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Outline

m Why cumulants instead of moments?
m "Random lattice fields”
m /p-clustering norms of cumulants

m Main theorem:
Summability of joint correlations of two random fields

m An Example and a Counterexample

m Example 2: Discrete nonlinear Schrodinger equation
m Main tools: Wick polynomials and cluster expansions
m Outline of the proof

m Weighted />-clustering result
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Some shorthand notations

m Consider random variables y;, j = 1,2,..., N on a probability
space (52, B, 1)
m For any sequence J = (ji,...,jn) of indices, denote the

product variable by
n
v =iy i = [ v
k=1
m The corresponding moment is

Ely’] = Elyiy; - i)

m If joint exponential moments exist ((e” 2y < 0o, 3 > 0),
can differentiate a moment generating function,

gmom(>‘) = ]E[ek-y] = E[yJ] = aj\lgmom(o)
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What are cumulants?

m Cumulants x[y,] may be defined recursively from the identity
(choose any j € J)

El’l =kly]+ Y El"\salyel
EjeECJ

m If exponential moments exist, obtained also from a cumulant
generating function: with 9y := HjeJ O
g(\) =Ingmom(A) = klys] = g(0)

m Cumulants are multilinear and permutation invariant

m Centering only affects the first order cumulant: (y; = E[y;])

g\)=\-7+ InE[er7)]
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Random lattice fields

m Let Z be a countable index set, e.g., a lattice Z = Z9

m We consider here complex lattice fields 1 (x), x € Z,
i.e., a countable collection of random variables

m For simplicity, we assume that the field is closed under
complex conjugation:

To every x € Z there is some x,. € Z for which ¢(x)* = 1(xy)

(It is always possible to satisfy this by augmenting the index
set to Z x {1,~1}, %(x,1) = ¥(x), ¥(x, ~1) = t(x)")

m In addition to concrete examples from physics, covers also
abstract index sets, such as the sequence of coefficients in the
Karhunen—Loéve decomposition of a stochastic process
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Why study cumulants of random fields?

Observation: If y, z are independent random variables we have
Ely"z™] = E[y"]E[z"] # 0

whereas the corresponding cumulant is zero if n, m # 0.

Consider a random lattice field 1(x), x € Z9, which is (very)
strongly mixing under lattice translations:

Assume the fields in well separated regions become asymptotically
independent as the separation grows.

m Then K[T/)(X)ﬂ/)(x +.y1)7 .- ww(x +}/n—1)] — 0 as |}/l‘ — OQ.
How fast? /1- or {>-summably?

m Not true for corresponding moments: E[|(x)[?|v(x + y)|?]
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p-clustering fields

Outline Fields Why x? £p-clustering

Lp-clustering norm of a random field ¥

Suppose 1 is a random field on a countable Z. Define

1/p

x0€Z xeZn—1

1[5 == sup [ ST Iklw(x0), (), - - Y (xa1)]IP

We call the field ¢,-clustering if Hw||5,") < oo for all n

m Involves the n:th connected correlation function

Un(X17 cee >Xn) - H[¢(Xl)7 SRR d)(xn)]

m We can measure the magnitude of the field with

1 (n) 1/n
wn(wip) = max (SiwI)

© 1<n<N
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mIf 1 <p<2andis {p-clustering on Z = 79, can take
Fourier-transform in the displacement y; = x; — xg
= function F("(xg, k) is L in xg € Z9 and
[2-integrable in k € (T9)"—1

m /1-clustering implies that F(")(xg, k) is continuous and
uniformly bounded (= helps in nonlinearities)

m If the field has a translation invariant distribution on Z = 79,
a change of variables y; = x; — xp yields

1/p
uwu%”’z[ S REE(0). ). )]

yE(Zd)"71

m Examples of ¢1-clustering thermal Gibbs states:
discrete NLS [Abdesselam, Procacci, Scoppola],
certain fermionic lattice systems [Salmhofer],
any state which has an exponential decay of correlations, . ..
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Main result

Suppose that
Z is a countable index set and N € N

#(x) and 9(x) two random fields on Z, closed under
conjugation and defined on the same probability space

¢ is (1-clustering up to order 2N
1 is £oo-clustering up to order 2N

l>-summability of joint cumulants

For any n,m € N for which n,m < N,

REVC
sup | S [0 - D). 05 ) - 0]

x'ezZm xeZn
< (Mn,ny™)™ " (0 + m)!

where M, = max(Mam(¢; 00), Man(¢; 1)) and v = 2e ~ 5.44.

