

+ c c
"

!
h

(r)

+ c
⇣�

e�

⌘

sp
p�1

✓

osc
Br(x0)

u+Tail(u� h(x
0

);x
0

, r)

◆

.

Therefore, adding (35) and taking � and " so small that

c
⇣�

e�

⌘

sp
p�1  " and (c+ 2) "  1

2
,

yields (31).
Next, iterating (31) we obtain

osc
B�kr(x0)

u+Tail(u� h(x
0

);x
0

,�kr)

 21�k

✓

osc
B�r(x0)

u+Tail(u� h(x
0

);x
0

,�r)

◆

+ c

k�2

X

j=0

2�j!
h

(�k�j�1r)

(36)

for any k 2 N. Using finally the fact osc
Br u = osc

Br ud

 sup
Br

u
d

and the
supremum estimate (32), we conclude the contact set analysis with

osc
B�kr(x0)

u+Tail(u� h(x
0

);x
0

,�kr)

 c 21�k

 

Tail(u� h(x
0

);x
0

, r) +

✓

Z

Br(x0)

|u� h(x
0

)|t dx
◆

1
t

!

(37)

+ c

k�1

X

j=0

2�j!
h

(�k�j�1r).



The obstacle problem for nonlinear integro-di↵erential operators 23

Notice here that if h is continuous and uniformly bounded in B
r

, then

lim
k!1

k�1

X

j=0

2�j!
h

(�k�j�1r) = 0,

implying that lim
r!0

osc
Br(x0)

u = 0 in this case.
We then analyze the continuity properties outside of the contact set. In

this case we find r
0

2 (0, R) such that

inf
Br0 (x0)

(u� h) > 0.

Then Corollary 1 says that u is a weak solution in B
r0(x0

), and consequently
we can use the results in [13], by also noticing that in the proofs there it makes
no di↵erence to assume u 2 W s,p

loc

(⌦)\Lp�1

sp

(Rn) instead of u 2 W s,p(Rn). In
particular, [13, Theorem 1.2] implies that

osc
B⇢(x0)

u  c
⇣⇢

r

⌘

↵

 

Tail(u� h(x
0

);x
0

, r) +

✓

Z

Br(x0)

|u� h(x
0

)|p dx
◆

1
p

!

.

for every r 2 (0, r
0

) and ⇢ 2 (0, r/2]. The claim follows from this and (37)
(with ↵  � log 2/ log �) after straightforward manipulations.

Slightly modifying the proof above, we easily obtain the following.

Theorem 4 Suppose that h is continuous in ⌦, or h ⌘ �1. Then the solution

to the obstacle problem in K
g,h

(⌦,⌦0) is continuous in ⌦ as well.

Proof This plainly follows from the previous theorem, since if !
h

(t) ! 0 as
t ! 0 and !

h

is locally uniformly bounded, then it is easy to check that
Z

r

⇢

⇣⇢

t

⌘

↵

!
h

✓

t

�

◆

dt

t
! 0

as ⇢! 0 for small enough r.

5 Boundary regularity

We continue our investigation by considering the regularity of the solution
to the obstacle problem on the boundary of ⌦. In what follows, we assume
x
0

2 @⌦. Firstly, we would need a Caccioppoli-type estimate with tail, whose
proof is a verbatim repetition of the proof of [13, Theorem 1.4] after noticing
that v = u ⌥ w±�

p, � 2 C1
0

(B
r

(x
0

)), 0  �  1, belongs to K
g,h

(⌦,⌦0)
for all indicated k

+

and k�. For other fractional Caccioppoli-type inequalities,
though not taking into account the tail contribution, see [31,32,17]. We have
the following
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Lemma 4 Suppose that u 2 K
g,h

(⌦,⌦0) solves the obstacle problem in K
g,h

(⌦,⌦0).
Let x

0

2 @⌦, let r 2 (0, r
0

) with r
0

:= dist(x
0

, @⌦0), and suppose that

k
+

� max

⇢

ess sup
Br(x0)

g, ess sup
Br(x0)\⌦

h

�

and k�  ess inf
Br(x0)

g.

