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Abstract. In this paper, we study different notions of solutions of nonlocal
and nonlinear equations of fractional p-Laplace type

P.V.

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy = 0.

Solutions are defined via integration by parts with test functions, as viscosity
solutions or via comparison. Our main result states that for bounded solutions,
the three different notions coincide.
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1. Introduction

We are concerned with different notions of solutions of nonlocal and nonlinear
equations modeled by the fractional p-Laplace equation

(1.1) P.V.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy = 0,

where s ∈ (0, 1) and p > 1. In recent years there has been a surge of interest around
equations related to (1.1). The aim of this paper is to prove that, under reasonable
assumptions, the different notions of solutions to (1.1) are equivalent. The three
different notions we aim to treat are:

(1) Weak solutions of (1.1) as in Definition 1. These arise naturally as mini-
mizers of the Gagliardo seminorm, i.e., minimizers of

∫

Rn

∫

Rn

|u(x)− u(y)|p

|x− y|n+sp
dxdy,

and the concept of being a solution is defined trough the first variation.
The direct methods of the calculus of variations easily provide existence
and uniqueness.

(2) The potential-theoretic (s, p)-harmonic functions as in Definition 2. These
are defined via comparison with weak solutions and they naturally arise for
example in the Perron method.

(3) Viscosity solutions of (1.1) as in Definition 3. The notion of viscosity solu-
tions is based on the pointwise evaluation of the principal value appearing
in (1.1).

Instead of (1.1), we consider more general type equations

P.V.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy = 0,

where the kernel K has growth similar to |x − y|−n−sp, see Section 2 for precise
definitions. The weak solutions in (1), as well as potential-theoretic (s, p)-harmonic
functions in (2) are well-defined for very general, merely measurable kernels, since
there is a natural weak formulation behind as soon asK(·, ·) is symmetric. However,
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in order to obtain the equivalence between different notions of solutions, we are
forced to assume that K is translation invariant. This is essentially a necessity,
as explained already in [23]. We call the collection of suitable kernels as Ker(Λ),
where Λ is measuring the ellipticity.

The nonlocal integro-differential equation (1.1) can be seen as a fractional non-
local counterpart to the usual p-Laplace equation

∆pu = div(|∇u|p−2∇u) = 0.

In fact, it is shown in [11] that the fractional viscosity solutions of (1.1) converge
to the ones of p-Laplacian as s → 1. In the case of the p-Laplace equation, the
equivalence of solutions was first proved in [13] (see also [21]), and a shorter proof
was recently given in [12]. It is notable that both in [13] and in [12] there is a
need for a technical regularization procedure via infimal convolutions, which can
be completely avoided in the nonlocal case.

Our main result, using the recent results in [15] and [16], states that solutions
defined via comparison and viscosity solutions are exactly the same for the class of
kernels Ker(Λ), see Section 2.

Theorem 1.1. Suppose that the kernel K belongs to Ker(Λ). Then, a function u
is (s, p)-superharmonic in Ω if and only if it is an (s, p)-viscosity supersolution in
Ω.

In case that the supersolution is bounded or belongs to the right Sobolev space,
we have the full equivalence result.

Theorem 1.2. Suppose that the kernel K belongs to Ker(Λ). Assume that u is
locally bounded from above in Ω or u ∈ W s,p

loc (Ω). Then the following statements
are equivalent:

(1) u is the lower semicontinuous representative of a weak supersolution in Ω.
(2) u is (s, p)-superharmonic in Ω.
(3) u is an (s, p)-viscosity supersolution in Ω.

In particular, by the theorem above we obtain that a continuous bounded energy
solution is a viscosity solution. Moreover, if a weak solution is trapped between
two functions that are regular enough, then the principal value in (1.1) is well-
defined and zero, see Proposition 3.1. As a matter of fact, Proposition 3.1 and the
main theorems above assert that if a lower semicontinuous supersolution touches
a smooth function from above, then the principal value exists at that point and is
nonnegative.

From the very definition of viscosity supersolutions we see that there are no in-
tegrability or differentiability assumptions on them. In view of Theorem 1.1, we
may directly apply [15, Theorem 1] to obtain the following useful result for viscos-
ity supersolutions, which is, starting from the definition of them, not completely
obvious.

Theorem 1.3. Suppose that the kernel K belongs to Ker(Λ). If u is an (s, p)-
viscosity supersolution in an open set Ω, then it has the following properties:

(i) Pointwise behavior.

u(x) = lim inf
y→x

u(y) = ess lim inf
y→x

u(y) for every x ∈ Ω.

(ii) Summability. For

t̄ :=

{n(p−1)
n−sp , 1 < p < n

s ,

+∞, p ≥ n
s ,

q̄ := min

{

n(p− 1)

n− s
, p

}

,
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and h ∈ (0, s), t ∈ (0, t̄) and q ∈ (0, q̄), u ∈Wh,q
loc (Ω) ∩L

t
loc(Ω) ∩ L

p−1
sp (Rn).

1.1. Some known results. To the best of our knowledge, equations of the type
(1.1) were first considered in [11], where viscosity solutions are studied. Existence,
uniqueness, and the convergence to the p-Laplace equation as the parameter s→ 1,
are proved. There is a slight technical difference of the equations studied therein,
which is that the kernel only has support in a ball of radius ρ(x). In [4], weak
solutions of the equation are studied, mostly for p large, in connection with optimal
Hölder extensions.

When it comes to regularity theory, there are many recent results. In [8] and
[7], local Hölder regularity of weak solutions is studied, in the flavor of De Giorgi-
Nash-Moser. In [20] the local Hölder regularity for viscosity solutions is studied.
Both of these studies were preceded and inspired by the methods and results in [14]
and [23], respectively. Very recently, the sharp regularity up to the boundary was
obtained in [10]. We also seize the opportunity to mention the paper [18], in which
regularity properties for equations like (1.1) with a measure are studied. There has
also been some recent progress in terms of higher integrability results; in [17], [19],
and [6] the case p = 2 is treated. In [22] and [3] the general case when p ≥ 2 is
considered.

Worth mentioning is also that there are other ways of defining a nonlocal or
a fractional version of the p-Laplace equation by developing the terms and then
replacing this with a suitable nonlocal operator. This is the direction taken in [2],
[1], and [5]. In [2] and [1] an interesting connection to a nonlocal tug-of-war is
found and in [5] a connection to Lévy processes is made. Note that the operators
considered in these papers differ substantially from the operators considered in the
present paper.

As mentioned earlier, the literature on equations like (1.1) has literally exploded
in recent years, hence we do not, in any way, claim to give a full account here.

The paper is organized as follows. In Section 2 below, we introduce the definitions
and notations stating also some recent results. In Section 3, we prove several
properties for fractional p-Laplace type operators from the viscosity solution point
of view. In Section 4, we state and prove a weak comparison principle for viscosity
solutions, which is one of the keys to our main result. Finally, Section 5 is devoted
for proving the main result.

2. Definitions and notation

In this section, we introduce and define the different notions of solutions and
also some notation.

General notation. Throughout the paper, Ω will denote a bounded and open set
in R

n. If an open set D is compactly contained in Ω, we will write D ⋐ Ω. We will
denote by Br(x), the ball of radius r centered at the point x. When the center is
the origin, we will suppress it from the notation: Br ≡ Br(0). The positive and the
negative part of a function u will be used several times, defined as

u+ = max{u, 0}, u− = max{−u, 0}.

