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Outline 2

Why cumulants instead of moments?

”Random lattice fields”

`p-clustering norms of cumulants

Main theorem:
Summability of joint correlations of two random fields

An Example and a Counterexample

Example 2: Discrete nonlinear Schrödinger equation

Main tools: Wick polynomials and cluster expansions

Outline of the proof

Weighted `2-clustering result
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Some shorthand notations

Consider random variables yj , j = 1, 2, . . . ,N on a probability
space (Ω,B, µ)

For any sequence J = (j1, . . . , jn) of indices, denote the
product variable by

yJ = yj1yj2 · · · yjn =
n∏

k=1

yjk

The corresponding moment is

E[yJ ] = E[yj1yj2 · · · yjn ]

If joint exponential moments exist (〈eβ
∑

j |yj |〉 <∞, β > 0),
can differentiate a moment generating function,

gmom(λ) := E[eλ·y ] ⇒ E[yJ ] = ∂Jλgmom(0)
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What are cumulants?

Cumulants κ[yJ ] may be defined recursively from the identity
(choose any j ∈ J)

E[yJ ] = κ[yJ ] +
∑

E :j∈E(J

E[yJ\E ]κ[yE ]

If exponential moments exist, obtained also from a cumulant
generating function: with ∂Jλ :=

∏
j∈J ∂λj ,

g(λ) := ln gmom(λ) ⇒ κ[yJ ] = ∂Jλg(0)

Cumulants are multilinear and permutation invariant

Centering only affects the first order cumulant: (ȳj = E[yj ])

g(λ) = λ · ȳ + lnE[eλ·(y−ȳ)]
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Random lattice fields 5

Let Z be a countable index set, e.g., a lattice Z = Zd

We consider here complex lattice fields ψ(x), x ∈ Z ,
i.e., a countable collection of random variables

For simplicity, we assume that the field is closed under
complex conjugation:

To every x ∈ Z there is some x∗ ∈ Z for which ψ(x)∗ = ψ(x∗)

(It is always possible to satisfy this by augmenting the index
set to Z × {1,−1}, ψ(x , 1) = ψ(x), ψ(x ,−1) = ψ(x)∗)

In addition to concrete examples from physics, covers also
abstract index sets, such as the sequence of coefficients in the
Karhunen–Loève decomposition of a stochastic process
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Why study cumulants of random fields? 6

Observation: If y , z are independent random variables we have

E[ynzm] = E[yn]E[zm] 6= 0

whereas the corresponding cumulant is zero if n,m 6= 0.

Consider a random lattice field ψ(x), x ∈ Zd , which is (very)
strongly mixing under lattice translations:

Assume the fields in well separated regions become asymptotically
independent as the separation grows.

Then κ[ψ(x), ψ(x + y1), . . . , ψ(x + yn−1)]→ 0 as |yi | → ∞.
How fast? `1- or `2-summably?

Not true for corresponding moments: E[|ψ(x)|2|ψ(x + y)|2]
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`p-clustering fields 7

`p-clustering norm of a random field ψ

Suppose ψ is a random field on a countable Z . Define

‖ψ‖(n)
p := sup

x0∈Z

[ ∑
x∈Zn−1

|κ[ψ(x0), ψ(x1), . . . , ψ(xn−1)]|p
]1/p

We call the field `p-clustering if ‖ψ‖(n)
p <∞ for all n

Involves the n:th connected correlation function

un(x1, . . . , xn) = κ[ψ(x1), . . . , ψ(xn)]

We can measure the magnitude of the field with

MN(ψ; p) := max
1≤n≤N

(
1

n!
‖ψ‖(n)

p

)1/n
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If 1 ≤ p ≤ 2 and ψ is `p-clustering on Z = Zd , can take
Fourier-transform in the displacement yi = xi − x0

⇒ function F (n)(x0, k) is L∞ in x0 ∈ Zd and
L2-integrable in k ∈ (Td)n−1

`1-clustering implies that F (n)(x0, k) is continuous and
uniformly bounded (⇒ helps in nonlinearities)

If the field has a translation invariant distribution on Z = Zd ,
a change of variables yi = xi − x0 yields

‖ψ‖(n)
p =

[ ∑
y∈(Zd )n−1

|κ[ψ(0), ψ(y1), . . . , ψ(yn−1)]|p
]1/p

Examples of `1-clustering thermal Gibbs states:
discrete NLS [Abdesselam, Procacci, Scoppola],
certain fermionic lattice systems [Salmhofer],
any state which has an exponential decay of correlations, . . .
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Main result 9

Suppose that

1 Z is a countable index set and N ∈ N+

2 φ(x) and ψ(x) two random fields on Z , closed under
conjugation and defined on the same probability space