Then, for w
+

:= (u� k
+

)
+

and w� := (k� � u)
+

, we have
Z

Br(x0)

Z

Br(x0)

|w±(x)�(x)� w±(y)�(y)|pK(x, y) dxdy

 c

Z

Br(x0)

Z

Br(x0)

wp

±(x)|�(x)� �(y)|pK(x, y) dxdy (38)

+ c

Z

Br(x0)

w±(x)�
p(x) dx

 

sup
y 2 supp�

Z

Rn\Br(x0)

wp�1

± (x)K(x, y) dx

!

,

whenever � 2 C1
0

(B
r

(x
0

)) and 0  �  1.

Remark 4 If the maximum max{ess sup
Br(x0)

g, ess sup
Br(x0)\⌦

h} is infinite,
or ess inf

Br(x0)
g = �1, then the interpretation is that there is no test function

of the type w
+

or w�, respectively.

When the obstacle and the boundary values are bounded on the boundary,
so is the solution to the obstacle problem.

Theorem 5 Suppose that u 2 K
g,h

(⌦,⌦0) solves the obstacle problem in

K
g,h

(⌦,⌦0). Let x
0

2 @⌦ and suppose that

max

⇢

ess sup
Br(x0)

g, ess sup
Br(x0)\⌦

h

�

< 1 and ess inf
Br(x0)

g > �1

for r 2 (0, r
0

) with r
0

:= dist(x
0

, @⌦0). Then u is essentially bounded close to

x
0

.

Proof Choose

k
+

� max

⇢

ess sup
Br(x0)

g, ess sup
Br(x0)\⌦

h

�

and k�  ess inf
Br(x0)

g.

Then, repeating the proof of [13, Theorem 1.1] using the estimate (38) in
Lemma 4 with w

+

:= (u� k
+

)
+

and w� := (k� � u)
+

, we get

ess sup
Br/2(x0)

w±  �Tail(w±;x0

, r/2) + c ���

 

Z

Br(x0)

wp

± dx

!

1/p

.

for any � 2 (0, 1] with � ⌘ �(n, p, s) and c ⌘ c(n, p, s,⇤). Consequently, u is
essentially bounded in B

r/2

(x
0

).
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To prove the Hölder continuity of the solution to the obstacle problem on
the boundary, we also need the following logarithmic estimate.

Lemma 5 Let B
r

⇢ B
R/2

be concentric balls and let w 2 W s,p(B
R

)\Lp�1

sp

(Rn)
satisfy

ess sup
BR

w  M < 1 and ess inf
BR

w � " > 0.

Suppose that
Z

Rn

Z

Rn

L(w(x), w(y))

✓

M � w(x)

w(x)p�1

�p(x)� M � w(y)

w(y)p�1

�p(y)

◆

K(x, y) dxdy � 0,

where � 2 C1
0

(B
3r/2

) satisfies 0  �  1, � = 1 in B
r

and |r�| < c/r. Then
Z

Br

Z

Br

�

�

�

�

log
w(x)

w(y)

�

�

�

�

p

K(x, y) dxdy

 c rn�sp

⇣

1 + "1�p

⇣ r

R

⌘

sp

Tail(w�, x0

, R)p�1

⌘

. (39)

Proof By splitting the integral, we obtain

0 
Z

B2r

Z

B2r

L(w(x), w(y))

✓

M � w(x)

w(x)p�1

�p(x)� M � w(y)

w(y)p�1

�p(y)

◆

K(x, y) dxdy

+ 2

Z

Rn\B2r

Z

B2r

L(w(x), w(y))
M � w(x)

w(x)p�1

�p(x)K(x, y) dxdy

=: I
1

+ I
2

. (40)

We estimate the integrand of I
1

in the case w(x) > w(y). By [13, Lemma 1.3]
we have

�p(x)  �p(y) + c ��p(y) + c �1�p|�(x)� �(y)|p

whenever � 2 (0, 1). Choosing

� = �
w(x)� w(y)

w(x)
2 (0, 1), � 2 (0, 1),

in the display above, implies

 (x, y) := (w(x)� w(y))p�1

✓

M � w(x)

w(x)p�1

�p(x)� M � w(y)

w(y)p�1

�p(y)

◆

 (w(x)� w(y))p�1

✓

M � w(x)

w(x)p�1

� M � w(y)

w(y)p�1

+ c �
M � w(x)

w(x)p�1

◆

�p(y)