Kernels. Let us then give the description of suitable kernels. We say that the ker-
nel K : Rn ×R

n → (0,∞] belongs to Ker(Λ), if it has the following four properties:

(i) Symmetry: K(x, y) = K(y, x) for all x, y ∈ R
n.

(ii) Translation invariance: K(x+z, y+z) = K(x, y) for all x, y, z ∈ R
n, x 6= y.

(iii) Growth condition: Λ−1 ≤ K(x, y)|x− y|n+sp ≤ Λ for all x, y ∈ R
n, x 6= y.

(iv) Continuity: The map x 7→ K(x, y) is continuous in R
n \ {y}.
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Above Λ ≥ 1 is a constant. Notice that by symmetry also y 7→ K(x, y) is continuous
in R

n \ {x} if K ∈ Ker(Λ). In the case of the fractional p-Laplace equation,
K(x, y) = |x− y|−n−sp.

For K(x, 0) we often write K(x), in short. The operator L will denote the
nonlocal and nonlinear operator associated with the kernel K as follows

Lu(x) := P.V.

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy.(2.1)

Here the symbol P.V. means “in the principal value sense” and is often omitted
when it is clear from the context.

Fractional Sobolev spaces. A central role will naturally be played by the so-
called fractional Sobolev spaces (also known as Aronszajn, Gagliardo, or Slobodeckij
spaces) W s,p(Rn) with 0 < s < 1 and 1 < p <∞. The norm is defined through

‖u‖W s,p(Rn) = ‖u‖Lp(Rn) + [u]W s,p(Rn),

where the quantity

[u]W s,p(Rn) =

(
∫

Rn

∫

Rn

|u(x) − u(y)|p

|x− y|n+sp
dxdy

)
1

p

is called the Gagliardo seminorm of u. The space W s,p(Ω) is defined similarly and,
as usual, W s,p

0 (Ω) is defined as the closure of C∞
0 (Ω) with respect to the norm

‖ ·‖W s,p(Ω). We refer to the “Hitchhiker’s Guide to the Fractional Sobolev Spaces”,
[9], for most of the properties of fractional Sobolev spaces used in this paper.

Tail spaces. Terms that we will refer to as tails appear often in nonlocal settings,
and therefore we define

(2.2) Tail(f ; z, r) :=

(

rsp
∫

Rn\Br(z)

|f(x)|p−1|x− z|−n−sp dx

)
1

p−1

.

The “tail space” is defined accordingly

(2.3) Lp−1
sp (Rn) =

{

f ∈ Lp−1
loc (Rn) :

∫

Rn

|f(x)|p−1(1 + |x|)−n−sp dx <∞
}

,

and it is easy to see that if f ∈ Lp−1
sp (Rn), then Tail(f ; z, r) is finite for all z ∈ R

n

and r ∈ (0,∞).

Notions of solutions. We next introduce the different notions of solutions of the
equation

(2.4) Lu = 0 in Ω.

Definition 1. A function u ∈W s,p
loc (Ω)∩L

p−1
sp (Rn) is a weak supersolution of (2.4)

if
∫

Rn

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x) − φ(y))K(x, y) dxdy ≥ 0

for all nonnegative φ ∈ C∞
0 (Ω).

A function u is a weak subsolution of (2.4) if −u is a weak supersolution. More-
over, u is a weak solution of (2.4) if it is both a weak supersolution and a subsolution,
or equivalently

∫

Rn

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x) − φ(y))K(x, y) dxdy = 0

for all φ ∈ C∞
0 (Ω).
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Definition 2. We say that a function u : Rn → [−∞,∞] is an (s, p)-superharmonic
function in Ω if it satisfies the following four assumptions.

(i) u < +∞ almost everywhere in R
n, and u > −∞ everywhere in Ω.

(ii) u is lower semicontinuous in Ω.
(iii) u satisfies the comparison in Ω against solutions, that is, if D ⋐ Ω is an

open set and v ∈ C(D) is a weak solution in D such that u ≥ v on ∂D and
almost everywhere in R

n \D, then u ≥ v in D.
(iv) u− belongs to Lp−1

sp (Rn).

A function u is (s, p)-subharmonic in Ω if −u is (s, p)-superharmonic in Ω.
Moreover, u is (s, p)-harmonic in Ω if it is both (s, p)-subharmonic and (s, p)-
superharmonic.

Remark 2.1. In the definition of (s, p)-superharmonic functions in [15], the com-
parison condition (iii) is against solutions that are bounded from above in R

n.
However, our class of (s, p)-superharmonic functions is exactly the same according
to [15, Theorem 1(iii)].

In order to define the notion of viscosity solutions for exponents in the range
p ≤ 2

2−s , we need a more restricted class of test functions. Indeed, in this range
the operator is singular, in the sense that it is not well defined even on smooth
functions. For example, defining

u(x) =

{

|x|2, x ∈ B1,

1, x ∈ R
n \B1,

which is smooth close to origin, we have that the principal value Lu(0) is finite if
and only if p > 2

2−s .
When x0 is an isolated critical point, in essence we would like to test viscosity

solutions by merely using functions of the type |x − x0|
β . However, we need some

flexibility in the choice of test functions and this motivates the definition of C2
β

below. One should anyway keep in mind that the space C2
β contains monomials like

|x− x0|
β plus suitable perturbations.

Let us introduce some notation. The set of critical points of a differentiable
function u and the distance from the critical points are denoted by

Nu := {x ∈ Ω : ∇u(x) = 0}, du(x) := dist(x,Nu),

respectively. Let D ⊂ Ω be an open set. We denote the class of C2-functions whose
gradient and Hessian are controlled by du as

(2.5) C2
β(D) :=

{

u ∈ C2(D) : sup
x∈D

(

min{du(x), 1}
β−1

|∇u(x)|
+

|D2u(x)|

du(x)β−2

)

<∞

}

.

The supremum in the definition is denoted by ‖ · ‖C2

β(D). Notice that, in particular,

when β ≥ 2, the function φ(x) = |x|β is in the class C2
β .

Definition 3. We say that a function u : Rn → [−∞,∞] is an (s, p)-viscosity
supersolution in Ω if it satisfies the following four assumptions.

(i) u < +∞ almost everywhere in R
n, and u > −∞ everywhere in Ω.

(ii) u is lower semicontinuous in Ω.
(iii) If φ ∈ C2(Br(x0)) for some Br(x0) ⊂ Ω such that φ(x0) = u(x0) and φ ≤ u

in Br(x0), and one of the following holds
(a) p > 2

2−s or ∇φ(x0) 6= 0,

(b) 1 < p ≤ 2
2−s , ∇φ(x0) = 0 such that x0 is an isolated critical point of

φ, and φ ∈ C2
β(Br(x0)) for some β > sp

p−1 ,
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then Lφr(x0) ≥ 0, where

φr(x) =

{

φ(x), x ∈ Br(x0),

u(x), x ∈ R
n \Br(x0).

(iv) u− belongs to Lp−1
sp (Rn).

A function u is an (s, p)-viscosity subsolution in Ω if −u is an (s, p)-viscosity
supersolution. Moreover, u is an (s, p)-viscosity solution in Ω if it is both an (s, p)-
viscosity supersolution and a subsolution.

Let us say a few more words about the case 1 < p ≤ 2
2−s . Observe that if x0 is

a critical point of φ, but not isolated, there is no test for u at such points.

Remark 2.2. One might be tempted to allow only test functions with non-vanishing
gradient at the testing point. However, this will, in constrast to the local case, lead
to false solutions. Indeed, with this class of test functions, any function that is
constant in Ω will be a solution to the equation, no matter what boundary values
it takes outside of Ω.