Jani Lukkarinen Summability of joint cumulants



Intro Result Ex-1 Ex-2 Wick Proof Theorem2 Summary

Example 1: translation invariant Gaussian lattice fields 10

Define random fields 1) and ¢ on Z = Z such that
Both fields have zero mean:  E[)(x)] = 0 = E[¢(x)]

They form a collection of jointly Gaussian random variables with

E[(x)v(y)] = F(x —y), Elp(x)o(y)] = Fa(x —y)
E[f(x)p(y)l = G(x—y),  (x,y €Z)

The covariance functions Fy, >, G € (2(Z,R)
— there are Fourier transforms Fy, F,, G € L2(T)
Then the covariance operator is positive semi-definite if
Fi(k)>0, Fy(k)>0, |G(Kk)|* < Fu(k)Fa(k)
= a unique translation invariant Gaussian measure on functions on Z

m Here: ¥ and ¢ are f>-clustering = joint correlations ¢>-summable

m If ¢ and ¢ are {1-clustering, are their correlations ¢;-summable?
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Counterexample for " ¢1-clustering = ¢;-summability”

In the above, choose ¥ and ¢ i.i.d. Gaussian:

Fi(x) = 1{x=0y = F2(x), G(x)= S sin (Zx>

TX 2

= Rk =1=FRk), G(k) =11 <1=1/F(kF(K

msup Y |A(x—y)| =[] = [lo|P =1

XEZyeZ
& all cumulants of order n # 2 are zero

=- Fields v and ¢ are {1-clustering

m Their joint correlations are not ¢;-summable!

S, 00 = Y160 = 5+ 23 5

XEZL YEZL n=0

m In contrast,
GelP(z) = sup) |k[p(x),o(x)]P = Z\G
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Example 2: Discrete nonlinear Schrodinger equation 12

The discrete NLS equation on the lattice Z¢ deals with functions
Y R x Z9 — C which satisfy

i0pe(x) = D alx = y)e(y) + Altbe(x) Peoe(x)
yezd
m Define ¢¢(x, +1) = ¢(x), ¢e(x,—1) = P(x)* =
For each t € R obtain a random field 1)y on Z = 79 x {~1,1}

m Suppose g has a distribution which is time-stationary and
{1-clustering (e.g. an equilibrium Gibbs measure)

= Distribution of ¢; is also #1-clustering
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A priori estimates 13

m The previous results imply that any time-correlation function
of the form

5[1/10(07 0/1)7 s 71/}0(07 U;n)7 wt(xla 01)7 B wt(Xm U”)]

is £a-summable uniformly in time

m For instance, then for every t

fi(x) = K[bo(0, 1), de(x,1)] € (2(2)

and [|f¢]|, < C < oo uniformly in time t

m The bound C depends only on the (stationary) initial data
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How to use a priori estimates? 14

The evolution equations for 1, imply that

i0cfe(x) = > alx = y)f(y) + Age(x)

yezZd
ge(x) = E[:0(0, —1): ¢ (x, —1)b(x, 1)y (x, 1)]

Expand g; in terms of cumulants of vy and v,

= The main theorem shows that ||g¢||s, < C for all t

Since f; € (5(7Z) can take a Fourier transform

m In Duhamel form the evolution equation reads for t > 0

t
fe(k) :e*“@(%(k)—u/ dse (=)kg (k)
0

—ita e < CtA

L2(T9)

= ||fr—e

The harmonic evolution dominates the behaviour of f, up to t oc A%
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Standard definition of Wick polynomials

Wick polynomials (WP) of random variables y; are defined
recursively in py + p> + - + p, as:
P

pr1:p2:"':,0n:01 set :ylply22...yﬁ"::1
Otherwise, (:y*y4? - yf":) =0

- ., —1 ., .
Doyt y oyl = oy

m The conditions have a unique polynomial solution

m If exponential moments exist, WP have a generating function

exp (301 Aiyi) Ay—g(\)
Guly, \) = ; = s
(v, A) (exp (D_11 Aivi))

- :yfly2p2 ERRV.AHE 8% . ~~3§:Gw(y,)\) o
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Gaussian Wick polynomials 16

m WP have been mainly used for Gaussian fields.
They were introduced in quantum field theory where the
unperturbed measure concerns Gaussian (free) fields

m Gaussian case has significant simplifications:
If Cjrj = klyj, yj] denotes the covariance matrix,

Gw(y,A) =exp[A-(y — (y)) = A- CA/2]

= Wick polynomials are Hermite polynomials

m The resulting orthogonality properties are used in the Wiener
chaos expansion and Malliavin calculus
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m Products to WP

y =D wEYNV =y Y [ kbl

ucl ucl me€P(I\U) Aer

m WP to products

=y Y ()] klval

ucl meP(I\U) Aem

m WP are permutation invariant and multilinear
m Lowest order WP

y:=y—Ely]=y —x(y)
y1iy2: = y1ye — k(y1, y2) — k(1)y2 — k(y2)y1 + k(y1)k(y2)
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Cluster expansions 18

For any index set J, as long as all moments y* = [Licayi-AC J,
belong to L'(1:), the moments-to-cumulants formula holds:

Eh’l= > []xlal J

weP(J) Aen

m P(J) denotes the collection of partitions of J.

m For a partition 7 € P(J), call the subsets A € 7 clusters or
blocks

m Follows from the recursive definition of cumulants
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Combinatorial properties of WP 19