+ c �1�p(w(x)� w(y))p�1

M � w(x)

w(x)p�1

|�(x)� �(y)|p

=

✓

M � w(x)

w(x)p�1

� M � w(y)

w(y)p�1

+ c�
(w(x)� w(y))(M � w(x))

w(x)p

◆

⇥ (w(x)� w(y))p�1�p(y) + c�1�p(M � w(x))|�(x)� �(y)|p

=:  
1

(x, y) +  
2

(x, y).
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We estimate  
1

separately in the cases w(x) > 2w(y) and w(x)  2w(y).
When w(x) > 2w(y), we obtain

 
1

(x, y) 
✓

w(x)� w(y)

w(y)

◆

p�1

�

21�p(M � w(x))� (M � w(y)) + c�M
�

�p(y)


✓

w(x)� w(y)

w(y)

◆

p�1

�

(2�1 � 21�p)w(x)� (1� 21�p)M + c�M
�

�p(y).

If p � 2, then

(2�1 � 21�p)w(x)� (1� 21�p)M  (2�1 � 21�p)M � (1� 21�p)M = �1

2
M.

If 1 < p < 2, in turn, then

(2�1 � 21�p)w(x)� (1� 21�p)M  �(1� 21�p)M.

Thus, choosing � small enough in  
1

, we obtain

 
1

(x, y)  �1

c
M

✓

w(x)� w(y)

w(y)

◆

p�1

�p(y). (41)

When w(x)  2w(y), we can estimate

 
1

(x, y) 
 

w(x)
�

(M � w(x))w(y)p�1 � (M � w(y))w(x)p�1

�

w(y)p�1(w(x)� w(y))
+ c�M

!

⇥
✓

w(x)� w(y)

w(x)

◆

p

�p(y).

If w(x) < M/2, then

(M � w(x))w(y)p�1 � (M � w(y))w(x)p�1

 (M � w(x))w(y)p�1 � (M � w(x))w(x)p�1

 �1

c
(M � w(x))(w(x)� w(y))w(x)p�2

 �1

c
M(w(x)� w(y))w(x)p�2,

and we obtain

 
1

(x, y)  �1

c
M

✓

w(x)� w(y)

w(x)

◆

p

�p(y) (42)

when choosing � small enough. If w(x) � M/2, in turn, then

w(x)
�

(M � w(x))w(y)p�1 � (M � w(y))w(x)p�1

�

 w(x)
�

(M � w(x))w(y)p�1 � (M � w(y))w(y)p�1

�

 �1

2
M(w(x)� w(y))w(y)p�1,
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and again we obtain (42) when choosing � small enough.
Let us then estimate further to get logarithms visible. In the case w(x) >

2w(y), it holds
✓

log
w(x)

w(y)

◆

p

 c

✓

w(x)� w(y)

w(y)

◆

p�1

(43)

since (log t)p  c (t� 1)p�1 when t > 2. In the case w(x)  2w(y), in turn, it
holds

✓

log
w(x)

w(y)

◆

p

=

✓

log

✓

1 +
w(x)� w(y)

w(y)

◆◆

p


✓

w(x)� w(y)

w(y)

◆

p

 2p
✓

w(x)� w(y)

w(x)

◆

p

(44)

since log(1+ t)  t when t � 0. Thus, combining (41) with (43) and (42) with
(44), we obtain

 
1

(x, y)  �1

c
M

✓

log
w(x)

w(y)

◆

p

�p(y). (45)

For  
2

we easily get

 
2

(x, y)  cM |�(x)� �(y)|p  cMr�p|x� y|p.