3 φ is `1-clustering up to order 2N

4 ψ is `∞-clustering up to order 2N

`2-summability of joint cumulants

For any n,m ∈ N+ for which n,m ≤ N,

sup
x ′∈Zm

[∑
x∈Zn

∣∣κ[ψ(x ′1), . . . , ψ(x ′m), φ(x1), . . . , φ(xn)]
∣∣2]1/2

≤ (Mm,nγ
m)n+m(n + m)!

where Mm,n := max(M2m(ψ;∞),M2n(φ; 1)) and γ = 2e ≈ 5.44.
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Example 1: translation invariant Gaussian lattice fields 10

Define random fields ψ and φ on Z = Z such that

1 Both fields have zero mean: E[ψ(x)] = 0 = E[φ(x)]

2 They form a collection of jointly Gaussian random variables with

E[ψ(x)ψ(y)] = F1(x − y) , E[φ(x)φ(y)] = F2(x − y)

E[ψ(x)φ(y)] = G (x − y) , (x , y ∈ Z)

3 The covariance functions F1, F2, G ∈ `2(Z,R)

⇒ there are Fourier transforms F̂1, F̂2, Ĝ ∈ L2(T)

Then the covariance operator is positive semi-definite if

F̂1(k) ≥ 0 , F̂2(k) ≥ 0 ,
∣∣Ĝ (k)

∣∣2 ≤ F̂1(k)F̂2(k)

⇒ a unique translation invariant Gaussian measure on functions on Z

Here: ψ and φ are `2-clustering ⇒ joint correlations `2-summable

If ψ and φ are `1-clustering, are their correlations `1-summable?
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Counterexample for ”`1-clustering ⇒ `1-summability”

In the above, choose ψ and φ i.i.d. Gaussian:

F1(x) = 1{x=0} = F2(x) , G (x) =
1

πx
sin
(π

2
x
)

⇒ F̂1(k) = 1 = F̂2(k) , Ĝ (k) = 1{|k|< 1
4}
≤ 1 =

√
F̂1(k)F̂2(k)

sup
x∈Z

∑
y∈Z
|F1(x − y)| = ‖ψ‖(2)

1 = ‖φ‖(2)
1 = 1

& all cumulants of order n 6= 2 are zero

⇒ Fields ψ and φ are `1-clustering

Their joint correlations are not `1-summable!∑
x∈Z
|κ[ψ(x ′), φ(x)]| =

∑
y∈Z
|G (y)| =

1

2
+

2

π

∞∑
n=0

1

2n + 1
=∞

In contrast,

G ∈ `2(Z) ⇒ sup
x′

∑
x

|κ[ψ(x ′), φ(x)]|2 =
∑
y

|G (y)|2 <∞
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Example 2: Discrete nonlinear Schrödinger equation 12

The discrete NLS equation on the lattice Zd deals with functions
ψ : R× Zd → C which satisfy

i∂tψt(x) =
∑
y∈Zd

α(x − y)ψt(y) + λ|ψt(x)|2ψt(x)

Define ψt(x ,+1) = ψ(x), ψt(x ,−1) = ψ(x)∗ ⇒

For each t ∈ R obtain a random field ψt on Z = Zd ×{−1, 1}
Suppose ψ0 has a distribution which is time-stationary and
`1-clustering (e.g. an equilibrium Gibbs measure)

⇒ Distribution of ψt is also `1-clustering
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A priori estimates 13

The previous results imply that any time-correlation function
of the form

κ[ψ0(0, σ′1), . . . , ψ0(0, σ′m), ψt(x1, σ1), . . . , ψt(xn, σn)]

is `2-summable uniformly in time

For instance, then for every t

ft(x) = κ[ψ0(0,−1), ψt(x , 1)] ∈ `2(Z)

and ‖ft‖`2 ≤ C <∞ uniformly in time t

The bound C depends only on the (stationary) initial data
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How to use a priori estimates? 14

The evolution equations for ψt imply that

i∂t ft(x) =
∑
y∈Zd

α(x − y)ft(y) + λgt(x)

gt(x) = E[:ψ0(0,−1):ψt(x ,−1)ψt(x , 1)ψt(x , 1)]

Expand gt in terms of cumulants of ψ0 and ψt

⇒ The main theorem shows that ‖gt‖`2 ≤ C for all t

Since ft ∈ `2(Z) can take a Fourier transform

In Duhamel form the evolution equation reads for t ≥ 0

f̂t(k) = e−itα̂(k) f̂0(k)− iλ

∫ t

0

ds e−i(t−s)α̂(k)ĝs(k)

⇒
∥∥∥f̂t − e−itα̂ f̂0

∥∥∥
L2(Td )

