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Example: Finnish peatland study

I Finnish environment institute is looking for new tools for ecological
monitoring of peatlands.

I Former studies have shown that counts of amoeba species can be
used for determining peatland condition (Daza Secco et al., 2016).

I As part of this study, we focus on the following research questions:

1. Do amoeba species communities differ in terms of land use (natural,
forestry, restored)?

2. Can we find indicator species for different peatlands (natural,
forestry, restored)?

3. Do environmental variables (temperature and water pH) affect the
community structure?



Data

I Six study sites located in the boreal zone of Central and Western
Finland

I Riihineva and Aittosuo (natural)
I Lahnanen and Ruuskanlampi (forestry)
I Aittoneva 60 and Aittoneva 80 (restored)

I 45 moss samples were taken from each sampling site.

I Amoeba species were identified and counted. Altogether 50 species
were detected.

I Environmental variables (temperature and water pH) were measured
from each sampling site.



Data matrix

Cenacu Cencas Ceneco Cenpla Cycarc Triarc Trimin

site1 4544 802 0 267 0 1604 0

site2 2351 0 0 157 0 1881 0

site3 6415 802 0 0 1604 802 0

site4 6449 0 0 0 0 450 0

site5 948 2085 0 0 2843 1327 0

site6 11760 802 0 0 535 1336 0

site7 5957 526 0 175 0 1051 0

site8 5886 0 0 0 0 0 0

site9 4364 0 0 0 0 485 0

site10 2921 0 0 398 0 797 0

.

.

.
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Figure: Abundances of m = 50 amoeba species recorded at n = 270 sites.



Classical multivariate analysis tools

I ’Algorithmic’ multivariate analysis (Quinn and Keough, 2002)
focuses on algorithms for ordination.

I Aims at reducing data from many response variables to just two, so
that sites can be plotted on a standard scatterplot to look for
patterns between sites.

I Methods are developed and implemented without directly
accommodating the statistical properties (mean-variance
relationship) of the data at hand.

I Species distribution modelling (see e.g. Elith and Leathwick, 2009).
I Aims at predictive modeling and mapping the distribution of species

and species diversity.
I Less focus is put on correlations across species.



Joint models for abundance

I We analyze the data using a model-based approach. This allows us
to specify a joint statistical model for abundance across many taxa.

I Model-based approaches allow us to
I simultaneously explore interactions across taxa and the response of

abundance to environmental variables,
I explicitly account for key statistical properties of the data,
I use residual analysis tools for model checking,
I use model selection tools to choose the most appropriate model for

data at hand,
I use the standard tools developed for statistical inference.



Generalized linear models (GLM)

I The models we use are extensions of Generalized linear models
(McCullagh and Nelder, 1989), widely used to model the impact of
environmental predictors, x i , i = 1, . . . , n, on abundance of one
species, yi , i = 1, . . . , n.

I In GLM the mean response, denoted by µi = E (yi ) is assumed to be

g(µi ) = β0 + x ′
iβ,

where g(·) is a known link function, β0 is an intercept and β is a
vector of regression coefficients related to measured environmental
covariates.



Generalized linear mixed models (GLMM)

I A joint model for abundance, yij , i = 1, . . . , n, j = 1, . . . ,m, requires
the inclusion of random effects, hence some form of mixed model, to
capture correlation in abundance across taxa.

I A complicated way to incorporate correlation is to introduce it
directly via a multivariate random effect applied to each sample, to
form a multivariate generalized linear mixed model (Breslow and
Clayton, 1993)

g(µij) = αi + β0j + x ′
iβj + uij ,

where αi and β0j denote row effects and species-specific intercepts,
respectively, βj are coefficient vectors related to the environmental
covariates and u i = (ui1, . . . , uim)′ ∼ N(0,Σ).



Generalized linear latent variable models (GLLVM)

I A flexible way to incorporate correlation is to regress the mean
response µij against a vector of d � m unknown latent variables,
u i = (ui1, . . . , uid)′, along with covariates.