In the case w(x) < w(y) we can interchange the roles of x and y, whereas the
contribution from the case w(x) = w(y) is zero. After integrating we have

I
1

 �1

c
M

Z

Br

Z

Br

�

�

�

�

log
w(x)

w(y)

�

�

�

�

p

K(x, y) dxdy + cMrn�sp. (46)

In the integrand of I
2

we can estimate

|w(x)� w(y)|p�2(w(x)� w(y))
M � w(x)

w(x)p�1

�p(x)

 c
�

w(x)p�1 + w�(y)
p�1

� M

w(x)p�1

�
B3r/2

(x)

 cM
�

1 + "1�pw�(y)
p�1

�

�
B3r/2

(x),

and integrating yields

I
2

 cM

Z

Rn\B2r

Z

B3r/2

�

1 + "1�pw�(y)
p�1

�

K(x, y) dxdy

 cM

Z

Rn\B2r

Z

B3r/2

�

1 + "1�pw�(y)
p�1

�

|y � x
0

|�n�sp dxdy

 cMrn�sp

�

1 + "1�p Tail(w�, x0

, r)p�1

�

= cMrn�sp

⇣

1 + "1�p

⇣ r

R

⌘

sp

Tail(w�, x0

, R)p�1

⌘

(47)
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since w� = 0 in B
R

. Finally, the claim (39) follows by combining (40), (46)
and (47).

We employ the previous lemma for particular truncations of the solutions
to the obstacle problem.

Lemma 6 Suppose that u 2 K
g,h

(⌦,⌦0) solves the obstacle problem in K
g,h

(⌦,⌦0).
Let B

R

b ⌦0, let B
r

⇢ B
R/2

be concentric balls and let

1 > k
+

� max

⇢

ess sup
BR

g, ess sup
BR\⌦

h

�

and �1 < k�  ess inf
BR

g.

Then the functions

w± := ess sup
BR

(u� k±)± � (u� k±)± + "

satisfy the following estimate
Z

Br

Z

Br

�

�

�

�

log
w±(x)

w±(y)

�

�

�

�

p

K(x, y) dxdy

 c rn�sp

⇣

1 + "1�p

⇣ r

R

⌘

sp

Tail((w±)�, x0

, R)p�1

⌘

(48)

for every " > 0.

Proof Let " > 0 and denote H± := ess sup
BR

(u� k±)± + ". Notice that H± is
finite by Theorem 5. Let � 2 C1

0

(B
3r/2

) be such that 0  �  1, � ⌘ 1 in B
r

and |D�| < c/r. Denoting by

v± = u⌥ "p�1

(u� k±)±
(H± � (u� k±)±)p�1

�p = u⌥ "p�1

H± � w±

wp�1

±
�p,

we clearly have v± 2 K
g,h

(⌦,⌦0) since, in particular,

v
+

= u� "p�1

(u� k
+

)
+

wp�1

+

�p � u� (u� k
+

)
+

�
BR � h

almost everywhere in ⌦ because k
+

� ess sup
BR\⌦

h.
Since u solves the obstacle problem, we have hAu, v± � ui � 0, and thus

⌥
Z

Rn

Z

Rn

L(u(x), u(y))

✓

H± � w±(x)

w±(x)p�1

�p(x)� H± � w±(y)

w±(y)p�1

�p(y)

◆

⇥K(x, y) dxdy � 0.

Let us estimate the integrand above first for w
+

. If u(x), u(y) > k
+

, we simply
have �L(u(x), u(y)) = L(w

+

(x), w
+

(y)), and consequently

� L(u(x), u(y))

✓

H
+

� w
+

(x)

w
+

(x)p�1

�p(x)� H
+

� w
+

(y)

w
+

(y)p�1

�p(y)

◆

 L(w
+

(x), w
+

(y))

✓

H
+

� w
+

(x)

w
+

(x)p�1

�p(x)� H
+

� w
+

(y)

w
+

(y)p�1

�p(y)

◆

(49)
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holds. If u(x) > k
+

� u(y), then w
+

(y) = H
+

and

�(u(x)� u(y)) = �(H
+

� w
+

(x) + k
+

� u(y))  w
+

(x)� w
+

(y),

and (49) follows. If, in turn, u(y) > k
+

� u(x), we can just exchange the roles
of x and y to obtain (49), whereas in the case u(x), u(y)  k

+

(49) is trivial
since w

+

(x) = w
+

(y) = H
+

. Similarly, we obtain

L(u(x), u(y))

✓

H� � w�(x)

w�(x)p�1

�p(x)� H� � w�(y)

w�(y)p�1

�p(y)

◆

 L(w�(x), w�(y))

✓

H� � w�(x)

w�(x)p�1

�p(x)� H� � w�(y)

w�(y)p�1

�p(y)

◆

for w�, and thus
Z

Rn

Z

Rn

L(w±(x), w±(y))

✓

H± � w±(x)

w±(x)p�1

�p(x)� H± � w±(y)

w±(y)p�1

�p(y)

◆

⇥K(x, y) dxdy � 0.

