Summability of joint cumulants of nonindependent lattice fields

Jani Lukkarinen

joint work with

Matteo Marcozzi (U Helsinki) and Alessia Nota (U Bonn)

Aalto University, 20 Dec 2016

Jani Lukkarinen Summability of joint cumulants

- Why cumulants instead of moments?
- "Random lattice fields"
- ℓ_p -clustering norms of cumulants
- Main theorem. Summability of joint correlations of two random fields
- An Example and a Counterexample
- Example 2: Discrete nonlinear Schrödinger equation
- Main tools: Wick polynomials and cluster expansions
- Outline of the proof
- Weighted ℓ_2 -clustering result

Some shorthand notations

- Consider random variables y_i , j = 1, 2, ..., N on a probability space $(\Omega, \mathcal{B}, \mu)$
- For any sequence $J = (j_1, \ldots, j_n)$ of indices, denote the product variable by

$$y^J = y_{j_1}y_{j_2}\cdots y_{j_n} = \prod_{k=1}^n y_{j_k}$$

The corresponding moment is

$$\mathbb{E}[y^J] = \mathbb{E}[y_{j_1}y_{j_2}\cdots y_{j_n}]$$

If joint exponential moments exist ($\langle e^{\beta \sum_j |y_j|} \rangle < \infty, \beta > 0$), can differentiate a *moment generating function*,

$$g_{mom}(\lambda) := \mathbb{E}[e^{\lambda \cdot y}] \quad \Rightarrow \quad \mathbb{E}[y^J] = \partial_{\lambda}^J g_{mom}(0)$$

What are cumulants?

■ Cumulants κ[y_J] may be defined *recursively* from the identity (choose any j ∈ J)

$$\mathbb{E}[y^{J}] = \kappa[y_{J}] + \sum_{E: j \in E \subsetneq J} \mathbb{E}[y^{J \setminus E}] \kappa[y_{E}]$$

If exponential moments exist, obtained also from a *cumulant* generating function: with $\partial_{\lambda}^{J} := \prod_{j \in J} \partial_{\lambda_{j}}$,

$$g(\lambda) := \ln g_{mom}(\lambda) \quad \Rightarrow \quad \kappa[y_J] = \partial_{\lambda}^J g(0)$$

Cumulants are *multilinear* and *permutation invariant Centering* only affects the first order cumulant: (y
_i = E[y_i])

$$g(\lambda) = \lambda \cdot \bar{y} + \ln \mathbb{E}[e^{\lambda \cdot (y - \bar{y})}]$$

Random lattice fields

- Let Z be a *countable* index set, e.g., a lattice $Z = \mathbb{Z}^d$
- We consider here *complex lattice fields* $\psi(x)$, $x \in Z$, i.e., a countable collection of random variables
- For simplicity, we assume that the field is *closed under* complex conjugation:

To every $x \in Z$ there is some $x_* \in Z$ for which $\psi(x)^* = \psi(x_*)$

(It is always possible to satisfy this by augmenting the index set to $Z \times \{1, -1\}, \psi(x, 1) = \psi(x), \psi(x, -1) = \psi(x)^*$

In addition to concrete examples from physics, covers also abstract index sets, such as the sequence of coefficients in the Karhunen–Loève decomposition of a stochastic process

Why study cumulants of random fields?

Observation: If y, z are independent random variables we have

 $\mathbb{E}[y^n z^m] = \mathbb{E}[y^n] \mathbb{E}[z^m] \neq 0$

whereas the corresponding cumulant is zero if $n, m \neq 0$.

Consider a random lattice field $\psi(x)$, $x \in \mathbb{Z}^d$, which is (very) strongly mixing under lattice translations:

Assume the fields in well separated regions become asymptotically independent as the separation grows.