Some recent results on nonlocal supersolutions and superharmonic func-
tions. We recall some results from [15]. First of them is a natural comparison
principle between (s, p)-superharmonic and (s, p)-subharmonic functions.

Theorem 2.1 (Comparison principle of (s, p)-harmonic functions). ([15,
Theorem 16]). Let u be (s, p)-superharmonic in Ω and let v be (s, p)-subharmonic
in Ω. If u ≥ v almost everywhere in R

n \ Ω and

lim inf
Ω∋y→x

u(y) ≥ lim sup
Ω∋y→x

v(y) for all x ∈ ∂Ω

such that both sides are not simultaneously +∞ or −∞, then u ≥ v in Ω.

Weak supersolutions and (s, p)-superharmonic functions are closely related, as
demonstrated in [15]. Bounded (s, p)-superharmonic functions are weak superso-
lutions and, on the other hand, weak supersolutions have lower semicontinuous
representatives that are (s, p)-superharmonic.

Theorem 2.2. ([15, Theorem 1(iv)]). Let u be an (s, p)-superharmonic function in
Ω. If u is locally bounded in Ω or belongs to W s,p

loc (Ω), then u is a weak supersolution
of (2.4).

Theorem 2.3. ([15, Theorem 12]). Let u be the lower semicontinuous representa-
tive of a weak supersolution of (2.4) satisfying

(2.1) u(x) = ess lim inf
y→x

u(y) for every x ∈ Ω.

Then u is an (s, p)-superharmonic function in Ω.

3. Auxiliary tools

In this section, we gather some technical results needed in the sequel. In Subsec-
tion 3.1 we collect some elementary algebraic facts. In Subsection 3.2 we prove that
the principal values are well-defined for functions that are smooth enough, and in
Subsection 3.3, in turn, we show that the operator L is locally uniformly continuous
and stable with respect to smooth perturbations (cf. Lemma 3.8 and Lemma 3.9).
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3.1. Algebraic inequalities. We start with a trivial observation.

Lemma 3.1. Let ℓ be an affine function and let r ∈ (0,∞). Then
∫

Br(x)\Bε(x)

|ℓ(x)− ℓ(y)|p−2(ℓ(x) − ℓ(y))K(x, y) dy = 0

for all ε ∈ (0, r).

We omit the obvious proof. The following elementary results turn out to be
useful in characterizing the principal values.

Lemma 3.2. Let p > 1 and a, b ∈ R. Then

∫ 1

0

|a+ bt|p−2 dt ≤ cp(|a|+ |b|)p−2, cp :=







1, p ≥ 2,
42−p

p− 1
, 1 < p < 2.

Proof. Assume first a 6= 0. If p ≥ 2, we easily obtain
∫ 1

0

|a+ bt|p−2 dt ≤ (|a|+ |b|)p−2.

Let then 1 < p < 2. There are two cases to consider. If |a| ≥ 2|b|, then
∫ 1

0

|a+ bt|p−2 dt ≤ (|a| − |b|)p−2 ≤ 22−p|a|p−2 ≤ 42−p(|a|+ |b|)p−2.

If, in turn, |a| < 2|b|, denote ã = a/b ∈ (−2, 2) and compute
∫ 1

0

|a+ bt|p−2 dt = |b|p−2

∫ ã+1

ã

|τ |p−2 dτ

=
|b|p−2

p− 1











(|ã|+ 1)p−1 − |ã|p−1, ã ≥ 0,

(ã+ 1)p−1 + |ã|p−1, −1 < ã < 0,

|ã|p−1 − (|ã| − 1)p−1, ã ≤ −1.

It follows that
∫ 1

0

|a+ bt|p−2 dt ≤
42−p

p− 1
(|a|+ |b|)p−2.

Finally, if a = 0, then clearly
∫ 1

0

|a+ bt|p−2 dt =
|b|p−2

p− 1
≤ cp(|a|+ |b|)p−2.

This finishes the proof. �

Lemma 3.3. Let p > 1 and a, b ∈ R. Then

∫ 1

0

|a+ bt|p−2 dt ≥ cp(|a|+ |b|)p−2, cp :=







1, 1 < p < 2,
42−p

p− 1
, p ≥ 2.

Proof. Assume first a 6= 0. If 1 < p < 2, we easily obtain
∫ 1

0

|a+ bt|p−2 dt ≥ (|a|+ |b|)p−2.

Let then p ≥ 2. There are two cases to consider. If |a| ≥ 2|b|, then
∫ 1

0

|a+ bt|p−2 dt ≥ (|a| − |b|)p−2 ≥ 22−p|a|p−2 ≥ 42−p(|a|+ |b|)p−2.

If, in turn, |a| < 2|b|, let ã = a/b ∈ (−2, 2) and compute
∫ 1

0

|a+ bt|p−2 dt = |b|p−2

∫ ã+1

ã

|τ |p−2 dτ
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=
|b|p−2

p− 1











(|ã|+ 1)p−1 − |ã|p−1, ã ≥ 0,

(ã+ 1)p−1 + |ã|p−1, −1 < ã < 0,

|ã|p−1 − (|ã| − 1)p−1, ã ≤ −1.

Switching back to a, we obtain
∫ 1

0

|a+ bt|p−2 dt ≥
42−p

p− 1
(|a|+ |b|)p−2.

Finally, if a = 0, then
∫ 1

0

|a+ bt|p−2 dt =
|b|p−2

p− 1
≥ cp(|a|+ |b|)p−2.

This finishes the proof. �

Lemma 3.4. Let p > 1 and a, b ∈ R. Then
∣

∣|a|p−2a− |b|p−2b
∣

∣ ≤ c (|b|+ |a− b|)p−2|a− b|,

where c depends only on p.

Proof. Since

d

dt

(

|ta+ (1− t)b|
p−2

(ta+ (1− t)b)
)

= (p− 1)(a− b) |ta+ (1 − t)b|
p−2

,

we can estimate using Lemma 3.2

∣

∣|a|p−2a− |b|p−2b
∣

∣ =

∣

∣

∣

∣

(p− 1)(a− b)

∫ 1

0

|ta+ (1 − t)b|p−2 dt

∣

∣

∣

∣

≤ cp(p− 1)|a− b|(|b|+ |a− b|)p−2,

and the claim follows. �

The following estimate can be easily obtained using spherical coordinates.

Lemma 3.5. Let e be a unit vector in R
n, let p > 1, and let a ≥ 0. Then

∫

Sn

(|e · ω|+ a)p−2 dω ≤ c (1 + a)p−2,

where Sn is the unit sphere around the origin and c depends only on n and p.

3.2. Principal values. The aim is now to prove that the principal value defining
the operator L is well-defined when the involved functions are smooth enough. In
order to accomplish this, we need uniform estimates on small balls. These are the
following two lemmas. Throughout the section, we assume that K ∈ Ker(Λ).

Lemma 3.6. Let Bε(x) ⊂ D ⋐ Ω and let u ∈ C2(D). If we have p > 2
2−s or

D ⋐ {du > 0}, then
∣

∣

∣

∣

∣

P.V.

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ cε,(3.1)

where cε is independent of x and cε → 0 as ε→ 0.

