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Abstract. We study the connection between BMO and dyadic BMO in
metric measure spaces using finitely randomized dyadic systems, and give
a Garnett–Jones type proof for a theorem of Uchiyama on a construction
of certain BMO functions. We obtain a relation between the BMO norm
of a suitable expectation over dyadic systems and the dyadic BMO norms
of the original functions in different systems. The expectation is taken over
only finitely randomized dyadic systems to overcome certain measurability
questions. Applying our result, we derive Uchiyama’s theorem from its
dyadic counterpart, which we also prove.
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1. Introduction

Random dyadic systems have played an important role in several recent
advances in harmonic analysis both in Euclidean and more abstract setting,
see e.g. [16], [17], [21], [7], [12], [15]. In metric spaces, these systems were
first constructed by Hytönen and Martikainen in [9]. The construction was
elaborated and simplified in [8], [2] and [10]. A random dyadic system consists
of a probability space (Ω,P) and dyadic systems D(ω), ω ∈ Ω, each having the
same properties as the classical dyadic system of M. Christ [4]. Moreover, the
probability of a point to end up near the boundary of a random dyadic cube
is small. For an elementary construction of a dyadic system, see also [20].

In [3], Chen, Li and Ward studied the connection between BMO and dyadic
BMO in metric measure spaces using random dyadic systems from [8]. They
showed that if there is a family {fω}ω∈Ω of functions with uniformly bounded
dyadic BMO norms in ω such that the mapping ω 7→ fω is measurable, then
the expectation f = E[fω] over ω ∈ Ω belongs to BMO and its BMO norm
is controlled by the dyadic BMO norms of the original functions fω; see [3,
Theorem 3.1].

In this paper, we study the connection between BMO and dyadic BMO using
finitely randomized dyadic systems. These systems are constructed as in [10]
except that the randomization is applied only in finite number of generations.
An advantage of this approach is that the underlying probability space is finite
and so, for example, measurability with respect to the probability parameter
ω is automatically satisfied. For finitely randomized systems, we get an essen-
tially similar result as Chen, Li and Ward except that there occurs an extra
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term, which vanishes as the number of generations used in the randomization
goes to infinity.

As an application of our result, we give a proof for a theorem of Uchiyama
on a construction of certain BMO functions, see [23] and [6] for the Euclidean
setting. First we prove a dyadic version of the theorem and then apply finitely
randomized dyadic systems to obtain the general version. In this situation, the
method of Chen, Li and Ward cannot be easily applied since the dependence
of the appearing functions on the probability parameter is so implicit that
measurability is not obvious. We hope that our method can be useful also in
other questions. For a different proof of Uchiyama’s theorem, which does not
utilize dyadic structures, see [11].

The connection between BMO and dyadic BMO was widely studied first in
[6], in which Garnett and Jones gave new proofs for four theorems concerning
BMO functions, including Uchiyama’s theorem. Their idea was to first prove
the easier dyadic version of each theorem and then obtain the general version
by averaging over the dyadic results over translations in Rn. A crucial part of
their proofs is that the translation average of a suitable family of dyadic BMO
functions belongs to BMO. Similar results were shown to hold for other BMO
related spaces in [18] and [19]. For related results concerning the connection
between BMO and dyadic BMO via finitely many translations, see [14], [5]
and [13]. In [22], Treil gave a different way to get BMO from dyadic BMO by
showing that the BMO norm is comparable to the expectation of dyadic BMO
norms over suitable randomized dyadic systems. This approach showed that
the translation structure of Rn is not necessarily essential for the connection
between BMO and dyadic BMO.

The paper is organized as follows. In Section 2, we recall basic properties
of dyadic systems in doubling metric measure spaces. In Section 3, we prove
the dyadic version of Uchiyama’s theorem. In Section 4, we prove a version of
Chen–Li–Ward theorem for finitely randomized dyadic systems and apply it
to deduce the general Uchiyama’s theorem from the dyadic one.

2. Notation and preliminaries

Throughout the paper, (X, d, µ) is a metric measure space, where the mea-
sure µ is Borel regular and satisfies 0 < µ(U) < ∞ whenever U is non-empty,
open and bounded. Moreover, we assume that µ is doubling, which means
that there exists a constant Cµ such that

(2.1) µ(B(x, 2r)) ≤ Cµ µ(B(x, r))

for every ball B(x, r) = {y ∈ X : d(x, y) < r} ⊂ X .
As usual, the characteristic function of a set A ⊂ X is denoted by χA. The

integral average of a locally integrable function f over a bounded measurable
set A ⊂ X is denoted by each of the following:

fA =

∫

A

f dµ =
1

µ(A)

∫

A

f dµ.
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In general, C is a positive constant whose value is not necessarily the same at
each occurrence.