- Then $\kappa[\psi(x), \psi(x+y_1), \dots, \psi(x+y_{n-1})] \to 0$ as $|y_i| \to \infty$. How fast? ℓ_1 - or ℓ_2 -summably?
- Not true for corresponding moments: $\mathbb{E}[|\psi(x)|^2|\psi(x+y)|^2]$

ℓ_p -clustering fields

 ℓ_p -clustering norm of a random field ψ

Suppose ψ is a random field on a countable Z. Define

$$\|\psi\|_{\rho}^{(n)} := \sup_{x_0 \in Z} \left[\sum_{x \in Z^{n-1}} |\kappa[\psi(x_0), \psi(x_1), \dots, \psi(x_{n-1})]|^{\rho} \right]^{1/\rho}$$

We call the field ℓ_p -clustering if $\|\psi\|_p^{(n)} < \infty$ for all n

Involves the n:th connected correlation function

$$u_n(x_1,\ldots,x_n)=\kappa[\psi(x_1),\ldots,\psi(x_n)]$$

We can measure the magnitude of the field with

$$M_N(\psi; p) := \max_{1 \le n \le N} \left(\frac{1}{n!} \|\psi\|_p^{(n)} \right)^{1/n}$$

• If $1 \le p \le 2$ and ψ is ℓ_p -clustering on $Z = \mathbb{Z}^d$, can take Fourier-transform in the displacement $y_i = x_i - x_0$

 $\Rightarrow \quad \begin{array}{l} \text{function } F^{(n)}(x_0,k) \text{ is } L^{\infty} \text{ in } x_0 \in \mathbb{Z}^d \text{ and} \\ L^2 \text{-integrable in } k \in (\mathbb{T}^d)^{n-1} \end{array}$

- ℓ₁-clustering implies that F⁽ⁿ⁾(x₀, k) is continuous and uniformly bounded (⇒ helps in nonlinearities)
- If the field has a *translation invariant* distribution on $Z = \mathbb{Z}^d$, a change of variables $y_i = x_i x_0$ yields

$$\|\psi\|_{p}^{(n)} = \left[\sum_{y \in (\mathbb{Z}^{d})^{n-1}} |\kappa[\psi(0), \psi(y_{1}), \dots, \psi(y_{n-1})]|^{p}\right]^{1/p}$$

 Examples of l₁-clustering thermal Gibbs states: discrete NLS [Abdesselam, Procacci, Scoppola], certain fermionic lattice systems [Salmhofer], any state which has an exponential decay of correlations, ...

Main result

Suppose that

- 1 Z is a countable index set and $N \in \mathbb{N}_+$
- **2** $\phi(x)$ and $\psi(x)$ two random fields on Z, closed under conjugation and defined on the same probability space
- 3 ϕ is ℓ_1 -clustering up to order 2N
- 4 ψ is ℓ_{∞} -clustering up to order 2N

ℓ_2 -summability of joint cumulants

For any $n, m \in \mathbb{N}_+$ for which $n, m \leq N$,

$$\sup_{x'\in\mathbb{Z}^m}\left[\sum_{x\in\mathbb{Z}^n}\left|\kappa[\psi(x'_1),\ldots,\psi(x'_m),\phi(x_1),\ldots,\phi(x_n)]\right|^2\right]^{1/2} \le (\mathfrak{M}_{m,n}\gamma^m)^{n+m}(n+m)!$$

where $\mathfrak{M}_{m,n} := \max(M_{2m}(\psi; \infty), M_{2n}(\phi; 1))$ and $\gamma = 2e \approx 5.44$.

Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary

Example 1: translation invariant Gaussian lattice fields 10

Define random fields ψ and ϕ on $Z=\mathbb{Z}$ such that

- **1** Both fields have zero mean: $\mathbb{E}[\psi(x)] = 0 = \mathbb{E}[\phi(x)]$
- 2 They form a collection of jointly Gaussian random variables with

$$\mathbb{E}[\psi(x)\psi(y)] = F_1(x-y), \quad \mathbb{E}[\phi(x)\phi(y)] = F_2(x-y)$$
$$\mathbb{E}[\psi(x)\phi(y)] = G(x-y), \quad (x,y\in\mathbb{Z})$$

3 The covariance functions F_1 , F_2 , $G \in \ell_2(\mathbb{Z}, \mathbb{R})$ \Rightarrow there are Fourier transforms \widehat{F}_1 , \widehat{F}_2 , $\widehat{G} \in L^2(\mathbb{T})$

Then the covariance operator is positive semi-definite if

$$\widehat{F}_1(k) \ge 0$$
, $\widehat{F}_2(k) \ge 0$, $\left|\widehat{G}(k)\right|^2 \le \widehat{F}_1(k)\widehat{F}_2(k)$

 \Rightarrow a unique translation invariant Gaussian measure on functions on $\mathbb Z$

- Here: ψ and ϕ are ℓ_2 -clustering \Rightarrow joint correlations ℓ_2 -summable
- If ψ and ϕ are ℓ_1 -clustering, are their correlations ℓ_1 -summable?

Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary

Counterexample for " ℓ_1 -clustering $\Rightarrow \ell_1$ -summability"

In the above, choose ψ and ϕ *i.i.d. Gaussian*:

$$F_{1}(x) = \mathbb{1}_{\{x=0\}} = F_{2}(x), \quad G(x) = \frac{1}{\pi x} \sin\left(\frac{\pi}{2}x\right)$$

$$\Rightarrow \quad \widehat{F}_{1}(k) = 1 = \widehat{F}_{2}(k), \quad \widehat{G}(k) = \mathbb{1}_{\{|k| < \frac{1}{4}\}} \le 1 = \sqrt{\widehat{F}_{1}(k)\widehat{F}_{2}(k)}$$

$$= \sup_{x \in \mathbb{Z}} \sum_{y \in \mathbb{Z}} |F_{1}(x-y)| = \|\psi\|_{1}^{(2)} = \|\phi\|_{1}^{(2)} = 1$$

& all cumulants of order $n \neq 2$ are zero

- \Rightarrow Fields ψ and ϕ are ℓ_1 -clustering
- Their joint correlations are not ℓ_1 -summable!

$$\sum_{x \in \mathbb{Z}} |\kappa[\psi(x'), \phi(x)]| = \sum_{y \in \mathbb{Z}} |G(y)| = \frac{1}{2} + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} = \infty$$

In contrast,

$$G \in \ell^{2}(\mathbb{Z}) \quad \Rightarrow \quad \sup_{x'} \sum_{x} |\kappa[\psi(x'), \phi(x)]|^{2} = \sum_{y} |G(y)|^{2} < \infty$$

Example 2: Discrete nonlinear Schrödinger equation 12

The discrete NLS equation on the lattice \mathbb{Z}^d deals with functions $\psi: \mathbb{R} \times \mathbb{Z}^d \to \mathbb{C}$ which satisfy

$$\mathrm{i}\partial_t\psi_t(x) = \sum_{y\in\mathbb{Z}^d} \alpha(x-y)\psi_t(y) + \lambda|\psi_t(x)|^2\psi_t(x)$$

• Define $\psi_t(x, +1) = \psi(x), \ \psi_t(x, -1) = \psi(x)^* \Rightarrow$

For each $t \in \mathbb{R}$ obtain a random field ψ_t on $Z = \mathbb{Z}^d \times \{-1, 1\}$

Suppose ψ_0 has a distribution which is time-stationary and ℓ_1 -clustering (e.g. an equilibrium Gibbs measure)

$$\Rightarrow$$
 Distribution of ψ_t is also ℓ_1 -clustering

A priori estimates

The previous results imply that any time-correlation function of the form

$$\kappa[\psi_0(0,\sigma_1'),\ldots,\psi_0(0,\sigma_m'),\psi_t(x_1,\sigma_1),\ldots,\psi_t(x_n,\sigma_n)]$$

- is ℓ_2 -summable uniformly in time
- For instance, then for every t

$$f_t(x) = \kappa[\psi_0(0,-1),\psi_t(x,1)] \in \ell_2(\mathbb{Z})$$

and $||f_t||_{\ell_2} \leq C < \infty$ uniformly in time t

The bound C depends only on the (stationary) initial data

Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary A priori estimates How to use a priori estimates?