Now the claim (48) follows from Lemma 5.

5.1 Hölder continuity up to the boundary

Before starting to prove the Hölder continuity up to the boundary, it is worth
noticing that we have to assume g 2 K

g,h

(⌦,⌦0) since otherwise the solution
may be discontinuous on every boundary point.

Example 1 Suppose that sp < 1 and let ⌦ = B
1

(0) and ⌦0 = B
2

(0). Then
the characteristic function �

⌦

solves the obstacle problem in K
g,h

(⌦,⌦0) with
constant functions g ⌘ 0 and h ⌘ 1. Indeed, �

⌦

2 W s,p(⌦0) when sp < 1 and
it is easy to see that it is a weak supersolution. Consequently, it is the solution
to the obstacle problem in K

g,h

(⌦,⌦0) in view of Proposition 1.

In the following we will assume that the complement of ⌦ satisfies the
following measure density condition. There exist �

⌦

2 (0, 1) and r
0

> 0 such
that for every x

0

2 @⌦

inf
0<r<r0

|(Rn \⌦) \B
r

(x
0

)|
|B

r

(x
0

)| � �
⌦

. (50)

As mentioned in the introduction, this requirement is in the same spirit of the
standard Nonlinear Potential Theory, rearranged as an information given only
on the complement of the set in accordance with the nonlocality of the in-
volved equations; and this is also an improvement with respect to the previous
boundary regularity results in the fractional literature when strong smooth or
Lipschitz regularity of the set is required.
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Lemma 7 Let ⌦ satisfy (50) for r
0

> 0 and �
⌦

> 0, and let B ⌘ B
r

(x
0

) with
x
0

2 @⌦ and r 2 (0, r
0

). Suppose that f 2 W s,p(B) and f = 0 in B \⌦. Then
Z

B

|f |p dx  c
⇣

1� (1� �
⌦

)1�1/p

⌘�p

rsp
Z

B

Z

B

|f(x)� f(y)|p

|x� y|n+sp

dxdy. (51)

Proof Since f = 0 in B \⌦,

|f
B

|  |B \⌦|
|B|

Z

B\⌦

|f | dx  |B \⌦|
|B|

✓

Z

B\⌦

|f |p dx
◆

1/p


✓

|B \⌦|
|B|

◆

1�1/p

✓

Z

B

|f |p dx
◆

1/p

= (1� �
⌦

)1�1/p

✓

Z

B

|f |p dx
◆

1/p

,

and we can estimate
✓

Z

B

|f |p dx
◆

1/p


✓

Z

B

|f � f
B

|p dx
◆

1/p

+ |f
B

|


✓

Z

B

|f � f
B

|p dx
◆

1/p

+ (1� �
⌦

)1�1/p

✓

Z

B

|f |p dx
◆

1/p

.

Absorbing the last term yields
Z

B

|f |p dx 
⇣

1� (1� �
⌦

)1�1/p

⌘�p

Z

B

|f � f
B

|p dx,

and the claim follows from the fractional Poincaré inequality.

Lemma 8 Assume that x
0

= 0 2 @⌦ and g(0) = 0, where ⌦ satisfies (50)
for all r  R. Let ! > 0. There exist ⌧

0

2 (0, 1), � 2 (0, 1) and ✓ 2 (0, 1), all
depending only on n, p, s and �

⌦

, such that if

osc
BR(0)

u+ �Tail(u; 0, R)  ! and osc
BR(0)

g  !

8
(52)

hold, then the decay estimate

osc
B⌧R(0)

u+ �Tail(u; 0, ⌧R)  (1� ✓)! (53)

holds as well for every ⌧ 2 (0, ⌧
0

].