Under the assumptions above, there exist a set of points {zkα}k,α and a family
of sets {Qk

α}k,α, k ∈ Z, α ∈ Ak, in X satisfying the following properties:

if l ≤ k, then either Qk
α ⊂ Ql

β or Qk
α ∩Ql

β = ∅,(2.2)

for every Qk
α and l ≤ k, there exists a unique Ql

β ⊃ Qk
α,(2.3)

for every k ∈ Z and α 6= β, Qk
α ∩Qk

β = ∅,(2.4)

for every k ∈ Z, X =
⋃

α∈Ak

Qk
α,(2.5)

for every Qk
α, B(zkα, c0δ

k) ⊂ Qk
α ⊂ B(zkα, C0δ

k),(2.6)

if l ≤ k and Qk
α ⊂ Ql

β, then B(zkα, C0δ
k) ⊂ B(zlβ, C0δ

l),(2.7)

for every Qk
α, #{Qk+1

β ⊂ Qk
α : β ∈ Ak+1} ≤ N0,(2.8)

where the constants c0 > 0, C0 > 0, 0 < δ < 1 and N0 ∈ N depend only on
the doubling constant Cµ, and Ak is a countable index set for each k. The set
Qk

α is called a dyadic cube and zkα the center of the cube. The family of dyadic
cubes of generation k and the family of all dyadic cubes are

Dk = {Qk
α : α ∈ Ak} and D =

⋃

k∈Z

Dk,

respectively. For x ∈ X , we denote by Qk(x) the unique dyadic cube of
generation k containing x. If Qk+1

β ⊂ Qk
α, then Qk+1

β is called a child of Qk
α

and Qk
α the parent of Qk+1

β . Every dyadic cube has exactly one parent by (2.3)
and at most N0 children by (2.8).

By (2.1), (2.6) and (2.7) we have the following dyadic doubling property.
For every dyadic cube Q and its parent Q∗ ⊃ Q,

(2.9) µ(Q∗) ≤ C∗µ(Q),

where C∗ depends only on the doubling constant Cµ. Also, a dyadic version
of Lebesgue’s theorem holds.

Theorem 2.1 (Dyadic Lebesgue’s theorem). Let f be a locally integrable func-

tion in (X, d, µ). Then

lim
j→∞

∫

Qj(x)

f dµ = f(x)

for almost every x ∈ X.

The ancestor space (called quadrant in [1]) of a dyadic cube Q is

X(Q) =
⋃

Q′⊃Q

Q′,
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where the union is taken over all dyadic cubes Q′ containing Q. The construc-
tion of dyadic cubes can be done such that X(Q) = X for every dyadic cube
Q. Otherwise, X is a disjoint union of finitely many different ancestor spaces.

A locally integrable function f has bounded mean oscillation in (X, d, µ),
denoted by f ∈ BMO, if

(2.10) ‖f‖BMO := sup
B

∫

B

|f − fB| dµ < ∞,

where the supremum is taken over all balls B ⊂ X . Similarly, f has bounded
dyadic mean oscillation, denoted by f ∈ BMOd, if

(2.11) ‖f‖BMOd
:= sup

Q

∫

Q

|f − fQ| dµ < ∞,

where the supremum is taken over all dyadic cubes Q ⊂ X . When the suprema
above are taken only over balls and dyadic cubes contained in a measurable
subset A ⊂ X , we denote f ∈ BMO(A) and f ∈ BMOd(A), respectively, and
the corresponding local BMO norms by ‖f‖BMO(A) and ‖f‖BMOd(A). It is easy
to see that BMO ⊂ BMOd by (2.6) and (2.1), but the converse is not true.

BMO norms can be estimated applying the following lemma. For the proof,
see e.g. [11].

Lemma 2.2. Let f ∈ BMO. Then

1

2
‖f‖BMO ≤ sup

∣

∣

∣

∣

∫

X

fg dµ

∣

∣

∣

∣

≤ ‖f‖BMO,

where the supremum is taken over all functions g ∈ L∞(X) for which there

exists a ball B ⊂ X such that

(2.12) supp g ⊂ B, ‖g‖L∞(X) ≤
1

µ(B)
and

∫

X

g dµ = 0.

We have an analogous version for the dyadic BMO.

Lemma 2.3. Let f ∈ BMOd. Then

1

2
‖f‖BMOd

≤ sup

∣

∣

∣

∣

∫

X

fg dµ

∣

∣

∣

∣

≤ ‖f‖BMOd
,

where the supremum is taken over all functions g ∈ L∞(X) for which there

exists a dyadic cube Q ⊂ X such that

(2.13) supp g ⊂ Q, ‖g‖L∞(X) ≤
1

µ(Q)
and

∫

X

g dµ = 0.

Proof. For any g satisfying (2.13), we have
∣

∣

∣

∣

∫

X

fg dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

X

(f − fQ)g dµ

∣

∣

∣

∣

≤

∫

Q

|f − fQ| dµ ≤ ‖f‖BMOd
,

giving the upper bound.
To obtain the lower bound, let ε > 0 and let Q be a dyadic cube such that
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(2.14)

∫

Q

|f − fQ| dµ ≥ ‖f‖BMOd
− ε.

Denoting h := sgn(f − fQ), we have

(2.15)

∫

Q

|f − fQ| dµ =

∫

Q

(f − fQ)h dµ =

∫

Q

(f − fQ)(h− hQ) dµ.

Define

g :=
(h− hQ)χQ

2µ(Q)
.

