Clustering coefficients in large directed graphs Lasse Leskelä Aalto University, Finland

joint work with Mindaugas Bloznelis, U Vilnius

Proc. WAW 2016, https://arxiv.org/abs/1607.02278

20 Dec 2016

Statistical graph models

Uniform random graph with n nodes and m links

- model parameterized by (*n*,*m*)
- every graph on node set {1,...,n} with *m* links is realized with equal probability

Bernoulli random graph with n nodes and linkage probability p

- model parameterized by (*n*,*p*)
- every node pair is connected with probability *p*, independently of other pairs

Uniform random graph with a given degree list $(d_1, ..., d_n)$

- model parameterized by $(n, d_1, ..., d_n)$
- aka. configuration model, regular random graph (when d_i = const)

Bernoulli random graph with n nodes and node weights a_i

- model parameterized by (n, a_1, \dots, a_n)
- nodes i and j are connected with probability $w(a_i, a_j)$, independently
- special cases: Chung-Lu model, Norros-Reittu model, beta model

Statistical graph models - II

Uniform random graph with n nodes and degree distribution F

- model parameterized by (*n*,*F*)
- node degrees are (almost) independent and F-distributed
- heavy-tailed degrees when F has heavy tails

Bernoulli random graph with n nodes and node weight distribution F

- model parameterized by (n,F)
- node weights are independent and F-distributed
- conditionally on the node weights, each node pair (*i*,*j*) is linked with probability $w(a_i, a_j)$, independently of other pairs

- special cases: Chung-Lu model, Norros-Reittu model, beta model

These models have heavy-tailed degree distributions when F is heavy-tailed. BUT: no clustering

Clustering in social networks

Friends of your friends are likely to be friends

Clustering in social networks

Friends of your friends are likely to be friends

Clustering in social networks

Friends of your friends are likely to be friends

Shared attributes

- Common space-time location
- Common relatives
- Common education, jobs, interests
- Common conferences and workshops

I Undirected intersection graphs

Two nodes are connected if they share at least one attribute

Random intersection graph

Model parameterized by (n, m, γ, F_{node})

- *n* nodes
- *m* attributes
- v overall attribute density
- node labels X_i distr. as F_{node} , i=1,...,nGiven the node labels, node *i* selects attribute *k* w.pr. min($y X_i$, 1)

$$P_X(i \leftrightarrow j) \sim \begin{cases} X_i X_j m \gamma^2, & \gamma \ll m^{-1/2}, \\ 1 - e^{-X_i X_j m \gamma^2}, & \gamma \sim m^{-1/2}, \\ 1, & \gamma \gg m^{-1/2}. \end{cases}$$

K Singer-Cohen 1995. Stark 2004. M Deijfen, W Kets 2009. M Bloznelis 2013.

Degree distribution

For
$$nm\gamma^2 \sim \lambda$$
, $\gamma \ll m^{-1/2}$

$$\deg(i) \approx \begin{cases} 0, & m \ll n, \\ \operatorname{MPoi}\left(\left(\frac{\lambda}{\beta}\right)^{1/2} E(X_i) \operatorname{MPoi}\left((\lambda\beta)^{1/2} X_i\right)\right), & m \sim \beta n, \\ \operatorname{MPoi}(\lambda X_i), & m \gg n. \end{cases}$$

When X_i has a power-law tail, then so does deg(i).

3

3

 $X_1 X_2 X_3 m \gamma^3 + O(m^2 \gamma^6)$

 $X_1^2 X_2^2 X_3^3 m^3 \gamma^6 + O(m^4 \gamma^8)$

Clustering vs. attribute density

Clustering

In a graph with m >> 1 attributes, the leaves of a 2-star centered at 1 are linked with probability

$$P_X(2 \leftrightarrow 3 \mid 1 \leftrightarrow 2, 1 \leftrightarrow 3) \sim \begin{cases} 1, & \gamma \ll m^{-1}, \\ \frac{1}{1 + \alpha X_1}, & \gamma \sim \alpha m^{-1}, \\ 0, & \gamma \gg m^{-1}. \end{cases}$$

Model parameters:

- number of nodes n
- number of attributes m
- attribute density
- node labels X_i

M Deijfen, W Kets 2009.