How to use a priori estimates?

The evolution equations for ψ_t imply that

$$\begin{split} \mathbf{i}\partial_t f_t(x) &= \sum_{y \in \mathbb{Z}^d} \alpha(x - y) f_t(y) + \lambda g_t(x) \\ g_t(x) &= \mathbb{E}[:\psi_0(0, -1): \psi_t(x, -1)\psi_t(x, 1)\psi_t(x, 1)] \end{split}$$

- Expand g_t in terms of cumulants of ψ_0 and ψ_t The main theorem shows that $||g_t||_{\ell_2} \leq C$ for all t \Rightarrow
- Since $f_t \in \ell_2(\mathbb{Z})$ can take a Fourier transform
- In Duhamel form the evolution equation reads for t > 0

$$\begin{split} \widehat{f_t}(k) &= e^{-it\widehat{\alpha}(k)}\widehat{f_0}(k) - i\lambda \int_0^t ds \, e^{-i(t-s)\widehat{\alpha}(k)}\widehat{g}_s(k) \\ \\ &\Rightarrow \quad \left\| \widehat{f_t} - e^{-it\widehat{\alpha}}\widehat{f_0} \right\|_{L^2(\mathbb{T}^d)} \leq Ct\lambda \end{split}$$

• The harmonic evolution dominates the behaviour of f_t up to $t \propto \lambda^{-1}$

Standard definition of Wick polynomials

Wick polynomials (WP) of random variables y_i are defined recursively in $p_1 + p_2 + \cdots + p_n$ as:

- 1 If $p_1 = p_2 = \cdots = p_n = 0$, set $: y_1^{p_1} y_2^{p_2} \cdots y_n^{p_n} := 1$
- 2 Otherwise, $\langle : y_1^{p_1} y_2^{p_2} \cdots y_n^{p_n} : \rangle = 0$
- $\exists \ \partial_{y_i} : y_1^{p_1} \cdots y_i^{p_j} \cdots y_n^{p_n} := p_j : y_1^{p_1} \cdots y_i^{p_j-1} \cdots y_n^{p_n} : \quad \forall j$
- The conditions have a unique polynomial solution
- If exponential moments exist, WP have a generating function

$$G_{\mathbf{w}}(y,\lambda) = \frac{\exp\left(\sum_{i=1}^{n} \lambda_{i} y_{i}\right)}{\langle \exp\left(\sum_{i=1}^{n} \lambda_{i} y_{i}\right) \rangle} = e^{\lambda \cdot y - g(\lambda)}$$

$$\Rightarrow : y_{1}^{p_{1}} y_{2}^{p_{2}} \cdots y_{n}^{p_{n}} := \partial_{\lambda_{1}}^{p_{1}} \cdots \partial_{\lambda_{n}}^{p_{n}} G_{\mathbf{w}}(y,\lambda) \Big|_{\lambda = 0}$$

Gaussian Wick polynomials

- WP have been mainly used for Gaussian fields.
 They were introduced in quantum field theory where the unperturbed measure concerns Gaussian (free) fields
- Gaussian case has significant simplifications: If $C_{j'j} = \kappa[y_{j'}, y_j]$ denotes the *covariance matrix*,

$$G_{\mathrm{w}}(y,\lambda) = \exp[\lambda \cdot (y - \langle y \rangle) - \lambda \cdot C\lambda/2]$$