Assume J is an index set such that y”* =[], i belong to L*(1)
forany AC J

Define polynomials W[y”] inductively in |J|:
WI[y’] =1 and for J # 0 require

Why'l =y = > B I W J
ECJ

m The solution is unique and W[y”’] = :y/:
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Truncated moments-to-cumulants formula

]E[y-// ;yJ:] = Z H ﬁ[YA]ﬂ{Agj}) (1)

meP(J'UJ) Aem

m :y”’: are p-a.s. unique polynomials of order |J| such that (1)
holds for every J’

Multi-truncated moments-to-cumulants formula

Suppose L > 1 is given and consider a collection of L + 1 index
sequences J', J;, £ =1,...,L. Then with | = J'U (Uézl.]g)

L
sl I ] = 3 Tl ebaltiaes )
=1

weP(I) Aerm
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Sketch of the proof of the main theorem 21

The difficult part is to show the main result with a single ¢-field.
The general case follows by induction and combinatorial estimates.

We first prove that assuming
Z is a countable index set and N € N
¢ is a random field on Z, closed under conjugation
¢ is (1-clustering up to order 2N

X is random variable with finite variance

l>-summability of joint cumulants
For any n € N for which n < N,

[Z KX, b(x), - -, $0x0)]|

xeZ"
</ Cov(X*, X)Ma,(0; 1)"e"+/(2n)!

Summability of joint cumulants

1/2
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m Key idea: Represent cumulants using WP,
G(x) = k[X,0(x), ..., d(xa)] = E[:X::6(x1) - - - ¢(xn)]

m Introduce test functions f : Z” — C with finite support,

1718 0 = B[ 32 0000

xeZn

2] = Z f(X')F(x)Pn(x, x)

x' . xeZ"

®,(x',x) = E|::¢*(X/)J'/’Z :(;S(X)J":] s h={12,...,n}=J,

m &, are finite because all cumulants up to order 2n are finite
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Ideas Lemma

Consider

A[f] =

> G(x)f(x)

xeZn

Then by Schwarz inequality

INFIE < (1P || 3 7

xeZn

F15.0 < D 1F()P

xezZn

— IE[:X: > p(x) f(x)}

xeZn

()"

} — ]E[| X: \2] ||f\|§57,,

xsupZ|¢xx

x'ezZn xezn

m Lemma: ¢;-clustering of ¢ implies that Z |®,(x",x)| < ¢

= [A[f]l <

B[ XL e, =

xeZn

cnCov(X*, X) || f]le,

m Thus by Riesz representation theorem G € (»(Z") with

> IG()P <

xezZn

Jani Lukkarinen
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Combinatorial lemma

Let ¢ be a £,-clustering random lattice field up to order 2n,
p € [1,00] and n > 1. If ¢ is closed under conjugation, Vx’ € Z"

[on(x e, < S T 110D < Man(g: p)2"e?”(2n)!

7EP(Jon) SET

24

m This implies that ¢, = Ma,(¢; 1)2"e2"(2n)!
m The main ingredient to prove the lemma is the truncated
moment to cumulants formula

d,(x', x) = Z H 1‘6[625 Nar, &(x)a]

7€P(J)+Jn) SET

X H{A’qé@,Ayé@})Af:su;,A:5|Jn
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Second Theorem

Suppose that
Z is a countable index set and N € N
¢(x) and ¥(x) two random fields on Z, closed under
conjugation and defined on the same probability space
¢ is lr-clustering up to order 2N
1 is £oo-clustering up to order 2N

lo-summability of joint cumulants
For any n,m € N for which n,m < N, and all X' € Z™ y € Z"

1/2
[Z |Pn(y, x)| ‘K}[w(X{), . ,w(x,’n), o(x1), .-, d)(x,,)]|2

xeZ"
< (W, y ™ (4 m)1)?
where M, , := max(Maom(1; 00), Man(¢; 2)), v = 2e, and

On(y, x) = E[:¢(y1)"(y2)" - - - (yn)": :(x1)9(x2) - - - b(xn) ]
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Proof 26

m For any finite F C Z", fixed y € Z", pick as a test function
f(x) = Lixery | ®n(y, x)|G(x)" =

NFT =D 1G(x)P®nly, x)| < /Cov(X*, X)||fllg,n < 00

xeF

m Thanks to the combinatorial lemma

17120 < 3 1GGRIBa(y. x) (sup [S™ 00 x) )
xeF xeF

22D 1GPIPa(y, x)| = (cp)*A[f]

xeF
m Therefore, \/A[f] < ¢}v/Cov(X*, X) for any finite F
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Summary 27

m Two /1-clustering fields have f>-summable joint correlations

m Two /p-clustering fields have weighted ¢>-summable joint
correlations

m Works typically for equilibrium measures
=- a priori bounds for time-correlations

m Possible applications: control of Green—Kubo formula for
thermal conductivity, kinetic theory and transport equations

m Implications for point processes and continuum random fields?

m How optimal are the combinatorial constants?
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