I This forms a multivariate generalized linear latent variable model
(Moustaki and Knott, 2000), where

g(µij) = αi + β0j + x ′
iβj + u′

iγ j ,

where u i ∼ N(0, I d) and γ j = (γj1, . . . , γjd)′ are coefficients which
quantify how each species response is related to the latent variable.



Generalized linear latent variable models (GLLVM)

I The term u′
iγ j now captures the correlation across species, and the

number of latent variables (d) controls model complexity.

I Latent variable can be used to produce an ordination plot. If d = 2,
the latent variable value u i is a pair of coordinates representing the
position of the site i in a two-dimensional ordination (Hui et al.,
2015).

I The coefficients γ j can be added to the ordination giving an
indication of how species composition differs across sites.



Computation

I Write Y = (y 1 · · · yn)′ for a n ×m response matrix and collect all
model parameters into a vector Ψ.

I We estimate the model parameters using the maximum likelihood
method, that is, we find such Ψ which maximizes

L(Ψ) =
n∏

i=1

f (y i ; Ψ).

I For GLLVMs, the marginal density function of y i is given by

f (y i ,Ψ) =

∫
Rd

m∏
j=1

f (yij |u i ; Ψ)h(u i )du i ,

where h(·) is the density of d-variate standard normal distribution.



Computation

I As the marginal likelihood function involves a d-dimensional
integral, which cannot be solved analytically, numerical
approximation methods are needed.

I Methods available in the literature include
I Gauss-Hermite (GH) quadrature (Moustaki, 1996; Moustaki and

Knott, 2000) for mixtures of binary and normal responses,
I Adaptive Gauss-Hermite (AGH) quadrature (Rabe-Hesketh et al.,

2002) for normal, binomial, gamma and Poisson distributed
responses,

I Laplace approximation (Huber et al., 2004; Bianconcini and
Cagnone, 2012) for responses from general exponential family,

I MCEM (Sammel at al., 1997) for mixtures of binary and normal
responses.



Computation

I Less methods are available for overdispersed count data.

I Recent contributions for R-software include
I EM-algorithm (Hui et al., 2014)
I MCMC (Hui, 2015)
I Laplace approximation (Niku et al., 2016a)
I Variational approximation (Hui et al., 2016b)



Variational approximation (VA) method

I Using VA method it is possible to construct a more tractable
(potentially closed form) approximation to intractable likelihood.

I VA methods are popular for approximating posterior distributions in
high dimensional Bayesian modelling.

I Ormerod and Wand (2012) used VA method to overcome the
problems in integration in maximum likelihood estimation of
generalized linear mixed models.



Variational approximation (VA) method

I Let q(·) be an arbitrary density function on Rd . The log-likelihood
can then be written as

l(Ψ) = log f (y ; Ψ)

∫
Rd

q(u)du =

∫
Rd

log

(
f (y ,u; Ψ)/q(u)

f (u|y ; Ψ)/q(u)

)
q(u)du

=

∫
Rd

log

(
f (y ,u; Ψ)

q(u)

)
q(u)du +

∫
Rd

log

(
q(u)

f (u|y ; Ψ)

)
q(u)du.

I The last term is the Kullback-Leibler distance between q(u) and
f (u|y). Since this is always nonnegative, we get

l(Ψ) ≥
∫
Rd

log

(
f (y ,u; Ψ)

q(u)

)
q(u)du. (1)

I Substitution of q(u) ∼ N(µ,Λ), where µ and Λ are called the
variational parameters, into (1) gives a closed form lower bound.



I Estimation of the GLLVM is performed by maximizing the VA
log-likelihood simultaneously over the variational parameters and
model parameters.

I For the analysis of model parameters, the approximate asymptotic
standard errors may be obtained using the observed information
matrix

I (Ψ̂, µ̂, Λ̂) = −
{

∂2`(Ψ,µ,Λ)

∂(Ψ,µ,Λ)∂(Ψ,µ,Λ)T

}
Ψ̂,µ̂,Λ̂

.

I The variational parameter estimates, µ̂i provide appropriate
approximations to best predictors of u i (BP), and Λ̂i can be used to
measure their variability (Ormerod and Wand (2010)).