Then g satisfies (2.13) with Q. Moreover,

∫

X

fg dµ =
1

2

∫

Q

f(h− hQ) dµ =
1

2

∫

Q

(f − fQ)(h− hQ) dµ

=
1

2

∫

Q

|f − fQ| dµ ≥
1

2
(‖f‖BMOd

− ε)

by (2.15) and (2.14). The claim follows by estimating by the supremum on
the left and letting ε → 0. �

3. Dyadic Uchiyama’s theorem

In this section, we prove a metric space version of dyadic Uchiyama’s theo-
rem. The proof mainly follows the steps of the proof of its Euclidean counter-
part in [6]. We start by proving the following lemma.

Lemma 3.1. Let N ∈ N and λ > KN := logCµ
(2N). Let Q0 ⊂ X be a dyadic

cube and let E1, . . . , EN be measurable subsets of Q0 such that

(3.1) min
1≤i≤N

µ(Q ∩ Ei)

µ(Q)
≤ C−2λ

µ

for all dyadic Q ⊂ Q0, where Cµ is the doubling constant in (2.1). Then there

exist families Gn of dyadic cubes and functions ϕn
i , i = 1, . . . , N , n = 0, 1, . . . ,

such that

(3.2) ϕn
i = ϕn−1

i +
∑

Q∈Gn

ai,QχQ, i = 1, . . . , N,

for every n = 1, 2, . . . ,

(3.3)

N
∑

i=1

ϕn
i = λ, 0 ≤ ϕn

i ≤ λ, i = 1, . . . , N,

for every n = 0, 1, . . . , the coefficients ai,Q satisfy

(3.4) |ai,Q| ≤ AN := N(KN + logCµ
C∗), i = 1, . . . , N,
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for every n = 1, 2, . . . and Q ∈ Gn, and

(3.5) (ϕn
i )Q ≤ max

{

0,−KN + logCµ

(

µ(Q)

µ(Q ∩ Ei)

)}

, i = 1, . . . , N,

for every n = 0, 1, . . . and Q ∈ Gn, where C∗ is the constant in (2.9).

Proof. We proceed by induction. Let i(Q) be a minimizing index in (3.1) for
Q ⊂ Q0, which in particular implies

(3.6) 2λ ≤ logCµ

(

µ(Q)

µ(Q ∩ Ei(Q))

)

for any dyadic Q ⊂ Q0. Set G0 = {Q0} and ϕ0
i ≡ ai,Q0

, where

ai,Q0
=

{

0, i 6= i(Q0)
λ, i = i(Q0)

.

Then (3.3) holds trivially for n = 0. If i 6= i(Q0), then (ϕ0
i )Q0

= 0. If i = i(Q0),
then by (3.6)

(ϕ0
i )Q0

= λ ≤ −λ + logCµ

(

µ(Q0)

µ(Q0 ∩ Ei)

)

≤ −KN + logCµ

(

µ(Q0)

µ(Q0 ∩ Ei)

)

,

and (3.5) holds for n = 0.
For n ≥ 1, define Gn as the set of maximal dyadic cubes Q ⊂ Q′ ∈ Gn−1

such that for some i, 1 ≤ i ≤ N ,

(3.7) (ϕn−1
i )Q > logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

.

Notice that by (3.5) the condition (3.7) cannot hold for any Q′ ∈ Gn−1. Define
ϕn
i by (3.2) with

(3.8) ai,Q =

{

−min{KN + logCµ
C∗, (ϕn−1

i )Q}, i 6= i(Q)
−
∑

j 6=i(Q) aj,Q, i = i(Q)
.

Then

ϕn
i = ϕn−1

i +
∑

Q∈Gn,i(Q)=i

ai,QχQ +
∑

Q∈Gn,i(Q)6=i

ai,QχQ

≥ ϕn−1
i −

∑

Q∈Gn,i(Q)6=i

(ϕn−1
i )QχQ

≥ ϕn−1
i − ϕn−1

i χQ0
≥ 0

since ai(Q),Q ≥ 0, Gn is disjoint by maximality and ϕn−1
i ≥ 0 is constant in each

Q ∈ Gn. In addition, by (3.2) and (3.8)

N
∑

i=1

ϕn
i =

N
∑

i=1

ϕn−1
i +

∑

Q∈Gn

( N
∑

i=1

ai,Q

)

χQ = λ+ 0 = λ,

and (3.3) has been proven.
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For Q ∈ Gn and i 6= i(Q),

|ai,Q| ≤ KN + logCµ
C∗ ≤ AN

and
|ai(Q),Q| ≤

∑

j 6=i(Q)

|aj,Q| ≤ (N − 1)(KN + logCµ
C∗) ≤ AN

by (3.8) verifying (3.4). To establish (3.5), fix Q ∈ Gn. For i = i(Q), we
estimate

(ϕn
i )Q ≤ λ ≤ −λ + logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

≤ −KN + logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

by (3.3) and (3.6). For i 6= i(Q), let Q∗ be the parent of Q. Then (ϕn−1
i )Q∗ =

(ϕn−1
i )Q since the accuracy of Q appears not until the level n. In addition, by

(2.9)
µ(Q∗)

µ(Q∗ ∩ Ei)
≤ C∗ µ(Q)

µ(Q ∩ Ei)
,

and consequently

logCµ

(

µ(Q∗)

µ(Q∗ ∩ Ei)

)

≤ logCµ
C∗ + logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

.