≤ Ctλ

The harmonic evolution dominates the behaviour of ft up to t ∝ λ−1
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Standard definition of Wick polynomials

Wick polynomials (WP) of random variables yj are defined
recursively in p1 + p2 + · · ·+ pn as:

1 If p1 = p2 = · · · = pn = 0, set :yp1
1 yp2

2 · · · y
pn
n : = 1

2 Otherwise, 〈:yp1
1 yp2

2 · · · y
pn
n :〉 = 0

3 ∂yj :yp1
1 · · · y

pj
j · · · y

pn
n : = pj :yp1

1 · · · y
pj−1
j · · · ypnn : ∀j

The conditions have a unique polynomial solution

If exponential moments exist, WP have a generating function

Gw(y , λ) =
exp (

∑n
i=1 λiyi )

〈exp (
∑n

i=1 λiyi )〉
= eλ·y−g(λ)

⇒ :yp1
1 yp2

2 · · · y
pn
n : = ∂p1

λ1
· · · ∂pnλnGw(y , λ)

∣∣∣
λ=0
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Gaussian Wick polynomials 16

WP have been mainly used for Gaussian fields.
They were introduced in quantum field theory where the
unperturbed measure concerns Gaussian (free) fields

Gaussian case has significant simplifications:
If Cj ′j = κ[yj ′ , yj ] denotes the covariance matrix ,

Gw(y , λ) = exp[λ · (y − 〈y〉)− λ · Cλ/2]

⇒ Wick polynomials are Hermite polynomials

The resulting orthogonality properties are used in the Wiener
chaos expansion and Malliavin calculus
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Basic properties of WP 17

Products to WP

y I =
∑
U⊂I

:yU :E[y I\U ] =
∑
U⊂I

:yU :
∑

π∈P(I\U)

∏
A∈π

κ[yA]

WP to products

:y I : =
∑
U⊂I

yU
∑

π∈P(I\U)

(−1)|π|
∏
A∈π

κ[yA]

WP are permutation invariant and multilinear

Lowest order WP

:y : = y − E[y ] = y − κ(y)

:y1y2: = y1y2 − κ(y1, y2)− κ(y1)y2 − κ(y2)y1 + κ(y1)κ(y2)
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Cluster expansions 18

For any index set J, as long as all moments yA =
∏

i∈A yi ,A ⊂ J,
belong to L1(µ), the moments-to-cumulants formula holds:

E[yJ ] =
∑

π∈P(J)

∏
A∈π

κ[yA]

P(J) denotes the collection of partitions of J.

For a partition π ∈ P(J), call the subsets A ∈ π clusters or
blocks

Follows from the recursive definition of cumulants
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Combinatorial properties of WP 19

Assume J is an index set such that yA =
∏

i∈A yi belong to L1(µ)
for any A ⊂ J

Define polynomials W [yJ ] inductively in |J|:
W [y∅] = 1 and for J 6= ∅ require

W [yJ ] = yJ −
∑
E(J

E[yJ\E ]W [yE ]

The solution is unique and W [yJ ] = :yJ :

Jani Lukkarinen Summability of joint cumulants



Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary Gaussian Properties Clusters WP Truncated m-t-c

Truncated moments-to-cumulants formula

E
[
yJ
′
:yJ :

]
=

∑
π∈P(J′∪J)

∏
A∈π

(κ[yA]1{A 6⊂J}) (1)

:yJ : are µ-a.s. unique polynomials of order |J| such that (1)
holds for every J ′

Multi-truncated moments-to-cumulants formula

Suppose L ≥ 1 is given and consider a collection of L + 1 index
sequences J ′, J`, ` = 1, . . . , L. Then with I = J ′ ∪ (∪L`=1J`)

E
[
yJ
′

L∏
`=1

:yJ` :

]
=

∑
π∈P(I )

∏
A∈π

(
κ[yA]1{A 6⊂J`, ∀`}

)
.

Jani Lukkarinen Summability of joint cumulants



Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary Ideas Lemma

Sketch of the proof of the main theorem 21

The difficult part is to show the main result with a single ψ-field.
The general case follows by induction and combinatorial estimates.

We first prove that assuming

1 Z is a countable index set and N ∈ N+

2 φ is a random field on Z , closed under conjugation

3 φ is `1-clustering up to order 2N

4 X is random variable with finite variance

`2-summability of joint cumulants

For any n ∈ N+ for which n ≤ N,[∑
x∈Zn

∣∣κ[X , φ(x1), . . . , φ(xn)]
∣∣2]1/2

≤
√

Cov(X ∗,X )M2n(φ; 1)nen
√

(2n)!