Connected components

Connected components

In a homogeneous ($X_i=1$) large graph (n >> 1) with many attributes (m >> 1) and attribute density $\gamma \approx \lambda^{1/2} (mn)^{-1/2}$,

$$\begin{split} & \frac{c_{\max}}{n} \xrightarrow{\mathbb{P}} \zeta \\ \text{where } \boldsymbol{\zeta} \text{ is the survival probability of a Galton-Watson} \\ & \text{branching process with offspring} \\ & \deg(x) \approx \begin{cases} \operatorname{Poi}(\lambda), & m \gg n \\ \operatorname{Poi}\left((\lambda/\beta)^{1/2}\operatorname{Poi}\left((\lambda\beta)^{1/2}\right)\right), & m \sim \beta n \end{cases} \end{split}$$

M Behrisch 2007. A Lagerås, M Lindholm 2008. M Bloznelis 2010. F Ball, D Sirl, P Trapman 2014.

Why branching analysis works?

The random intersection graph is not locally treelike

Why branching analysis works?

The random intersection graph is not locally treelike but the underlying random bipartite graph is (whp).

i follows *j*, if *i* demands something that *j* supplies

Directed random intersection graph

 (X_{i}^{+}, X_{i}^{-})

Model parameterized by $(n, m, \gamma, F_{node}, F_{attr})$ Node labels $(X_i^+ X_i^-)$ distr. as $F_{node,} i=1,...,n$ Attribute labels Z_k distr. as $F_{attr}, k=1,...,m$ Given the node and attribute labels, node i \cdot demands attribute k w.pr. min $(\gamma X_i^+ Z_k, 1)$

• supplies attribute k w.pr. min($y X_i^- Z_k$, 1)

$$P_X(i \to j) \sim \begin{cases} X_i^+ X_j^- m \gamma^2, & \gamma \ll m^{-1/2}, \\ 1 - e^{-X_i^+ X_j^- m \gamma^2}, & \gamma \sim m^{-1/2}, \\ 1, & \gamma \gg m^{-1/2}. \end{cases}$$
Outdegree and indegree

For $\gamma \sim \alpha m^{-1}$ and $m \sim \beta n$ with $m, n \gg 1$,

with $M_i^{\pm} =_{\text{st}} \operatorname{MPoi}(\alpha X_i^{\pm} E(Z_1))$ and $N_k^{\pm} =_{\text{st}} \operatorname{MPoi}((\alpha/\beta) E(X_i^{\pm}) Z_k^*)$.

 Z_k^* is a size-biased version of Z_k When X_i^+ has a power-law tail, so does deg⁺(*i*). When X_i^- has a power-law tail, so does deg⁻(*i*).

M Bloznelis 2010.

Link reversals are unlikely as well.

Cristiano

If Conan follows Kim and Kourtney,

If Conan follows Kim and Kourtney, and Cristiano follows Kim,

If Conan follows Kim and Kourtney, and Cristiano follows Kim, is Cristiano likely to follow Kourtney as well?

Forming dicliques

Theorem. For $\gamma \sim \alpha m^{-1}$, and homogeneous attributes $(Z_k = 1)$,

$$P_X(2 \to 4 \mid 1 \to 3, 1 \to 4, 2 \to 3) \sim \frac{1}{(1 + \alpha X_1^+)(1 + \alpha X_3^-)}.$$

Correlation is big if Conan demands and Kim supplies few attributes.

Diclique clustering – main result

Theorem. For $m \gg 1$ and $\gamma \sim \alpha m^{-1}$,

•
$$P_X(2 \to 4 \mid 1 \to 3, 1 \to 4, 2 \to 3)$$

 $\approx \left(1 + \alpha (X_1^+ + X_3^-) \frac{(EZ_1^3)(EZ_1^2)}{EZ_1^4} + \alpha^2 X_1^+ X_3^- \frac{(EZ_1^2)^3}{EZ_1^4} \right)^{-1}.$
• $P_{X_3}(2 \to 4 \mid 1 \to 3, 1 \to 4, 2 \to 3)$
 $\approx \left(1 + \alpha \left(\frac{E(X_1^+)^2}{EX_1^+} + X_3^-\right) \frac{(EZ_1^3)(EZ_1^2)}{EZ_1^4} + \alpha^2 X_3^- \frac{E(X_1^+)^2}{EX_1^+} \frac{(EZ_1^2)^3}{EZ_1^4} \right)^{-1}.$