Further, (3.7) fails for Q∗ since Q is maximal, and

(ϕn−1
i )Q = (ϕn−1

i )Q∗ ≤ logCµ

(

µ(Q∗)

µ(Q∗ ∩ Ei)

)

≤ logCµ
C∗ + logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

.

(3.9)

If ai,Q = −(ϕn−1
i )Q, then ϕn

i = ϕn−1
i − (ϕn−1

i )Q in Q by (3.2), which implies
(ϕn

i )Q = 0 and (3.5) holds. If ai,Q = −(KN + logCµ
C∗), then

ϕn
i = ϕn−1

i − (KN + logCµ
C∗)

in Q implying

(ϕn
i )Q = (ϕn−1

i )Q − (KN + logCµ
C∗) ≤ logCµ

(

µ(Q)

µ(Q ∩ Ei)

)

−KN

by (3.9). Thus, (3.5) holds in this case, as well, and the induction is complete.
�

Theorem 3.2 (Dyadic Uchiyama’s theorem). Let λ > 0, let Q0 ⊂ X be a

dyadic cube and let E1, . . . , EN be measurable subsets of Q0 such that

(3.10) min
1≤i≤N

µ(Q ∩ Ei)

µ(Q)
≤ C−2λ

µ

for all dyadic Q ⊂ Q0. Then there exist functions f1, . . . , fN satisfying

(3.11)
N
∑

i=1

fi = 1, 0 ≤ fi ≤ 1, i = 1, . . . , N,
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(3.12) fi = 0 almost everywhere in Ei, i = 1, . . . , N,

and

(3.13) ‖fi‖BMOd(Q0) ≤
CN

λ
, i = 1, . . . , N,

where the constant CN depends only on N and the doubling constant Cµ.

Proof. Denote KN := logCµ
(2N). If λ ≤ KN , we can set

fi =
1− χEi

∑N

i=1(1− χEi
)
∈ [0, 1], i = 1, . . . , N,

and CN = KN ≥ λ. Then

sup
Q⊂Q0

∫

Q

|fi − (fi)Q| dµ ≤ 1 ≤
CN

λ

and (3.11), (3.12) and (3.13) hold. These functions fi are well-defined almost
everywhere since

µ
(

N
⋂

i=1

Ei

)

= 0,

which follows by applying dyadic Lebesgue’s theorem 2.1 to the inequality

∫

Q

χ⋂N
i=1

Ei
dµ =

µ
(

Q ∩
(
⋂N

i=1Ei

))

µ(Q)
≤ C−2λ

µ < 1, Q ⊂ Q0,

implied by (3.10); For almost every x ∈
⋂N

i=1Ei, the left-hand side goes to
χ⋂N

i=1
Ei
(x) as Q shrinks to x, and thus χ⋂N

i=1
Ei

= 0 almost everywhere.

Then assume λ > KN . Lemma 3.1 gives us families Gn of dyadic cubes and
functions ϕn

i , i = 1, . . . , N , n = 0, 1, . . . , satisfying (3.2)–(3.5). Let n ≥ 1
and for Q′ ∈ Gn−1, estimate

∑

Q∈Gn(Q′) µ(Q) when it is different from 0, where

Gn(Q
′) := {Q ∈ Gn : Q ⊂ Q′}. Denote

Gi
n := {Q ∈ Gn : (3.7) holds for i and Q}.

For Q ∈ Gi
n, we then have (ϕn−1

i )Q′ = (ϕn−1
i )Q > 0. (3.7) also implies

µ(Q) < C
(ϕn−1

i )Q
µ µ(Q ∩ Ei),
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and thus

∑

Q∈Gn(Q′)

µ(Q) ≤
N
∑

i=1

∑

Q∈Gi
n(Q

′)

µ(Q)

≤
N
∑

i=1

∑

Q∈Gi
n(Q

′)

C
(ϕn−1

i )Q
µ µ(Q ∩ Ei)

≤
N
∑

i=1

C
(ϕn−1

i )Q′

µ µ(Q′ ∩ Ei)

≤ NC−KN
µ µ(Q′) =

1

2
µ(Q′).

(3.14)

In the third inequality, we have used disjointness of Gi
n, and the fourth inequal-

ity follows from (3.5) for (ϕn−1
i )Q′ > 0.

For Q′ ∈ Gm, m ≥ 0, (3.14) implies by induction

(3.15)
∑

Q∈Gn(Q′)

µ(Q) ≤
1

2n−m
µ(Q′), n = m,m+ 1, . . . .