VA log-likelihood for Poisson-Gamma model

I To handle overdispersed counts in the context of GLLVMs, we use a
multiplicative Poisson-Gamma model with log link function, that is,

f (yij |νij ,u i ,Ψ) = exp(−νij)(νij)
yij/yij !, νij ∼ Gamma(φj , φj/µij)

and log(µij) = ηij = αi + β0j + xT
i βj + uT

i γ j .

I The parameterization produces the same quadratic mean-variance
relationship as the negative binomial distribution, that is,
Var(yij) = µij + µ2

ij/φj , where φj is the dispersion parameter.

I Also a fully closed form VA log-likelihood is obtained.



VA log-likelihood for Poisson-Gamma model

Theorem
The VA log-likelihood for Poisson-Gamma GLLVM with log link function
is given by the following expression

`(Ψ,Λ,µ) =
n∑

i=1

m∑
j=1

(
yij

(
η̃ij −

1

2
γT
j Λiγ j

)

− (yij + φj) log

{
φj + exp

(
η̃ij −

1

2
γT
j Λiγ j

)}
+ log Γ(yij + φj)−

φj
2
γT
j Λiγ j

)
+ n{φj log(φj)− log Γ(φj)}

+
1

2

n∑
i=1

(log det(Λi )− tr(Λi )− µT
i µi ),

where η̃ij = αi + β0j + xT
i βj + µT

i γ j , and all other quantities that are
constant with respect to the parameters have been omitted.



Simulation study

I K = 200 random samples were generated according to the
Poisson-Gamma model using different sample sizes and dimensions.

I We cosidered simple GLLVM model without covariates and site
effects, that is,

g(µij) = β0j + u′
iγ j ,

where β0 = (−1, . . . ,−1, 1, . . . , 1), true latent variables u i were
generated from the mixture of bivariate normal distributions and the
elements of γ j were generated from the uniform distribution
U(−2, 2).

I We compared the results based on variational approximation method
to those given by Laplace’s method (Niku et al., 2016a).



Simulation study
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Figure: To evaluate the performance of predicted latent variables, u i , the
procrustes errors between the predicted and true parameter values were
computed (Bartholomew et al., 2011). Non-metric multidimensional scaling
was added in comparisons as a classical ordination method.



Simulation study
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Figure: Boxplots of estimated regression coefficients, β̂j , and true values for βj

(red lines). The estimation was done using Laplace’s method (left) and
Variational approximation method (right).



Simulation study

0
2

4
6

8

m=50, n=100

j

φ j

1 4 7 11 16 21 26 31 36 41 46

0
2

4
6

8

m=50, n=100

j

1 4 7 11 16 21 26 31 36 41 46

Figure: Boxplots of estimated dispersion parameters, φ̂j , and true values for φj

(red lines). The estimation was done using Laplace’s method (left) and
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Computation times
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Figure: Mean computation times (in minutes) when GLLVMs with two latent
variables were fitted using variational approximation method and Laplace
approximation method.
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Example revisited: Finnish peatland study

I Consider the amoeba dataset with n = 270 sites and m = 50
species.

I To visualize the main trends between different sampling sites in
terms of their species composition we fitted a latent variable model
with two latent variables (model-based ordination method).

I We used model selection tools (BIC) and chose a model which
assumes Poisson-Gamma distributions (over Poisson, ZIP and
ZIP-NB) for responses.

I Model was fitted using VA method and predicted latent variables
(BPs) were plotted on a standard scatterplot to look for patterns
between sites.
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Summary

I GLLVMs allow us to specify a statistical model for abundances jointly
across many taxa, to simultaneously explore interactions across taxa
and the response of abundance to environmental variables.

I Advantages of model-based approaches include: residual analysis
tools, model selection tools and methods for formal statistical
inference.

I Fast estimation methods for GLLVMs are available for the most
common types of responses in ecological studies: presence-absence
records, overdispersed species counts, biomass (non-negative,
continuous data often with large number of zeros), and percent
cover data.
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