Proof. If |∇u(x)| = 0 and p > 2
2−s , the result is quite obvious using the fact that

u ∈ C2 and ∇u(x) = 0 implies

|u(x)− u(y)| ≤ C|x− y|2,

for some constant C. For this reason we only treat the case |∇u(x)| 6= 0. Through-
out the proof, the constant c will denote a constant depending on n, p, s, Λ,
‖u‖C2(D), and D.
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Let ℓ(y) := u(x) +∇u(x) · (y − x) be the affine part of u near x. Denoting by
g(t) := |t|p−2t, we have by Lemma 3.1 and Lemma 3.4 that

∣

∣

∣

∣

∣

∫

Bε(x)

|u(x) − u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤

∫

Bε(x)

|g(u(x)− u(y))− g(ℓ(x)− ℓ(y))|K(x, y) dy

≤ c

∫

Bε(x)

(

|ℓ(x) − ℓ(y)|+ |u(y)− ℓ(y)|
)p−2

|u(y)− ℓ(y)|K(x, y) dy

= c

∫

Bε(x)

(

|∇u(x) · (y − x)|+ |u(y)− ℓ(y)|
)p−2

|u(y)− ℓ(y)|K(x, y) dy.

After introducing z = y−x and switching to spherical coordinates, we obtain, with
τ := supD |D2u|,
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x) − u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c

∫

Bε(0)

(

|∇u(x) · z|+ sup
|ξ−x|<|z|

|D2u(ξ)||z|2
)p−2

sup
|ξ−x|<|z|

|D2u(ξ)||z|2K(z) dz

≤ c

∫ ε

0

∫

Sn

(

|∇u(x) · ω|r + τr2
)p−2

τr2−n−sp+n−1 dω dr

= c τ

∫ ε

0

∫

Sn

(

|∇u(x) · ω|

|∇u(x)|
+

τr

|∇u(x)|

)p−2

|∇u(x)|p−2dω rp(1−s) dr

r
,

where we used the monotonicity of (a+ b)p−2b with respect to b when a, b ≥ 0 and
the upper bound for K(z). Applying Lemma 3.5, we obtain

∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c τ

∫ ε

0

(

1 +
τr

|∇u(x)|

)p−2

|∇u(x)|p−2rp(1−s) dr

r
.(3.2)

If p ≥ 2, we obtain from (3.2) that
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c τ

∫ ε

0

(

1 +
τp−2rp−2

|∇u(x)|p−2

)

|∇u(x)|p−2rp(1−s) dr

r

≤ c τ sup
D

|∇u|p−2εp(1−s) + c τp−1εp−2+p(1−s).

If 2
2−s < p < 2, (3.2) can simply be estimated as

∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c τ

∫ ε

0

(

τr

|∇u(x)|

)p−2

|∇u(x)|p−2rp(1−s) dr

r

≤ c τp−1εp−2+p(1−s).
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Finally, if 1 < p ≤ 2
2−s and D ⋐ {x ∈ Ω : du(x) > 0}, then infD |∇u| > 0 and (3.2)

leads to
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x) − u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c τ

∫ ε

0

|∇u(x)|p−2rp(1−s) dr

r

≤ c τ sup
D

|∇u|p−2εp(1−s).

In all cases it is now straightforward to check the statement, finishing the proof. �

Lemma 3.7. Let 1 < p ≤ 2
2−s , let D ⊂ Ω, and let u ∈ C2

β(D) with β > sp
p−1 .

Suppose further that Bε(x) ⊂ D and x is such that du(x) < ε < 1. Then
∣

∣

∣

∣

∣

P.V.

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ cε,(3.3)

where cε is independent of x and cε → 0 as ε→ 0.

Proof. Again, if∇u(x) = 0, the result is quite obvious since then u ∈ C2
β(D) implies

|u(x)− u(y)| ≤ C|x− y|β ,

for some constant C. We therefore focus on the case ∇u(x) 6= 0. Let ℓ(y) :=
u(x) + ∇u(x) · (y − x) be the affine part of u near x. Throughout the proof, c
will denote a constant depending on n, p, s, Λ, β, and ‖u‖C2

β(D). Denoting by

g(t) := |t|p−2t, we have by Lemma 3.1 and Lemma 3.4
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x) − u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤

∫

Bε(x)

|g(u(x)− u(y))− g(ℓ(x)− ℓ(y))|K(x, y) dy

≤ c

∫

Bε(x)

(

|ℓ(x) − ℓ(y)|+ |u(y)− ℓ(y)|
)p−2

|u(y)− ℓ(y)|K(x, y) dy

= c

∫

Bε(x)

(

|∇u(x) · (y − x)|+ |u(y)− ℓ(y)|
)p−2

|u(y)− ℓ(y)|K(x, y) dy.

After a change of variables z = y − x this becomes
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x) − u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c

∫

Bε(0)

(

|∇u(x) · z|+ sup
|ξ−x|<|z|

|D2u(ξ)||z|2
)p−2

sup
|ξ−x|<|z|

|D2u(ξ)||z|2K(z) dz

≤ c

∫ ε

0

∫

Sn

(

|∇u(x) · ω|r + sup
Br(x)

|D2u|r2
)p−2

sup
Br(x)

|D2u|r2−n−sp+n−1 dω dr

≤ c

∫ ε

0

∫

Sn

(

|∇u(x) · ω|

|∇u(x)|
+

(du(x) + r)β−2r

|∇u(x)|

)p−2

(du(x) + r)β−2

× |∇u(x)|p−2rp(1−s) dω
dr

r
,

where we used the monotonicity of (a+ b)p−2b with respect to b when a, b ≥ 0, the
upper bound on K(z), and the upper bound on |D2u| in C2

β . Applying Lemma 3.5
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and splitting the integral into two parts, we obtain
∣

∣

∣

∣

∣

∫

Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy

∣

∣

∣

∣

∣

≤ c

∫ du(x)

0

(

1 +
(du(x) + r)β−2r

|∇u(x)|

)p−2

(du(x) + r)β−2|∇u(x)|p−2rp(1−s) dr

r

+ c

∫ ε

du(x)

(

1 +
(du(x) + r)β−2r

|∇u(x)|

)p−2

(du(x) + r)β−2|∇u(x)|p−2rp(1−s) dr

r

=: I1 + I2.

The first integral can be estimated as

I1 ≤ c

∫ du(x)

0

du(x)
β−2|∇u(x)|p−2rp(1−s) dr

r

≤ c du(x)
β−2du(x)

(β−1)(p−2)du(x)
p(1−s)

≤ c εβ(p−1)−sp

by the lower bound on |∇u| in C2
β and the fact β > sp

p−1 . For the second integral,

we have

I2 ≤ c

∫ ε

du(x)

(

rβ−1

|∇u(x)|

)p−2

rβ−2|∇u(x)|p−2rp(1−s) dr

r

= c

∫ ε

du(x)

rβ(p−1)−sp dr

r

≤ c εβ(p−1)−sp

since β > sp
p−1 . Combining our estimates for I1 and I2, we obtain (3.3). �

3.3. Continuity properties. We are now ready to prove that Lφ is continuous
for appropriate φ (as in Definition 3).

Lemma 3.8. Let Br(x0) ⊂ Ω and φ ∈ C2(Br(x0)) ∩ L
p−1
sp (Rn). If 1 < p ≤ 2

2−s

and ∇φ(x0) = 0, we further assume that φ ∈ C2
β(Br(x0)) with β > sp

p−1 . Then Lφ

is continuous in Br(x0).

Proof. Let x ∈ Br(x0) and ε > 0. If ∇φ(x) 6= 0, then there is δ > 0 such that
∇φ(y) 6= 0 when |x − y| ≤ δ by continuity. According to Lemma 3.6, we can then
choose ρ > 0 such that

∣

∣

∣

∣

∣

P.V.