Then, by (3.2), (3.4) and (3.15)

∥

∥ϕn
i − ϕn−1

i

∥

∥

L1(X)
=

∥

∥

∥

∥

∑

Q∈Gn

ai,QχQ

∥

∥

∥

∥

L1(X)

≤ AN

∑

Q∈Gn

µ(Q) ≤
AN

2n
µ(Q0)

for n ≥ 1. Thus, each {ϕn
i }n is a Cauchy sequence in L1(Q0) and the limit

function ϕi ∈ L1(Q0) exists. Moreover, using (3.2) recursively, we see that ϕi

can be written almost everywhere as

(3.16) ϕi = ai,Q0
+

∞
∑

n=1

∑

Q∈Gn

ai,QχQ,

and the average of ϕi over a dyadic cube Q′ is

(3.17) (ϕi)Q′ = ai,Q0
+

∞
∑

n=1

∑

Q∈Gn

Q)Q′

ai,Q +

∞
∑

n=1

∑

Q∈Gn(Q′)

ai,Q
µ(Q)

µ(Q′)
.

Let Q′ ⊂ Q0 be a dyadic cube. If Gn(Q
′) = ∅ for every n, then ϕi = (ϕi)Q′

in Q′, and thus
∫

Q′

|ϕi − (ϕi)Q′| dµ = 0.
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If, in turn, m is the smallest index such that Gm(Q
′) 6= ∅, then

∫

Q′

|ϕi − (ϕi)Q′| dµ ≤

∫

Q′

∞
∑

n=1

∑

Q∈Gn(Q′)

|ai,Q|

∣

∣

∣

∣

χQ −
µ(Q)

µ(Q′)

∣

∣

∣

∣

dµ

≤

∫

Q′

∞
∑

n=max{m,1}

∑

Q∈Gn(Q′)

|ai,Q|

(

χQ +
µ(Q)

µ(Q′)

)

dµ

≤ 2AN

∞
∑

n=m

∑

Q∈Gn(Q′)

µ(Q)

µ(Q′)

≤ 2AN

∞
∑

n=m

1

2n−m
=: CN

by (3.16), (3.17), (3.4) and (3.15). Hence

(3.18) ‖ϕi‖BMOd(Q0) ≤ CN , i = 1, . . . , N.

Set fi = ϕi/λ for i = 1, . . . , N . Then (3.11) follows from (3.3) and (3.13)
follows from (3.18). To conclude the proof, we establish (3.12). By (2.4) and
(2.5) every x ∈ Q0 lies in a unique dyadic cube Qk(x) in each generation
k = 0, 1, . . . , where Q0(x) = Q0. For almost every such x, Qk(x) ∈

⋃∞
n=0 Gn

for only finitely many k. To show this, denote

G =
{

x ∈ Q0 : Qk(x) ∈
∞
⋃

n=0

Gn for infinitely many k
}

.

Then by construction of Gn, for every x ∈ G and n ∈ N, there exists k such
that Qk(x) ∈ Gn. In particular, since x ∈ Qk(x), we have G ⊂

⋃

Q∈Gn
Q for

every n, and consequently by (3.15)

µ(G) ≤
∑

Q∈Gn

µ(Q) ≤
1

2n
µ(Q0) → 0

as n → ∞. Hence for almost every x ∈ Q0 there exist indices kx and nx such
that for every k > kx and n > nx, we have Qk(x) 6∈ Gn and each ϕi = ϕn−1

i is
constant in Qk(x). Thus, (3.7) fails for Qk(x) and

ϕi(x) = (ϕn−1
i )Qk(x) ≤ logCµ

(

µ(Qk(x))

µ(Qk(x) ∩ Ei)

)

for k > kx and n > nx. On the other hand, by dyadic Lebesgue’s theorem 2.1,

µ(Qk(x) ∩ Ei)

µ(Qk(x))
=

∫

Qk(x)

χEi
dµ → 1

for almost every x ∈ Ei as k → ∞, and consequently

logCµ

(

µ(Qk(x))

µ(Qk(x) ∩ Ei)

)

→ 0
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for almost every x ∈ Ei as k → ∞. Hence fi = ϕi = 0 almost everywhere in
Ei, which completes the proof. �

We also give a proof for the global version of Theorem 3.2.

Corollary 3.3 (Global version of dyadic Uchiyama’s theorem). Let λ > 0 and

let E1, . . . , EN be measurable subsets of X such that

(3.19) min
1≤i≤N

µ(Q ∩ Ei)

µ(Q)
≤ C−2λ

µ

for all dyadic Q ⊂ X. Then there exist functions f1, . . . , fN satisfying

(3.20)

N
∑

i=1

fi = 1, 0 ≤ fi ≤ 1, i = 1, . . . , N,

(3.21) fi = 0 almost everywhere in Ei, i = 1, . . . , N,

and

(3.22) ‖fi‖BMOd
≤

CN

λ
, i = 1, . . . , N,

where the constant CN depends only on N and the doubling constant Cµ.

Proof. For simplicity, we assume that X contains only one ancestor space. If
this is not the case, we can make our deductions individually in each ances-
tor space and finally combine the resulting functions to obtain the desired
properties in the whole X .