Proof Denote H = ✓/� and B ⌘ B
R

(0). We begin by estimating the tail term
to obtain

�p�1Tail(u; 0, ⌧R)p�1 = �p�1(⌧R)sp
Z

B\⌧B

|u(x)|p�1

|x|n+sp

dx

+ �p�1⌧ spTail(u; 0, R)p�1

 c�p�1!p�1 + ⌧ sp!p�1
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by (52). Consequently,

�Tail(u; 0, ⌧R)  c̃

✓

✓

H
+ ⌧ sp/(p�1)

◆

!  2c̃ ✓

H
! = ✓! (54)

when restricting ⌧
0

 �(p�1)/(sp) and choosing H = 2c̃ � 1, where c̃ ⌘
c̃(n, p, s). Thus, it su�ces to prove that

osc
⌧B

u  (1� 2✓)! (55)

for all ⌧  ⌧
0

. To this end, let

k
+

:= sup
B

u� !

4
, k� := inf

B

u+
!

4
, " := ✓!

and

w± := sup
B

(u� k±)± � (u� k±)± + ", w̃± :=
w±

sup
B

w±
.

We may assume sup
B

u � 3

8

! or inf
B

u  � 3

8

! since otherwise osc
⌧B

u 
osc

B

u  3

4

! and there is nothing to prove if we assume that ✓  1/8. We
consider the case sup

B

u � 3

8

!; the case inf
B

u  � 3

8

! is symmetric. Notice
that we have w̃

+

= 1 in B \ ⌦ due to the condition u = g  !/8 in B \ ⌦.
First, we estimate, by Lemmas 7 and 6 with r ⌘ 2⌧R and (52) when restricting
⌧
0

 1/4 and ⌧
0

 �2(p�1)/(sp), to obtain

Z

2⌧B

|log w̃
+

|p dx  c (⌧R)sp
Z

2⌧B

Z

2⌧B

�

�

�

�

log
w̃

+

(x)

w̃
+

(y)

�

�

�

�

p

K(x, y) dxdy

 c (⌧R)sp
Z

2⌧B

Z

2⌧B

�

�

�

�

log
w

+

(x)

w
+

(y)

�

�

�

�

p

K(x, y) dxdy

 c
⇣

1 + (✓!)1�p⌧ spTail((w
+

)�; 0, R)p�1

⌘

 c
⇣

1 + (✓!)1�p�2(p�1)Tail(u; 0, R)p�1

⌘

 c

 

1 + (✓!)1�p

✓

✓

H

◆

p�1

!p�1

!

 c.

Consequently, by Chebyshev’s Inequality we have

|2⌧B \ {| log w̃
+

| � |log(20 ✓)|}|
|2⌧B|  | log(20 ✓)|�p

Z

2⌧B

| log w̃
+

|p dx

 c | log(20 ✓)|�p. (56)
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Let us estimate the left-hand side of (56). Since, by definitions, 0 < w̃
+

 1
and sup

B

(u� k
+

)
+

= !/4, we have that

{| log w̃
+

| � | log(20 ✓)|} = {w̃
+

 20 ✓}

=
n!

4
+ "� (u� k

+

)
+

 20 ✓
⇣!

4
+ "
⌘o

=
n!

4
+ ✓! � u+ sup

B

u� !

4
 5✓! + 20 ✓2!

o

�
n

u � sup
B

u� 4✓!
o

provided that ✓ < 1/20. Consequently, by defining k̃ ⌘ k̃
+

:= sup
B

u � 4✓!
and using the above two displays, we get

✓

Z

2⌧B

(u� k̃)p
+

dx

◆

1/p

 4✓!

✓

|2⌧B \ {u � sup
B

u� 4✓!}|
|2⌧B|

◆

1/p

 4✓!

✓

|2⌧B \ {| log w̃
+

| � | log(20 ✓)|}|
|2⌧B|

◆

1/p

 c ✓!

| log(20 ✓)| .