- ⇒ Wick polynomials are *Hermite polynomials*
- The resulting orthogonality properties are used in the Wiener chaos expansion and Malliavin calculus

Basic properties of WP

Products to WP

$$y^{I} = \sum_{U \subset I} : y^{U} : \mathbb{E}[y^{I \setminus U}] = \sum_{U \subset I} : y^{U} : \sum_{\pi \in \mathcal{P}(I \setminus U)} \prod_{A \in \pi} \kappa[y_{A}]$$

■ WP to products

$$: y^{I} := \sum_{U \subset I} y^{U} \sum_{\pi \in \mathcal{P}(I \setminus U)} (-1)^{|\pi|} \prod_{A \in \pi} \kappa[y_{A}]$$

- WP are *permutation invariant* and *multilinear*
- Lowest order WP

$$:y_{1} = y - \mathbb{E}[y] = y - \kappa(y)$$

$$:y_{1}y_{2} := y_{1}y_{2} - \kappa(y_{1}, y_{2}) - \kappa(y_{1})y_{2} - \kappa(y_{2})y_{1} + \kappa(y_{1})\kappa(y_{2})$$

Cluster expansions

For any index set J, as long as all moments $y^A = \prod_{i \in A} y_i, A \subset J$, belong to $L^1(\mu)$, the moments-to-cumulants formula holds:

$$\mathbb{E}[y^J] = \sum_{\pi \in \mathcal{P}(J)} \prod_{A \in \pi} \kappa[y_A]$$

- $\mathcal{P}(J)$ denotes the collection of *partitions* of J.
- For a partition $\pi \in \mathcal{P}(J)$, call the subsets $A \in \pi$ *clusters* or blocks
- Follows from the recursive definition of cumulants

Combinatorial properties of WP

Assume J is an index set such that $y^A = \prod_{i \in A} y_i$ belong to $L^1(\mu)$ for any $A \subset J$

Define polynomials $\mathcal{W}[y^J]$ inductively in |J|: $\mathcal{W}[y^{\emptyset}] = 1$ and for $J \neq \emptyset$ require

$$\mathcal{W}[y^{J}] = y^{J} - \sum_{E \subsetneq J} \mathbb{E}[y^{J \setminus E}] \mathcal{W}[y^{E}]$$

• The solution is unique and $\mathcal{W}[y^J] = :y^J:$

Truncated moments-to-cumulants formula

$$\mathbb{E}\left[y^{J'}:y^{J}:\right] = \sum_{\pi \in \mathcal{P}(J' \cup J)} \prod_{A \in \pi} (\kappa[y_A] \mathbb{1}_{\{A \not\subset J\}})$$
(1)

 :y^J: are μ-a.s. unique polynomials of order |J| such that (1) holds for every J'

Multi-truncated moments-to-cumulants formula

Suppose $L \ge 1$ is given and consider a collection of L + 1 index sequences $J', J_{\ell}, \ell = 1, ..., L$. Then with $I = J' \cup (\cup_{\ell=1}^{L} J_{\ell})$

$$\mathbb{E}\left[y^{J'}\prod_{\ell=1}^{L} : y^{J_{\ell}}:\right] = \sum_{\pi \in \mathcal{P}(I)} \prod_{A \in \pi} \left(\kappa[y_A]\mathbb{1}_{\{A \not\subset J_{\ell}, \forall \ell\}}\right)$$

Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary Ideas Lemma

Sketch of the proof of the main theorem

The difficult part is to show the main result with a single ψ -field. The general case follows by induction and combinatorial estimates.