Let Q1 ⊂ Q2 ⊂ . . . be a sequence of dyadic cubes of decreasing generations
in X and let Ei,k = Ei ∩Qk for every i and k. Then

min
1≤i≤N

µ(Q ∩ Ei,k)

µ(Q)
≤ min

1≤i≤N

µ(Q ∩ Ei)

µ(Q)
≤ C−2λ

µ

for every dyadic Q ⊂ Qk, and thus Theorem 3.2 gives us functions fi,k, i =
1, . . . , N , k = 1, 2, . . . , satisfying (3.20) with fi,k = 0 almost everywhere in Ei,k

and

‖fi,k‖BMOd(Qk) ≤
CN

λ
.

Since the functions fi,k are uniformly bounded, we can pick subsequences
{fi,kj}j, i = 1, . . . , N , converging weak* in L∞(X). Setting fi, i = 1, . . . , N ,
to be the corresponding weak* limits, they satisfy (3.20) and (3.21) by the
definition of weak* convergence. To prove (3.22), let g satisfy (2.13) with a
dyadic cube Q ⊂ X . Then g ∈ L1(X) and

∣

∣

∣

∣

∫

X

fig dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
j→∞

∫

X

fi,kjg − (fi,kj )Q g dµ

∣

∣

∣

∣

≤ lim sup
j→∞

‖fi,kj‖BMOd(Qkj
) ≤

CN

λ

by the definition of weak* convergence, (2.13) and the fact that Q ⊂ Qkj when
j is large enough. Thus, (3.22) with constant 2CN follows from Lemma 2.3. �
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4. Uchiyama’s theorem from dyadic Uchiyama’s theorem

In this section, we prove Uchiyama’s theorem from its dyadic counterpart
using finitely randomized dyadic systems. For simplicity, we assume that all
dyadic cubes used in the section are constructed such that there is z0 ∈ X
which is a center point of some cube in each generation k, which is possible
according to [8].

In [10], Hytönen and Tapiola constructed a probability space (Ω,P) defining
a system of dyadic cubes D(ω) = {Qk

α(ω)}k,α with the properties (2.2)–(2.8)
for each ω ∈ Ω, satisfying also the following property. There exist constants
C > 0 and η > 0 such that

(4.1) P

({

ω ∈ Ω : x ∈
⋃

α∈Ak

∂εQ̄
k
α(ω)

})

≤ C
( ε

δk

)η

for every x ∈ X , k ∈ Z and ε > 0. Here ∂εA denotes the ε-boundary of a set
A ⊂ X defined by

∂εA := {x ∈ A : d(x,X \ A) < ε} ∪ {x ∈ X \ A : d(x,A) < ε}.

In the construction, they use the sample space

Ω =

{

0, 1, . . . ,

⌊

1

δ

⌋}Z

and independent uniform distributions in all generations k ∈ Z. The proof of
(4.1) in [10, Theorem 5.2] needs randomization only in finitely many genera-
tions k, . . . , k + L, where L is determined by

δk+L+1 < ε ≤ δk+L.

In particular, the randomization is needed only up to the generation

(4.2) m = k + L =

⌊

log ε

log δ

⌋

.

We define a finite version of the probability space (Ω,P) for every m ∈ N as
(Ωm,Pm), where the sample space is given by

Ωm =
∏

k<−m

{0} ×
∏

−m≤k≤m

{

0, 1, . . . ,

⌊

1

δ

⌋}

×
∏

k>m

{0}

and Pm has a uniform distribution in Ωm. From (4.2) we see that the following
weaker version of (4.1) holds in (Ωm,Pm). There exist constants C > 0 and
η > 0 such that

(4.3) Pm

({

ω ∈ Ωm : x ∈
⋃

α∈Ak

∂εQ̄
k
α(ω)

})

≤ C
( ε

δk

)η

for every m ∈ N, x ∈ X , k ∈ {−m, . . . ,m} and ε ≥ δm. In addition, the
properties (2.2)–(2.8) hold for D(ω) for every ω ∈ Ωm since Ωm ⊂ Ω.
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The unique dyadic cube of generation k in D(ω) containing x ∈ X is denoted
by Qk

ω(x). The averaging function of a locally integrable function f is defined
by

Ek
ωf(x) :=

∫

Qk
ω(x)

f dµ

and the difference function by

∆k
ωf(x) := Ek+1

ω f(x)− Ek
ωf(x).

When we consider dyadic BMO in a specified dyadic system D(ω) for ω ∈ Ω,
more precisely take the supremum in (2.11) over all Q ∈ D(ω), we denote
BMOω instead of BMOd.

The following is a finitely randomized version of [3, Theorem 3.1].

Theorem 4.1. Let m ∈ N and let (Ωm,Pm) be the probability space defined

above. Denote Bm = B(z0, c0δ
−m) and Qm,ω = Q−m

ω (z0). Let {fω}ω∈Ωm
be a

family of functions with fω ∈ BMOω(Qm,ω) satisfying

(4.4) ‖fω‖BMOω(Qm,ω) ≤ M1 and ‖fω‖L∞(Qm,ω) ≤ M2

for every ω ∈ Ωm with M1 and M2 independent of ω. Then the function fm
defined by the expectation

fm(x) = Em[f
ω(x)] :=

∫

Ωm

fω(x) dPm(ω)

satisfies

(4.5)

∫

B

|fm − (fm)B| dµ ≤ CM1 +
4M2

µ(B)
µ(B(x0, δ

m) \ {x0})

for every B = B(x0, r) ⊂ Bm with r ≥ δm, where the constant C depends only

on the doubling constant Cµ.