Since k̃ � sup
B

g, we have by Theorem 5 that

sup
⌧B

(u� k̃)
+

 �Tail((u� k̃)
+

; 0, ⌧R) + c ���

✓

Z

2⌧B

(u� k̃)p
+

dx

◆

1/p

for any � 2 (0, 1], and hence

sup
⌧B

u  sup
B

u� 4✓! + �Tail((u� k̃)
+

; 0, ⌧R) +
c ���

| log(20 ✓)|✓!. (57)

To estimate the tail term, we proceed similarly as in (54) and obtain

Tail((u� k̃)
+

; 0, ⌧R)p�1  (⌧R)sp
Z

B\⌧B
(u(x)� k̃)p�1

+

|x|�n�sp dx

+ ⌧ spTail(u; 0, R)p�1

 c (✓!)p�1

✓

1 +
⌧ sp

✓p�1�p�1

◆

 c (✓!)p�1,

where we also used the facts (u� k̃)
+

 4✓! in B, Tail(u; 0, R)  !/� by (52),
and ⌧ sp  ⌧ sp

0

 ✓p�1�p�1. Thus, by choosing first � small and then ✓ small
accordingly, we deduce from (57) that

sup
⌧B

u  sup
B

u� 2✓!,
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and (55) follows, as desired. This finishes the proof.

Now, we have finally collected all the machinery to plainly deduce the
Hölder continuity up the boundary. We have the following

Theorem 6 Suppose that u solves the obstacle problem in K
g,h

(⌦,⌦0). Let
x
0

2 @⌦ and B
2R

(x
0

) ⇢ ⌦0, and assume that g 2 K
g,h

(⌦,⌦0) is Hölder

continuous in B
R

(x
0

), and ⌦ satisfies (50) for all r  R. If h is Hölder

continuous in B
R

(x
0

), or h ⌘ �1, then u is Hölder continuous in B
R

(x
0

) as
well.

Proof We may assume x
0

= 0 and g(0) = 0. Moreover, we may choose R
0

such that osc
B0 g  osc

B0 u for B
0

⌘ B
R0(0) since otherwise we have nothing

to prove, and define

!
0

:= 8

✓

osc
B0

u+Tail(u; 0, R
0

)

◆

. (58)

By Lemma 8 there exist ⌧
0

, � and ✓ depending only on n, p, s and �
⌦

such
that if

osc
Br(0)

u+ �Tail(u; 0, r)  ! and osc
Br(0)

g  !

8
(59)

hold for a ball B
r

(0) and for ! > 0, then

osc
B⌧r(0)

u+ �Tail(u; 0, ⌧r)  (1� ✓)! (60)

holds for every ⌧ 2 (0, ⌧
0

]. As we can take ⌧  ⌧
0

such that

osc
⌧

j
B0

g  (1� ✓)j
!
0

8
for every j = 0, 1, . . . . (61)

Now, iterating (60) with (59) and (61) noticing also that the initial condition
is satisfied by (58), we obtain

osc
⌧

j
B0

u  (1� ✓)j!
0

for every j = 0, 1, . . . .

Consequently, u 2 C0,↵(B
0

) with the exponent ↵ = log(1� ✓)/ log ⌧ 2 (0, 1).

Slightly modifying the proof above, we easily obtain the following.

Theorem 7 Suppose that u solves the obstacle problem in K
g,h

(⌦,⌦0). Let
x
0

2 @⌦ and B
2R

(x
0

) ⇢ ⌦0, and assume that g 2 K
g,h

(⌦,⌦0) is continuous

in B
R

(x
0

), and ⌦ satisfies (50) for all r  R. If h is continuous in B
R

(x
0

),
or h ⌘ �1, then u is continuous in B

R

(x
0

) as well.

For the sake of completeness, we gather our continuity results into two
global theorems. The first one follows by combining Theorems 3 and 6 and the
second one by combining Theorems 4 and 7.
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Theorem 8 Suppose that ⌦ satisfies (50) and g 2 K
g,h

(⌦,⌦0). Let u solve

the obstacle problem in K
g,h

(⌦,⌦0). If g is locally Hölder continuous in ⌦0

and h is locally Hölder continuous in ⌦, or h ⌘ �1, then u is locally Hölder

continuous in ⌦0.

Theorem 9 Suppose that ⌦ satisfies (50) and g 2 K
g,h

(⌦,⌦0). Let u solve the

obstacle problem in K
g,h

(⌦,⌦0). If g is continuous in ⌦0 and h is continuous

in ⌦, or h ⌘ �1, then u is continuous in ⌦0.
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29. E. Lindgren: Hölder estimates for viscosity solutions of equations of fractional p-
Laplace type. Preprint. arXiv: 1405.6612 (2015)
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