We first prove that assuming

- **1** *Z* is a countable index set and $N \in \mathbb{N}_+$
- **2** ϕ is a random field on Z, closed under conjugation
- 3 ϕ is ℓ_1 -clustering up to order 2N
- 4 X is random variable with *finite variance*

```
\begin{split} \ell_{2}\text{-summability of joint cumulants} \\ \text{For any } n \in \mathbb{N}_{+} \text{ for which } n \leq N, \\ & \left[ \sum_{x \in \mathbb{Z}^{n}} \left| \kappa[X, \phi(x_{1}), \dots, \phi(x_{n})] \right|^{2} \right]^{1/2} \\ & \leq \sqrt{\text{Cov}(X^{*}, X)} M_{2n}(\phi; 1)^{n} \text{e}^{n} \sqrt{(2n)!} \end{split}
```

Keys ideas

Key idea: Represent cumulants using WP,

$$G(x) := \kappa[X, \phi(x_1), \dots, \phi(x_n)] = \mathbb{E}[:X::\phi(x_1)\cdots\phi(x_n):]$$

Introduce test functions $f : Z^n \to \mathbb{C}$ with finite support,

$$\|f\|_{\phi,n}^{2} = \mathbb{E}\left[\left|\sum_{x \in Z^{n}} f(x) : \phi(x)^{J_{n}} :\right|^{2}\right] = \sum_{x', x \in Z^{n}} f(x')^{*} f(x) \Phi_{n}(x', x)$$

$$\Phi_{n}(x', x) = \mathbb{E}\left[:\phi^{*}(x')^{J_{n}'} : :\phi(x)^{J_{n}} :\right], \quad J_{n} = \{1, 2, \dots, n\} = J_{n}'$$

• Φ_n are finite because all cumulants up to order 2n are finite

Consider

$$\Lambda[f] = \sum_{x \in \mathbb{Z}^n} G(x) f(x) = \mathbb{E}\left[: X: \sum_{x \in \mathbb{Z}^n} : \phi(x)^{J_n}: f(x)\right]$$

Then by Schwarz inequality

$$|\Lambda[f]|^2 \leq \mathbb{E}\left[|:X:|^2\right] \mathbb{E}\left[\left|\sum_{x \in \mathbb{Z}^n} f(x):\phi(x)^{J_n}:\right|^2\right] = \mathbb{E}\left[|:X:|^2\right] \|f\|_{\phi,n}^2$$

$$\|f\|^2_{\phi,n} \leq \sum_{x\in Z^n} |f(x)|^2 imes \sup_{x'\in Z^n} \sum_{x\in Z^n} |\Phi_n(x',x)|$$

• Lemma: ℓ_1 -clustering of ϕ implies that $\sum_{x \in Z^n} |\Phi_n(x', x)| \le c_n$ $\Rightarrow |\Lambda[f]| \le \sqrt{c_n \mathbb{E}[|:X:|^2]} ||f||_{\ell_2} = \sqrt{c_n \text{Cov}(X^*, X)} ||f||_{\ell_2}$

• Thus by Riesz representation theorem $G \in \ell_2(Z^n)$ with

$$\sqrt{\sum_{x\in Z^n}|G(x)|^2} \leq \sqrt{c_n\mathsf{Cov}(X^*,X)}$$

Combinatorial lemma

Let ϕ be a ℓ_p -clustering random lattice field up to order 2n, $p \in [1, \infty]$ and $n \ge 1$. If ϕ is closed under conjugation, $\forall x' \in Z^n$

24

$$\|\Phi_n(x',\cdot)\|_{\ell_p} \leq \sum_{\pi \in \mathcal{P}(J_{2n})} \prod_{S \in \pi} \|\phi\|_p^{(|S|)} \leq M_{2n}(\phi;p)^{2n} e^{2n}(2n)!$$

- This implies that $c_n = M_{2n}(\phi; 1)^{2n} e^{2n}(2n)!$
- The main ingredient to prove the lemma is the truncated moment to cumulants formula

$$\Phi_n(x',x) = \sum_{\pi \in \mathcal{P}(J'_n + J_n)} \prod_{S \in \pi} \left(\kappa [\phi^*(x')_{\mathcal{A}'}, \phi(x)_{\mathcal{A}}] \right. \\ \left. \times \mathbb{1}_{\{\mathcal{A}' \neq \emptyset, \mathcal{A} \neq \emptyset\}} \right)_{\mathcal{A}' = S|J'_n, \mathcal{A} = S|J_n}$$