• $P(2 \to 4 \mid 1 \to 3, 1 \to 4, 2 \to 3)$

$$\approx \left(1 + \alpha \left(\frac{E(X_1^+)^2}{EX_1^+} + \frac{E(X_1^-)^2}{EX_1^-}\right) \frac{(EZ_1^2)(EZ_1^3)}{EZ_1^4} + \alpha^2 \frac{E(X_1^+)^2}{EX_1^+} \frac{E(X_1^-)^2}{EX_1^-} \frac{(EZ_1^2)^3}{EZ_1^4}\right)^{-1}$$

12 directed clustering coefficients

QM Zhang, L Lü WQ Wang, YXi Zhu, T Zhou, PLoS ONE 2013.

Clustering in real directed networks

Datasets	\mathbf{S}_1	\mathbf{S}_2	\mathbf{S}_3	\mathbf{S}_4	S_5	\mathbf{S}_6	\mathbf{S}_7	\mathbf{S}_8	\mathbf{S}_9	S.,	\mathbf{S}_{11}	S
			-	-						\mathbf{S}_{10}		\mathbf{S}_{12}
FW1	0.7400	0.4634	0.6156	0.4903	0.9066	0.6147	0.7811	0.4172	0.7848	0.4254	0.3236	0.5697
FW2	0.7629	0.5507	0.6367	0.4809	0.8964	0.6965	0.7838	0.4972	0.6822	0.4255	0.3818	0.5456
FW3	0.7333	0.5364	0.5675	0.3997	0.9105	0.7282	0.7757	0.4303	0.6683	0.3517	0.3210	0.4532
C.elegans	0.7886	0.7127	0.7569	0.5671	0.8679	0.7686	0.7991	0.5755	0.7990	0.6528	0.6667	0.7591
SmaGri	0.7074	0.6517	0.6905	0.4922	0.8852	0.7108	0.7476	0.4851	0.6677	0.6242	0.5982	0.5761
Kohonen	0.6693	0.6124	0.6642	0.4991	0.8605	0.6333	0.7335	0.4985	0.6148	0.5614	0.5778	0.5946
SciMet	0.6462	0.6192	0.6371	0.4980	0.8371	0.6672	0.7045	0.4968	0.5977	0.5794	0.5753	0.5895
РВ	0.9025	0.8181	0.8243	0.6948	0.9595	0.8659	0.8679	0.7518	0.9479	0.8349	0.7616	0.8584
Delicious	0.7298	0.7077	0.7192	0.6577	0.7839	0.7141	0.7344	0.6739	0.7378	0.7081	0.7046	0.7273
Youtube	0.7518	0.7453	0.7522	0.7456	0.8517	0.8422	0.8576	0.8442	0.8505	0.8430	0.8507	0.8624
FriendFeed	0.8801	0.7503	0.7382	0.5895	0.9766	0.7863	0.8100	0.7150	0.9690	0.8324	0.7318	0.8027
Epinions	0.8273	0.8326	0.8081	0.7460	0.9101	0.8969	0.8843	0.8584	0.8995	0.8956	0.8804	0.8831
Slashdot	0.7164	0.7133	0.7124	0.7072	0.9035	0.8984	0.8982	0.8925	0.9009	0.8982	0.8926	0.8985
Wikivote	0.9073	0.7448	0.7470	0.5962	0.9699	0.7679	0.7451	0.6209	0.9583	0.7562	0.6096	0.7468
Twitter	0.8937	0.7226	0.8289	0.7586	0.9734	0.7856	0.9444	0.7545	0.9582	0.8108	0.7557	0.9527
Average	0.7771	0.6787	0.7133	0.5949	0.8995	0.7584	0.8045	0.6341	0.8024	0.6800	0.6421	0.7213

QM Zhang, L Lü WQ Wang, YXi Zhu, T Zhou, PLoS ONE 2013.

Summary and conclusions

In undirected graphs

- Clustering coefficients measure transitivity (triplet closure):

"Your friends are likely to be friends"

- Most sparse random graphs have negligible transitivity
- Random intersection graphs form an exception

In directed graphs

- There are 4 different ways to define a triplet closure
- Most sparse random graphs have negligible triplet closure rates
- A prominent type of clustering in real graphs is *diclique clustering:*

"Your followers are likely to follow common targets"

- Directed random intersection graphs capture this phenomenon