∫

Bρ(y)

|φ(y)− φ(z)|p−2(φ(y) − φ(z))K(y, z) dz

∣

∣

∣

∣

∣

<
ε

4
(3.4)

whenever |x − y| < δ. In fact, in the case p > 2
2−s , we obtain (3.4) by Lemma 3.6

regardless of the value of ∇φ(x). If, in turn, 1 < p ≤ 2
2−s and ∇φ(x) = 0, then

dφ(y) < ρ when |x− y| < ρ, and we have (3.4) in this case, as well, by Lemma 3.7.
Let us then consider the nonlocal contribution. We may assume |x − y| < ρ/3.

Then we can estimate

χRn\Bρ(y)(z)|φ(y)− φ(z)|p−1K(y, z)

≤ c χRn\Bρ(y)(z)
(

|φ(y)|p−1 + |φ(z)|p−1
)

|y − z|−n−sp

≤ c χRn\B2ρ/3(x)(z)

(

sup
Bρ/3(x)

|φ|p−1 + |φ(z)|p−1

)

|x− z|−n−sp,
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and consequently
∫

Rn\Bρ(y)

|φ(y) − φ(z)|p−2(φ(y) − φ(z))K(y, z) dz

→

∫

Rn\Bρ(x)

|φ(x) − φ(z)|p−2(φ(x) − φ(z))K(x, z) dz(3.5)

as y → x by the dominated convergence theorem together with the assumption
φ ∈ Lp−1

sp (Rn) and continuity of K(·, z) away from the diagonal. Combining (3.4)
with (3.5), we obtain

|Lφ(x) − Lφ(y)| < ε

when |x− y| is small enough, and the proof is complete. �

The next lemma states that L is continuous with respect to perturbations that
are regular enough.

Lemma 3.9. Let Br(x0) ⊂ Ω and let φ ∈ C2(Br(x0))∩L
p−1
sp (Rn) satisfy Definition

3(iii) (a) or (b) with β > sp
p−1 . Then for every ε > 0 and ρ′ > 0 there exist

θ′ > 0, ρ ∈ (0, ρ′) and η ∈ C2
0 (Bρ/2(x0)) with 0 ≤ η ≤ 1 and η(x0) = 1 such that

φθ := φ+ θη satisfies

sup
Bρ(x0)

|Lφ − Lφθ| < ε

whenever 0 ≤ θ < θ′.

Proof. Let ε > 0 and ρ′ > 0. Firstly, if ∇φ(x0) 6= 0, there exist ρ ∈ (0, ρ′) and
τ > 0 such that |∇φ| > τ in B2ρ(x0) by continuity. Letting η ∈ C2

0 (Bρ/2(x0))
satisfy 0 ≤ η ≤ 1 and η(x0) = 1, we then have |∇φθ| > τ/2 in B2ρ(x0) when
0 ≤ θ < θ′′ for some θ′′ > 0. According to Lemma 3.6, we can now take such a
small δ > 0 that for every x ∈ Bρ(x0) and every θ as above it holds

∣

∣

∣

∣

∣

P.V.

∫

Bδ(x)

|φθ(x) − φθ(y)|
p−2(φθ(x)− φθ(y))K(x, y) dy

∣

∣

∣

∣

∣

<
ε

4
.(3.6)

If p > 2
2−s , we obtain (3.6) by Lemma 3.6 regardless of the value of ∇φ(x0).

Let us then consider the case 1 < p ≤ 2
2−s and ∇φ(x0) = 0. Since x0 is an

isolated critical point of φ by assumption, we can also assume that ρ is chosen so
small that |∇φ| 6= 0 in B3ρ(x0) \ {x0}. Let η ∈ C2

0 (Bρ/2(x0)) satisfy 0 ≤ η ≤ 1,

η = 1 in Bρ/4(x0) and |D2η| ≤ Mdβ−2
η for some constant M > 0. Then, in

particular, ∇φθ 6= 0 in B2ρ(x0) \ {x0} when θ is small enough, and consequently
dφθ

= dφ in Bρ(x0) for all such θ. Also,
1
2 |∇φ| ≤ |∇φθ | ≤ 2|∇φ| in Bρ(x0) when θ

is small enough. Moreover, we can estimate

|D2φθ| ≤ |D2φ|+ θ|D2η| ≤ ‖φ‖C2

β(Bρ(x0))d
β−2
φ + θMdβ−2

η ≤ c dβ−2
φθ

in Bρ(x0) whenever θ is small enough, since dη ≤ dφ = dφθ
in Bρ(x0). Thus

φθ ∈ C2
β(Bρ(x0)), and according to Lemma 3.7, we find δ ∈ (0, ρ) such that (3.6)

holds also in this case.
Letting now x ∈ Bρ(x0) and denoting by g(t) := |t|p−2t, we can estimate by

(3.6) and Lemma 3.4 as

|Lφ(x) − Lφθ(x)|

≤
ε

2
+

∫

Rn\Bδ(x)

|g(φ(x) − φ(y))− g(φθ(x)− φθ(y))|K(x, y) dy

≤
ε

2
+ c

∫

Rn\Bδ(x)

2θ
(

|φ(x) − φ(y)| + 2θ
)p−2

|x− y|−n−sp dy,
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where we also used monotonicity of (a + b)p−2b with respect to b when a, b ≥ 0
together with

|φ(x) − φ(y)− φθ(x) + φθ(y)| ≤ |φ(x) − φθ(x)| + |φ(y)− φθ(y)| ≤ 2θ.

If 1 < p < 2, we can simply continue estimating

|Lφ(x) − Lφθ(x)| ≤
ε

2
+ c θp−1

∫

Rn\Bδ(x)

|x− y|−n−sp dy

≤
ε

2
+ c δ−spθp−1 < ε

when θ is small enough. If p ≥ 2, in turn, we obtain

|Lφ(x) − Lφθ(x)|

≤
ε

2
+ c

∫

Rn\Bδ(x)

θ
(

θp−2 + |φ(x)|p−2 + |φ(y)|p−2
)

|x− y|−n−sp dy

≤
ε

2
+ c δ−spθp−1 + c δ−spθ sup

Bρ(x0)

|φ|p−2 + c δ−spθ sup
ξ∈Bρ(x0)

Tail(φ; ξ, δ)p−2,

where we used Hölder’s inequality to estimate
∫

Rn\Bδ(x)

|φ(y)|p−2|x− y|−n−sp dy

≤

(

∫

Rn\Bδ(x)

|x− y|−n−sp dy

)
1

p−1

(

∫

Rn\Bδ(x)

|φ(y)|p−1|x− y|−n−sp dy

)

p−2

p−1

≤ c δ−sp/(p−1)δ−sp(p−2)/(p−1)Tail(φ;x, δ)p−2

≤ c δ−sp sup
ξ∈Bρ(x0)

Tail(φ; ξ, δ)p−2.

Thus we get

|Lφ(x) − Lφθ(x)| < ε

in this case, as well, whenever θ is small enough. The claim follows by taking the
supremum over x ∈ Bρ(x0). �

The following lemma establishes the expected result that any C2-supersolution
is also a weak supersolution.

Lemma 3.10. Let u ∈ C2(Br(x0))∩L
p−1
sp (Rn) and if 1 < p ≤ 2

2−s and ∇u(x0) = 0,

we further assume that u ∈ C2
β(Br(x0)) with β > sp

p−1 . If Lu ≥ 0 in the pointwise

sense in Br(x0), then u is a continuous weak supersolution in Br(x0).