Second Theorem

Suppose that

- **1** Z is a countable index set and $N \in \mathbb{N}_+$
- **2** $\phi(x)$ and $\psi(x)$ two random fields on Z, closed under conjugation and defined on the same probability space
- 3 ϕ is ℓ_2 -clustering up to order 2N
- 4 ψ is ℓ_{∞} -clustering up to order 2N

ℓ_2 -summability of joint cumulants

For any $n, m \in \mathbb{N}_+$ for which $n, m \leq N$, and all $x' \in Z^m, y \in Z^n$ $\left|\sum_{x\in\mathbb{Z}^n} |\Phi_n(y,x)| |\kappa[\psi(x_1'),\ldots,\psi(x_m'),\phi(x_1),\ldots,\phi(x_n)]|^2\right|^{1/2}$ $< (\mathfrak{M}_{m,n}\gamma^m)^{2(n+m)}((n+m)!)^2$ where $\mathfrak{M}_{m,n} := \max(M_{2m}(\psi; \infty), M_{2n}(\phi; 2)), \gamma = 2e$, and $\Phi_n(y,x) := \mathbb{E}[:\phi(y_1)^*\phi(y_2)^*\cdots\phi(y_n)^*::\phi(x_1)\phi(x_2)\cdots\phi(x_n):]$ Proof

For any finite $F \subset Z^n$, fixed $y \in Z^n$, pick as a test function

$$f(x) = \mathbb{1}_{\{x \in F\}} |\Phi_n(y, x)| G(x)^* \quad \Rightarrow$$

$$\Lambda[f] = \sum_{x \in F} |G(x)|^2 |\Phi_n(y, x)| \le \sqrt{\operatorname{Cov}(X^*, X)} ||f||_{\phi, n} < \infty$$

Thanks to the combinatorial lemma

$$\begin{split} \|f\|_{\phi,n}^2 &\leq \sum_{x \in F} |G(x)|^2 |\Phi_n(y,x)| \left(\sup_{x' \in Z^n} \sqrt{\sum_{x \in F} |\Phi_n(x',x)|^2} \right)^2 \\ &\leq (c'_n)^2 \sum_{x \in F} |G(x)|^2 |\Phi_n(y,x)| = (c'_n)^2 \Lambda[f] \end{split}$$

• Therefore, $\sqrt{\Lambda[f]} \le c'_n \sqrt{\text{Cov}(X^*, X)}$ for any finite F

Summary

- Two ℓ_1 -clustering fields have ℓ_2 -summable joint correlations
- Two ℓ_2 -clustering fields have weighted ℓ_2 -summable joint correlations
- Works typically for equilibrium measures ⇒ a priori bounds for time-correlations
- Possible applications: control of Green–Kubo formula for thermal conductivity, kinetic theory and transport equations
- Implications for point processes and continuum random fields?
- How optimal are the combinatorial constants?

References

This talk:

 JL, M. Marcozzi, and A. Nota, Summability of joint cumulants of nonindependent lattice fields, arXiv.org:1601.08163
 JL and M. Marcozzi, J. Math. Phys. 57 (2016) 083301 (27pp)

Refs

Rigorous result on dNLS:

JL and H. Spohn, Invent. Math. 183 (2011) 79-188

ℓ_1 -clustering results:

A. Abdesselam, A. Procacci, and B. Scoppola, J. Stat. Phys. 136 (2009) 405–452
M. Salmhofer, J. Stat. Phys. 134 (2009) 941–952

Wick polynomials in probability:

L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem in Dependence in Probability and Statistics (1986)

G. Peccati and M. Taqqu,

Wiener Chaos: Moments, Cumulants and Diagrams (2011)