Jani Lukkarinen Summability of joint cumulants
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Keys ideas 22

Key idea: Represent cumulants using WP,

G (x) := κ[X , φ(x1), . . . , φ(xn)] = E[:X : :φ(x1) · · ·φ(xn):]

Introduce test functions f : Z n → C with finite support,

‖f ‖2
φ,n = E

[∣∣∣∑
x∈Z n

f (x) :φ(x)Jn :
∣∣∣2] =

∑
x′,x∈Z n

f (x ′)∗f (x)Φn(x ′, x)

Φn(x ′, x) = E
[
:φ∗(x ′)J

′
n : :φ(x)Jn :

]
, Jn = {1, 2, . . . , n} = J ′n

Φn are finite because all cumulants up to order 2n are finite
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Consider

Λ[f ] =
∑
x∈Z n

G (x)f (x) = E
[

:X :
∑
x∈Z n

:φ(x)Jn : f (x)

]
Then by Schwarz inequality

|Λ[f ]|2 ≤ E
[
| :X : |2

]
E
[∣∣∣∑

x∈Z n

f (x) :φ(x)Jn :
∣∣∣2] = E

[
| :X : |2

]
‖f ‖2

φ,n

‖f ‖2
φ,n ≤

∑
x∈Z n

|f (x)|2 × sup
x′∈Z n

∑
x∈Z n

|Φn(x ′, x)|

Lemma: `1-clustering of φ implies that
∑
x∈Z n

|Φn(x ′, x)| ≤ cn

⇒ |Λ[f ]| ≤
√
cnE[|:X :|2] ‖f ‖`2 =

√
cnCov(X ∗,X ) ‖f ‖`2

Thus by Riesz representation theorem G ∈ `2(Z n) with√∑
x∈Z n

|G (x)|2 ≤
√
cnCov(X ∗,X )
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Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary Ideas Lemma

Combinatorial lemma 24

Let φ be a `p-clustering random lattice field up to order 2n,
p ∈ [1,∞] and n ≥ 1. If φ is closed under conjugation, ∀x ′ ∈ Zn

‖Φn(x ′, ·)‖`p ≤
∑

π∈P(J2n)

∏
S∈π
‖φ‖(|S|)

p ≤ M2n(φ; p)2ne2n(2n)!

This implies that cn = M2n(φ; 1)2ne2n(2n)!

The main ingredient to prove the lemma is the truncated
moment to cumulants formula

Φn(x ′, x) =
∑

π∈P(J′n+Jn)

∏
S∈π

(
κ[φ∗(x ′)A′ , φ(x)A]

× 1{A′ 6=∅,A 6=∅}
)
A′=S|J′n,A=S |Jn
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Second Theorem 25

Suppose that

1 Z is a countable index set and N ∈ N+

2 φ(x) and ψ(x) two random fields on Z , closed under
conjugation and defined on the same probability space

3 φ is `2-clustering up to order 2N

4 ψ is `∞-clustering up to order 2N

`2-summability of joint cumulants

For any n,m ∈ N+ for which n,m ≤ N, and all x ′ ∈ Zm, y ∈ Zn[∑
x∈Zn

|Φn(y , x)|
∣∣κ[ψ(x ′1), . . . , ψ(x ′m), φ(x1), . . . , φ(xn)]

∣∣2]1/2

≤ (Mm,nγ
m)2(n+m) ((n + m)!)2

where Mm,n := max(M2m(ψ;∞),M2n(φ; 2)), γ = 2e, and

Φn(y , x) := E[:φ(y1)∗φ(y2)∗ · · ·φ(yn)∗: :φ(x1)φ(x2) · · ·φ(xn):]
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Proof 26

For any finite F ⊂ Zn, fixed y ∈ Zn, pick as a test function

f (x) = 1{x∈F}|Φn(y , x)|G (x)∗ ⇒

Λ[f ] =
∑
x∈F
|G (x)|2|Φn(y , x)| ≤

√
Cov(X ∗,X )‖f ‖φ,n <∞

Thanks to the combinatorial lemma

‖f ‖2
φ,n ≤

∑
x∈F
|G (x)|2|Φn(y , x)|

(
sup
x ′∈Zn

√∑
x∈F
|Φn(x ′, x)|2

)2

≤ (c ′n)2
∑
x∈F
|G (x)|2|Φn(y , x)| = (c ′n)2Λ[f ]

Therefore,
√

Λ[f ] ≤ c ′n
√

Cov(X ∗,X ) for any finite F
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Summary 27

Two `1-clustering fields have `2-summable joint correlations

Two `2-clustering fields have weighted `2-summable joint
correlations

Works typically for equilibrium measures
⇒ a priori bounds for time-correlations

Possible applications: control of Green–Kubo formula for
thermal conductivity, kinetic theory and transport equations

Implications for point processes and continuum random fields?

How optimal are the combinatorial constants?
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