Proof. Clearly u ∈ W s,p
loc (Br(x0)). Let φ ∈ C∞

0 (Br(x0)) be a nonnegative test
function. Since Lu ≥ 0, we have by the definition of L that
∫

Rn\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))K(x, y) dy ≥ −δε(x), x ∈ suppφ,

for every ε > 0, where δε(x) → 0 uniformly as ε → 0 due to the continuity of Lu,
i.e. Lemma 3.8. Multiplying the above inequality by φ(x) and integrating over Rn,
we obtain

∫

Rn

∫

Rn

(

1− χBε(x)(y)
)

|u(x)− u(y)|p−2(u(x) − u(y))φ(x)K(x, y) dydx

≥ −

∫

Rn

δε(x)φ(x) dx.(3.7)
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Interchanging the roles of x and y yields
∫

Rn

∫

Rn

(

1− χBε(y)(x)
)

|u(x)− u(y)|p−2(u(y)− u(x))φ(y)K(x, y) dxdy

≥ −

∫

Rn

δε(x)φ(x) dx(3.8)

by the symmetry of K. Summing up (3.7) and (3.8) and changing order of integra-
tion in the first one, we obtain
∫

Rn

∫

Rn\Bε(y)

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x)−φ(y))K(x, y) dxdy ≥ −2‖δεφ‖L1

for every ε > 0. Letting now ε→ 0, we have
∫

Rn

∫

Rn

|u(x)− u(y)|p−2(u(x)− u(y))(φ(x) − φ(y))K(x, y) dxdy ≥ 0

by the dominated convergence theorem. To see that the integrand has an integrable
upper bound, let suppφ ⊂ Bρ ⋐ Br(x0) and estimate by Hölder’s inequality
∫

Rn

∫

Rn

|u(x)− u(y)|p−1|φ(x) − φ(y)|K(x, y) dxdy

≤ c

∫

Bρ

∫

Bρ

|u(x)− u(y)|p−1|φ(x) − φ(y)|
dxdy

|x− y|n+sp

+ c

∫

Rn\Bρ

∫

suppφ

|u(x)− u(y)|p−1φ(x)|x − y|−n−sp dxdy

≤ c

(

∫

Bρ

∫

Bρ

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)

p−1

p
(

∫

Bρ

∫

Bρ

|φ(x) − φ(y)|p

|x− y|n+sp
dxdy

)
1

p

+ c

∫

Rn\Bd(z)

∫

suppφ

(

|u(x)|p−1 + |u(y)|p−1
)

φ(x)|z − y|−n−sp dxdy

≤ c ‖u‖p−1
W s,p(Bρ)

‖φ‖W s,p(Bρ) + c ‖φ‖L1(Bρ)Tail(u; z, d)
p−1

<∞,

where z ∈ suppφ and d := dist(z, ∂Bρ). We conclude that u is a weak supersolution
in Br(x0). �

Finally, we conclude this section with the result saying that whenever we can
touch an (s, p)-viscosity supersolution from below with a C2-function, then the
principal value is well-defined and nonnegative at that touching point.

Proposition 3.1. Let u be an (s, p)-viscosity supersolution in Ω. Assume that
there is a C2-function φ touching u from below at x ∈ Ω, i.e., there is r > 0 such
that

φ(x) = u(x) and φ ≤ u in Br(x) ⊂ Ω.

If φ satisfies (a) or (b) with β > sp
p−1 in Definition 3(iii), then the principal value

Lu(x) exists and is nonnegative.

Proof. Without loss of generality we may assume that x = 0 and u(0) = 0. For
ρ ∈ (0, r), define

φρ(y) :=

{

φ(y), y ∈ Bρ,

u(y), y ∈ R
n \Bρ.

First, we show that the principal value exists. Setting K(y) = K(0, y), we have
∫

Bρ\Bδ

|u(y)|p−2u(y)K(y) dy =

∫

Bρ\Bδ

(

|u(y)|p−2u(y)− |φ(y)|p−2φ(y)
)

K(y) dy
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+

∫

Bρ\Bδ

|φ(y)|p−2φ(y)K(y) dy

=: I1,δ + I2,δ

whenever 0 < δ < ρ < r. Since u ≥ φ in Bρ, the integrand of I1,δ is nonnegative
and the limit limδ→0 I1,δ exists by the monotone convergence theorem. For I2,δ, in
turn, the limit limδ→0 I2,δ exists by Definition 3(iii). In addition,

∫

Rn\Bρ

|u(y)|p−2u(y)K(y) dy > −∞

by the fact u− ∈ Lp−1
sp (Rn), and thus the principal value Lu(0) exists.

Let us then show that Lu(0) ≥ 0. Let ε > 0. By Lemma 3.6 and Lemma 3.7 we
can take ρ to be so small that

∣

∣

∣

∣

∣

P.V.

∫

Bρ

|φ(y)|p−2φ(y)K(y) dy

∣

∣

∣

∣

∣

< ε.

Consequently, we can estimate
∫

Rn\Bρ

|u(y)|p−2(−u(y))K(y) dy =

∫

Rn\Bρ

|φρ(y)|
p−2(−φρ(y))K(y) dy

= P.V.

∫

Rn

|φρ(y)|
p−2(−φρ(y))K(y) dy − P.V.

∫

Bρ

|φ(y)|p−2(−φ(y))K(y) dy

≥ Lφρ(0)− ε ≥ −ε

by Definition 3(iii). Hence letting ρ → 0 yields Lu(0) ≥ −ε, and the claim follows
by letting ε→ 0. �

4. Comparison principle

In this section, we prove a weak comparison principle for viscosity solutions. This
is one of the keys to our main result. First, a small lemma related to integrable
functions is stated and proved.

Lemma 4.1. Let p > 1 and let u be a measurable function with u− ∈ Lp−1
loc (Rn).

Let {xk} be a sequence in R
n converging to x ∈ R

n. Then there exists a subsequence
{xkj}j such that

lim inf
j→∞

u(xkj + z) ≥ u(x+ z) for a.e. z ∈ R
n.(4.1)

Proof. For every positive integer m, denote by um := min{u,m} ∈ Lp−1
loc (Rn) and

let {Km} be a compact exhaustion of Rn. Then, it is a well known fact that for
each m

lim
k→∞

∫

Km

|um(xk + z)− um(x+ z)|p−1 dz = 0.

Hence, using a diagonal argument, we can extract a subsequence {xkj} such that
for every m

lim
j→∞

um(xkj + z) = um(x+ z) for a.e. z ∈ Km.

Now we can estimate

lim inf
j→∞

u(xkj + z) ≥ lim inf
j→∞

um(xkj + z) = um(x+ z)

for almost every z ∈ Km, and finally (4.1) follows by letting m→ ∞. �
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Theorem 4.1 (Comparison principle of viscosity solutions). Let u and v be
an (s, p)-viscosity supersolution and an (s, p)-viscosity subsolution, respectively, in
Ω. Assume further that both v and −u are upper semicontinuous in Ω and u ≥ v
on ∂Ω and almost everywhere in R

n \ Ω. Then u ≥ v in Ω.

Proof. Assume contrary to the claim that there is a point x0 ∈ Ω such that

σ := sup
Ω

(v − u) = v(x0)− u(x0) > 0.