Proof. Fix a ball B = B(x0, r) ⊂ Bm such that r ≥ δm, and let n be the unique
integer satisfying

δn+1 < r ≤ δn.

Then, in particular, −m ≤ n ≤ m. Decompose fm(x) into two parts

fm(x) = g(x) + h(x)

with
g(x) := Em

[

fω(x)−En
ωf

ω(x)
]

and

h(x) := Em

[

En
ωf

ω(x)
]

= Em

[

∑

−m≤k<n

∆k
ωf

ω(x) + E−m
ω fω(x)

]

.

We have
∫

B

|fm − (fm)B| dµ ≤

∫

B

|g − gB| dµ+

∫

B

|h− hB| dµ

≤ 2

∫

B

|g| dµ+ 2

∫

B

|h− h(x0)| dµ,
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and to prove the claim (4.5), it suffices to show that

(4.6)
1

µ(B)

∫

B

|g| dµ ≤ CM1,

(4.7)
1

µ(B)

∫

B\B(x0,δm)

|h− h(x0)| dµ ≤ CM1

and

(4.8)
1

µ(B)

∫

B(x0,δm)

|h− h(x0)| dµ ≤
2M2

µ(B)
µ(B(x0, δ

m) \ {x0}).

We begin with inequality (4.6). Since

1

µ(B)

∫

B

|g| dµ ≤ Em

[
∫

B

|fω − En
ωf

ω| dµ

]

,

it is sufficient to prove that for each ω ∈ Ωm,
∫

B

|fω − En
ωf

ω| dµ ≤ CM1.

There is a finite index set B ⊂ An such that B ⊂
⋃

β∈B
Qn

β(ω) with B ∩
Qn

β(ω) 6= ∅. Moreover, the number of elements in B, #B, is bounded by a
constant depending only on the doubling constant since r ≤ δn and the centers
znβ are c0δ

n separated by (2.4) and (2.6). Also, by the doubling property (2.1)
we have µ(Qn

β(ω)) ≤ Cµ(B) for each β ∈ B. Thus,
∫

B

|fω − En
ωf

ω| dµ ≤
1

µ(B)

∫

⋃
β∈B

Qn
β
(ω)

|fω −En
ωf

ω| dµ

=
∑

β∈B

µ(Qn
β(ω))

µ(B)

∫

Qn
β
(ω)

|fω − (fω)Qn
β
(ω)| dµ

≤ C#B‖fω‖BMOω(Qm,ω)

≤ CM1

by (4.4). Notice that Qn
β(ω) ⊂ Qm,ω since Qn

β(ω)∩B 6= ∅ and B ⊂ Bm ⊂ Qm,ω.
Next we consider inequality (4.7). For fixed x ∈ B \B(x0, δ

m), denote

Λk := {ω ∈ Ωm : there exists Q ∈ Dk+1(ω) with x, x0 ∈ Q}.

Then Pm(Λk) = 1 for every k < −m since x, x0 ∈ B ⊂ Bm ⊂ Qm,ω for every
ω ∈ Ωm. On the other hand, when −m ≤ k ≤ m,

Pm(Ωm \ Λk) ≤ Pm











ω ∈ Ωm : x ∈
⋃

α∈Ak+1

∂d(x,x0)Q̄
k+1
α (ω)











≤ C

(

d(x, x0)

δk+1

)η

≤ Cδ(n−k)η
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by (4.3) and the fact that d(x, x0) < r ≤ δn. Since E−m
ω fω(x) = E−m

ω fω(x0)
for each ω ∈ Ωm and ∆k

ωf
ω(x) = ∆k

ωf
ω(x0) when ω ∈ Λk, we obtain

|h(x)− h(x0)| =

∣

∣

∣

∣

∣

Em

[

∑

−m≤k<n

(

∆k
ωf

ω(x)−∆k
ωf

ω(x0)
)

]∣

∣

∣

∣

∣

≤
∑

−m≤k<n

∫

Ωm\Λk

∣

∣∆k
ωf

ω(x)−∆k
ωf

ω(x0)
∣

∣ dPm(ω)

≤
∑

−m≤k<n

sup
ω∈Ωm

(

|∆k
ωf

ω(x)| + |∆k
ωf

ω(x0)|
)

Pm(Ωm \ Λk)

≤ C
∑

−m≤k<n

sup
ω∈Ωm

(

|∆k
ωf

ω(x)|+ |∆k
ωf

ω(x0)|
)

δ(n−k)η.