Set

H := sup
Ω
v − inf

Ω
u,

which is a finite number by the assumed semicontinuity properties. Thus also σ is
finite. Define

Ψε(x, y) := v(x)− u(y)−
1

ε
|x− y|q,

where q = 2 if p > 2
2−s and q > sp

p−1 otherwise, and let

Mε := sup
x,y∈Ω

Ψε(x, y).

Clearly Mε ≤ H and Mε ≥ Ψε(x0, x0) = σ. Moreover, since Ψε1(x, y) ≤ Ψε2(x, y)
whenever ε1 ≤ ε2, we see that Mε1 ≤ Mε2 . Therefore, we have that M :=
limε→0Mε exists by the uniform lower bound Mε ≥ σ. Furthermore, by the upper
semicontinuity of v and −u, for any ε > 0 there are points xε, yε ∈ Ω such that

Mε = Ψε(xε, yε).

Let us now analyze the limit. Firstly, we see that

M2ε ≥ Ψ2ε(xε, yε) =Mε +
1

2ε
|xε − yε|

q,

and thus

(4.2)
1

ε
|xε − yε|

q ≤ 2(M2ε −Mε) → 0

as ε → 0. Secondly, let x∗ ∈ Ω be any accumulation point of {xε}. Then there is
a subsequence {xεj}j such that xεj → x∗ as j → ∞. Also yεj → x∗ as j → ∞ by
(4.2). The upper semicontinuity of v and −u then implies

σ ≤ lim
j→∞

Mεj = lim
j→∞

(

v(xεj )− u(yεj )
)

− lim
j→∞

1

εj
|xεj − yεj |

q

≤ lim sup
j→∞

(

v(xεj )− u(yεj )
)

≤ v(x∗)− u(x∗) ≤ σ.

Therefore x∗ must be in Ω, because otherwise the boundary condition would be
violated. Upon relabeling the subsequence {xεj} as {xε}, we thus have

lim
ε→0

(

v(xε)− u(yε)
)

= v(x∗)− u(x∗) = sup
Ω

(v − u).

From now on, we assume that ε is so small that xε, yε ∈ Br(x
∗) for r :=

1
3 dist(x

∗, ∂Ω). We introduce the set

Ey := {z ∈ R
n : y + z ∈ Ω}, y ∈ Ω.

Let us continue with further consequences of the definitions above. Since

Ψε(xε, yε) ≥ Ψε(xε + z, yε + z),

we obtain

v(xε)− u(yε)−
1

ε
|xε − yε|

q ≥ v(xε + z)− u(yε + z)−
1

ε
|xε − yε|

q
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for all z ∈ Exε ∩ Eyε . In particular,

(4.3) Wε(z) := v(xε)− v(xε + z)− u(yε) + u(yε + z) ≥ 0

for all such z. Moreover, as

Ψε(xε, yε) ≥ Ψε(xε + z, yε) and Ψε(xε, yε) ≥ Ψε(xε, yε + z)

hold for all z ∈ B2r(0), we also see that

v(xε + z) ≤ v(xε)−
1

ε
|xε − yε|

q +
1

ε
|xε + z − yε|

q

and

u(yε + z) ≥ u(yε) +
1

ε
|xε − yε|

q −
1

ε
|xε − yε − z|q

for all such z. Thus, there are C2-functions

φε(x) := v(xε)−
1

ε
|xε − yε|

q +
1

ε
|x− yε|

q

and

ψε(y) := u(yε) +
1

ε
|xε − yε|

q −
1

ε
|xε − y|q

touching v from above at xε and u from below at yε, respectively. In addition, if
∇φε(xε) = 0 or ∇ψε(yε) = 0, then xε = yε and it is an isolated critical point for
both φε and ψε. Moreover, if 1 < p ≤ 2

2−s , then clearly φε, ψε ∈ C2
q (Ω).

Since v and u are an (s, p)-viscosity subsolution and a supersolution, respectively,
we have from Proposition 3.1 that Lv(xε) ≤ 0 and Lu(yε) ≥ 0 in the pointwise
sense. Furthermore, using the translation invariance of K and performing a change
of variables z = x− xε we get

0 ≥ Lv(xε) =

∫

Rn

|v(xε)− v(x)|p−2(v(xε)− v(x))K(xε, x) dx

=

∫

Rn

|v(xε)− v(xε + z)|p−2
(

v(xε)− v(xε + z)
)

K(z, 0) dz,

and, similarly,

0 ≤ Lu(yε) =

∫

Rn

|u(yε)− u(x)|p−2(u(yε)− u(x))K(yε, x) dx

=

∫

Rn

|u(yε)− u(yε + z)|p−2
(

u(yε)− u(yε + z)
)

K(z, 0) dz.

Therefore,

0 ≥ Lv(xε)− Lu(yε) =

∫

Rn

Θε(z) dν(z),(4.4)

where

Θε(z) := |v(xε)− v(xε + z)|p−2
(

v(xε)− v(xε + z)
)

− |u(yε)− u(yε + z)|p−2
(

u(yε)− u(yε + z)
)

and

dν(z) := K(z, 0) dz.

Decompose now R
n as

R
n = (Exε ∩ Eyε) ∪

(

R
n \ (Exε ∩ Eyε)

)

=: E1,ε ∪ E2,ε.

Straightforward manipulations show that

Θε(z) = (p− 1)

∫ 1

0

∣

∣t
(

v(xε)− v(xε + z)
)

+ (1− t)
(

u(yε)− u(yε + z)
)∣

∣

p−2
dt
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×
(

v(xε)− v(xε + z)− u(yε) + u(yε + z)
)

(4.5)

= (p− 1)

∫ 1

0

|u(yε)− u(yε + z) + tWε(z)|
p−2 dtWε(z)

with Wε defined in (4.3). Thus, due to Lemma 3.3 and the nonnegativity of Wε(z)
whenever z ∈ E1,ε,

Θε(z) ≥
1

c

(

|u(yε)− u(yε + z)|+Wε(z)
)p−2

Wε(z),

for all z ∈ E1,ε. Therefore

lim inf
ε→0

∫

E1,ε

Θε dν

≥
1

c
lim inf
ε→0

∫

E1,ε

(

|u(yε)− u(yε + z)|+Wε(z)
)p−2

Wε(z) dν(z).(4.6)

Now consider the set E2,ε. Since u−, v+ ∈ Lp−1
sp (Rn), we can by Lemma 4.1,

upon extracting a subsequence, assume

lim inf
ε→0

Wε(z) ≥ σ + u(x∗ + z)− v(x∗ + z)(4.7)

for almost every z due to the pointwise convergence of v(xε) − u(yε). By picking
yet another subsequence, we can also assume

χE2,ε → χRn\Ex∗

almost everywhere as ε→ 0, and thus by the order of boundary values for u and v

lim inf
ε→0

[

Wε(z)χE2,ε(z)
]

≥
(

σ + u(x∗ + z)− v(x∗ + z)
)

χRn\Ex∗
(z)

≥ σ χRn\Ex∗
(z)(4.8)

for almost every z. Since, in addition, |z|−1 is bounded in E2,ε and u−, v+ ∈
Lp−1
sp (Rn), it is now easy to see that ΘεχE2,ε is bounded from below by a uniformly

integrable function. Indeed, for the part involving v we have

|v(xε)− v(xε + z)|p−2(v(xε)− v(xε + z)) ≥ −c
(

|v(xε)|
p−1 + |v+(xε + z)|p−1

)

,

and
∫

E2,ε

(

|v(xε)|
p−1 + |v+(xε+z)|

p−1
)

dν(z) ≤ c r−sp
(

|v(xε)|
p−1 +Tail(v+;xε, 2r)

p−1
)

≤ c r−sp
(

|v(xε)|
p−1 +Tail(v+;x

∗, r)p−1
)

,

where we have used that |z| > 2r in E2,ε, since xε, yε ∈ Br(x
∗). The second term

can easily be seen to be uniformly bounded since v+ ∈ Lp−1
sp (Rn). The first term is

uniformly bounded by the fact v(x∗)− u(x∗) = σ together with the semicontinuity
and finiteness of v and u in Ω. The part involving u can be treated similarly.

By (4.8), χ{Wε<0}χE2,ε → 0 almost everywhere, so that the dominated conver-
gence theorem implies

lim
ε→0

∫

E2,ε

Θεχ{Wε<0} dν = 0.

By (4.5), Lemma 3.3, and Fatou’s lemma, in turn,

lim inf
ε→0

∫

E2,ε

Θεχ{Wε≥0} dν

≥
1

c
lim inf
ε→0

∫

E2,ε

(

|u(yε)− u(yε + z)|+Wε(z)
)p−2

Wε(z)χ{Wε≥0} dν(z) ≥ 0.

Hence, we conclude

lim inf
ε→0

∫

E2,ε

Θε dν ≥ 0.(4.9)
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Combining inequalities (4.4), (4.6), and (4.9), we see by Fatou’s lemma together
with the nonnegativity of Wε in E1,ε that

∫

Rn

lim inf
ε→0

[

χE1,ε(z)
(

|u(yε)− u(yε + z)|+Wε(z)
)p−2

Wε(z)
]

dν(z) ≤ 0.

But this is only possible if

0 = lim inf
ε→0

Wε(z) = v(x∗)− u(x∗)− lim sup
ε→0

(

v(xε + z)− u(yε + z)
)

≥ σ −
(

v(x∗ + z)− u(x∗ + z)
)

for almost every z ∈ Ex∗ by the upper semicontinuity of v and −u in Ω. Thus
v − u ≥ σ almost everywhere in Ω. The upper semicontinuity of v − u in Ω then
implies for x ∈ ∂Ω that

0 ≥ v(x) − u(x) ≥ lim sup
y→x

(

v(y)− u(y)
)

≥ σ > 0;

a contradiction. This finishes the proof. �

5. Proof of the main result

In this section, we prove our main result which states that the notions of (s, p)-
superharmonic functions and (s, p)-viscosity supersolutions coincide. First, we will
need the following two lemmas.

Lemma 5.1. Suppose u and v are (s, p)-superharmonic in Ω. Then the function
w = min{u, v} is also (s, p)-superharmonic in Ω.

The proof of this is obvious from the definition.

Lemma 5.2. Suppose that u is finite almost everywhere in Ω and that uM =
min{u,M} is an (s, p)-viscosity supersolution in Ω for each M > 0. Then u itself
is an (s, p)-viscosity supersolution in Ω.

Proof. Clearly u satisfies (i), (ii), and (iv) in Definition 3, and thus we only need
to verify property (iii). To this end, take φ ∈ C2(Br(x0)) such that φ(x0) = u(x0),
φ ≤ u in Br(x0) ⊂ Ω, and either (a) or (b) with β > sp

p−1 in Definition 3(iii) holds.

Let ρ ∈ (0, r). Since φ(x0) = u(x0) and φ is continuous, φ ≤ M in Bρ(x0) for M
large enough. Consequently, φ(x0) = uM (x0) and φ ≤ uM in Bρ(x0). Since uM is
an (s, p)-viscosity supersolution, Lφρ,M (x0) ≥ 0 with

φρ,M =

{

φ in Bρ(x0),

uM in R
n \Bρ(x0).

Furthermore,

Lφρ,M (x0) =

∫

Bρ(x0)

|φ(x0)− φ(y)|p−2(φ(x0)− φ(y))K(x0, y) dy

+

∫

Rn\Bρ(x0)

|φ(x0)− uM (y)|p−2(φ(x0)− uM (y))K(x0, y) dy,

where the second integrand is uniformly bounded in M by an integrable function
in the set {u ≤ φ(x0)} since u− ∈ Lp−1

sp (Rn) and, on the other hand, monotone in
M in the set {u > φ(x0)}. By the dominated and monotone convergence theorems,
we can thus let M → ∞ and obtain

Lφρ(x0) ≥ 0, φρ =

{

φ in Bρ(x0),

u in R
n \Bρ(x0).

Finally, letting ρ→ r, we get the desired conclusion. �
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Proof of Theorem 1.1. Assume first that u is (s, p)-superharmonic in Ω. The only
property left to verify is property (iii) in Definition 3. Take uM = min{u,M}
as above. Then uM is (s, p)-superharmonic by Lemma 5.1. To show that uM is
an (s, p)-viscosity supersolution, take φ ∈ C2(Br(x0)) such that φ(x0) = uM (x0),
φ ≤ uM in Br(x0) and that either (a) or (b) with β > sp

p−1 in Definition 3(iii) holds.

We need to prove that

(5.1) Lφr(x0) ≥ 0, φr =

{

φ in Br(x0),

uM in R
n \Br(x0).

We argue towards a contradiction, assuming that (5.1) fails. Then, in particular,
φr ∈ Lp−1

sp (Rn) since φr ≤M , and thus (φr)− /∈ Lp−1
sp (Rn) would imply Lφr(x0) =

+∞. By the continuity of Lφr (cf. Lemma 3.8), we have Lφr ≤ −τ in Bρ′(x0) for
some τ > 0 and ρ′ ∈ (0, r). Moreover, by Lemma 3.9 there exist θ > 0, ρ ∈ (0, ρ′),
and η ∈ C2

0 (Bρ/2(x0)) with 0 ≤ η ≤ 1, η(x0) = 1 such that ψ := φr + θη satisfies

sup
Bρ(x0)

|Lφr − Lψ| < τ,

and consequently

Lψ ≤ 0 in Bρ(x0).

By Lemma 3.10 we have that ψ is a weak subsolution in Bρ(x0), and further (s, p)-
subharmonic in Bρ(x0) by continuity, according to Theorem 2.3. In addition, we
have ψ = φr ≤ uM in R

n \Bρ/2(x0). Now, ψ ≤ uM in Bρ/2(x0) by the comparison
between (s, p)-superharmonic and (s, p)-subharmonic functions, i.e. Theorem 2.1,
together with the semicontinuity of ψ and uM up to the boundary of Bρ/2(x0). This
contradicts ψ(x0) = φ(x0) + θ > uM (x0), verifying (5.1). Thus, uM is an (s, p)-
viscosity supersolution for any M > 0 implying that u itself is an (s, p)-viscosity
supersolution, by Lemma 5.2.

Assume now that u is an (s, p)-viscosity supersolution in Ω. The only property
we need to verify is the comparison property (iii) of Definition 2. Let D ⋐ Ω be
an open set and take v ∈ C(D) to be a weak solution in D such that u ≥ v on ∂D
and almost everywhere in R

n \D. It follows by the same arguments as in the first
part of the proof that v is an (s, p)-viscosity subsolution in D. From Theorem 4.1
we can conclude that u ≥ v in D, and thus u is (s, p)-superharmonic. �

Proof of Theorem 1.2. The proof now follows from Theorem 1.1, Theorem 2.2, and
Theorem 2.3. �

Proof of Theorem 1.3. The proof follows from Theorem 1.1 and [15, Theorem 1].
�
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