Now for each ω ∈ Ωm and −m ≤ k < n, we have

|∆k
ωf

ω(x)| =

∣

∣

∣

∣

∫

Qk+1
ω (x)

fω(y)− (fω)Qk
ω(x)

dµ(y)

∣

∣

∣

∣

≤
µ(Qk

ω(x))

µ(Qk+1
ω (x))

∫

Qk
ω(x)

∣

∣fω(y)− (fω)Qk
ω(x)

∣

∣ dµ(y)

≤ C‖fω‖BMOω(Qm,ω) ≤ CM1

by (2.9) and (4.4) since Qk
ω(x) ⊂ Qm,ω, and the same estimate holds also for

x0. Consequently,

1

µ(B)

∫

B\B(x0,δm)

|h− h(x0)| dµ ≤ 2CM1

∑

k<n

δ(n−k)η ≤ CM1.

Finally, inequality (4.8) is obvious since we have

|h(x)− h(x0)| ≤ Em [|En
ωf

ω(x)− En
ωf

ω(x0)|] ≤ 2M2

by the definition of h and (4.4). This finishes the proof. �

Notice that the last term in (4.5) goes to 0 as m → ∞ when M2 is indepen-
dent of m. Finally, we apply our Theorem 4.1 to obtain a non-dyadic version
of Uchiyama’s theorem, which also occurs in [11].

Theorem 4.2 (Uchiyama’s theorem). Let λ > 0 and let E1, . . . , EN be mea-

surable subsets of X such that

(4.9) min
1≤i≤N

µ(B ∩ Ei)

µ(B)
≤ C−2λ

µ

for all balls B ⊂ X. Then there exist functions f1, . . . , fN satisfying

(4.10)

N
∑

i=1

fi = 1, 0 ≤ fi ≤ 1, i = 1, . . . , N,

(4.11) fi = 0 almost everywhere in Ei, i = 1, . . . , N,
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and

(4.12) ‖fi‖BMO ≤
CN

λ
, i = 1, . . . , N,

where the constant CN depends only on N and the doubling constant Cµ.

Proof. Let m ∈ N and let (Ωm,Pm) be the probability space defined in the
beginning of the section. Denote Bm := B(z0, c0δ

−m), Ei,m := Ei ∩ Bm and
Qm,ω := Q−m

ω (z0) for ω ∈ Ωm. For any Q = Qk
α(ω) ∈ D(ω), ω ∈ Ω, we have

B1 ⊂ Q ⊂ B2 with B1 := B(zkα, c0δ
k) and B2 := B(zkα, C0δ

k) by (2.6). Thus
by the doubling condition (2.1) and (4.9),

min
1≤i≤N

µ(Q ∩ Ei,m)

µ(Q)
≤ min

1≤i≤N

µ(B2 ∩ Ei)

µ(B1)
≤ C1 min

1≤i≤N

µ(B2 ∩ Ei)

µ(B2)

≤ C1C
−2λ
µ = C−2λ′

µ ,

where λ′ = λ − 1
2
logCµ

C1 and C1 depends only on the doubling constant. If
λ ≤ logCµ

C1, the claim follows as in the beginning of the proof of Theorem
3.2. Hence we can assume λ > logCµ

C1, which in particular implies λ′ >
1
2
logCµ

C1 ≥ 0.
By dyadic Uchiyama’s theorem 3.2 applied individually in each dyadic sys-

tem D(ω), there are families of functions {fω
i }ω∈Ωm

, i = 1, . . . , N , satisfying
(4.10), (4.11) on Ei,m and

(4.13) ‖fω
i ‖BMOω(Qm,ω) ≤

C ′
N

λ′
,

where the constant C ′
N depends only on N and the doubling constant Cµ. For

each i, denote fi,m(x) := Em[f
ω
i (x)]. Then the functions fi,m satisfy (4.10) and

(4.11) on Ei,m by the linearity of expectation, and moreover by Theorem 4.1

(4.14)

∫

B

|fi,m − (fi,m)B| dµ ≤ C
C ′

N

λ′
+

4

µ(B)
µ(B(x0, δ

m) \ {x0})

for every B = B(x0, r) ⊂ Bm with r ≥ δm, where the constant C depends only
on the doubling constant.

Since the functions fi,m are uniformly bounded with respect to m, we can
pick subsequences {fi,mj

}j, i = 1, . . . , N , converging weak* in L∞(X). Setting
fi to be the corresponding weak* limits as j → ∞, they satisfy (4.10) and
(4.11) by the definition of weak* convergence. To prove (4.12), let g satisfy
(2.12) with a ball B ⊂ X . Then g ∈ L1(X) and

∣

∣

∣

∣

∫

X

fig dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
j→∞

∫

X

fi,mj
g − (fi,mj

)B g dµ

∣

∣

∣

∣

≤ lim sup
j→∞

∫

B

|fi,mj
− (fi,mj

)B| dµ ≤ C
C ′

N

λ′

by the definition of weak* convergence, (2.12), (4.14) and the fact that B ⊂
Bmj

with a radius r ≥ δmj when j is large enough. Consequently, by Lemma
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2.2 we obtain

‖fi‖BMO ≤ 2C
C ′

N

λ′
.

Finally, since

λ

λ′
=

λ′ + 1
2
logCµ

C1

λ′
≤ 2,

the claim (4.12) follows with CN = 4CC ′
N , and the proof is complete. �
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