Clustering coefficients in
large directed graphs

Lasse Leskela
Aalto University, Finland

joint work with
Mindaugas Bloznelis, U Vilnius

Proc. WAW 2016, https://arxiv.org/abs/1607.02278

20 Dec 2016



Statistical graph models

Uniform random graph with n nodes and m links
- model parameterized by (n,m)
- every graph on node set {1,...,n} with m links is realized with equal probability

Bernoulli random graph with n nodes and linkage probability p
- model parameterized by (n,p)
- every node pair is connected with probability p, independently of other pairs

Uniform random graph with a given degree list (d,,...,d )
- model parameterized by (n,d.,...,d )
- aka. configuration model, regular random graph (when d. = const)

Bernoulli random graph with n nodes and node weights a,

- model parameterized by (n,a,,...,a )

- nodes i and j are connected with probability W(a,.,ai), independently
- special cases: Chung-Lu model, Norros-Reittu model, beta model



Statistical graph models - I

Uniform random graph with n nodes and degree distribution F
- model parameterized by (n,F)

- node degrees are (almost) independent and F-distributed

- heavy-tailed degrees when F has heavy tails

Bernoulli random graph with n nodes and node weight distribution F

- model parameterized by (n,F)

- node weights are independent and F-distributed

- conditionally on the node weights, each node pair (i,)) is linked with probability W(ai,a),
independently of other pairs

- special cases: Chung-Lu model, Norros-Reittu model, beta model

These models have heavy-tailed degree distributions when F is heavy-tailed.
BUT: no clustering
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Clustering in social networks

Map
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Shared attributes
« Common space-time location
« Common relatives | o
« Common education, jobs, interests
« Common conferences and
workshops



| Undirected intersection
graphs
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Two nodes are connected if they share at least one attribute




Random intersection graph

Model parameterized by (n, m, y, F__,.)
ee0e .-
\ * m attributes

Q Q Q -y overall attribute density
+ node labels X, distr.as F__., i=1,...,n

Given the node labels, node | selects
attribute k w.pr. min(y X;, 1)

X@ijfyz, v <KL m_1/2;
Px(i 4> j) ~ ¢ 1—e XXmy yml/2,
1, v > mol2,

K Singer-Cohen 1995. Stark 2004. M Deijfen, W Kets 2009. M Bloznelis 2013.



Degree distribution

For nm~? ~ X\, v < m~1/2

07 m << T,
deg(i) ~ { MPoi ((%)UZ’E(X?;) MPoi (()\5)1/2)(1-)) . m~fBn,
MPoi(AX}), m > n.

When X, has a power-law tail, then so does deg(i).
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Forming triangles

X1 X5 Xsmy? + O(m*°) X7 X5X3m>~4% + O(m*~®)



Clustering vs. attribute density

A
y
2-stars triangles clustering
m-1/2 —
High attribute Gen. by
density many attributes
m-2/3 = Gen. by

many attributes

m* + Gen. by

one attribute

Gen. by
one attribute

Low attribute
density

0 =~



Clustering

In a graph with m >> 1 attributes, the leaves of a
2-star centered at 1 are linked with probability

1, Y << m,
Px(2+ 3|1 2,1+ 3) ~ 1+c1xX1’ v~ am 1
0, v > mol

Model parameters:

* number of nodes n

* number of attributes m
* attribute density Y

« node labels X,

M Deijfen, W Kets 20009.



Connected components

Component of node x



Connected components

In a homogeneous (X.=1) large graph (n >> 1) with many
attributes (m >> 1) and attribute density y = AY2(mn)-172,

Cmax P
n ’ C
where ¢ is the survival probability of a Galton-Watson
branching process with offspring

_ JPoi(A), m>>n
deg(x) ~ {Poi (A\/B)2Poi (AB)2)),  m ~ fBn

C(x) ;

M Behrisch 2007. A Lageras, M Lindholm 2008. M Bloznelis 2010.
F Ball, D Sirl, P Trapman 2014.
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Why branching analysis
WOrks?

The random intersection graph is not locally treelike
but the underlying random bipartite graph is (whp).
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Directed intersection graph
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Directed random intersection graph
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Px(i —j) ~

Model parameterized by (n, m,y, F__ .., F...)
Node labels (X* X)) distr. as F__ _i=1,...,n

node,

Attribute labels Z, distr.as F_,, k=1,....m

Given the node and attribute labels, node |
- demands attribute kK w.pr. min(y X*Z,, 1)

 supplies attribute kK w.pr. min(y X-Z,, 1)

+ Y= 2 ~1/2
X X my® v << m /2,

— X1t X T m~2 _
1—6 (2 Jmf}/ ’}/Nm 1/2j

)

1, v > m~ Y2,



Outdegree and indegree

For v ~ am™ and m ~ fn with m,n > 1,

M+ M
deg™ (i) ~ ZNQ deg™ (1) =~ ZN,;F
k=1 k=1

with M =, MPoi(aX;*E(Z;)) and N;- = MPoi((a/B)E(X")Z}).

Z' IS a size-biased version of Z,

When X+ has a power-law tail, so does deg*(i).
When X has a power-law tail, so does deg-(/).
M Bloznelis 2010.
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Clustering among triplets
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The above completions are unlikely
In the sparse regime with y << m-~,



Clustering among triplets
The above completions are unlikely
In the sparse regime with y << m-172,

Link reversals are unlikely as well. @=—9



Diclique clustering
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Diclique clustering

Cristiano Kourtney
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If Conan follows Kim and Kourtney,
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Diclique clustering

Kourtney

8

If Conan follows Kim and Kourtney,
and Cristiano follows Kim,
Is Cristiano likely to follow Kourtney as well?




Forming dicliques




Diclique clustering

—1
’

Theorem. Fory ~ am™, and homogeneous attributes (Z, = 1),

1
(1+aX )1 +aXy)

Py(2—4|1—53,154,2-33) ~

Correlation is big if Conan demands and Kim supplies few
attributes.



Dicligue clustering - main result

Theorem. For m > 1 and v ~ am™!,

e Px(2—4|1—3,1-4,2—3)

(BZNEZY | o (BZD)\T
R <1+@(X1++)\3) 7 XTA‘*E—Zf -

o Py,(2—4|1—3,1—4,2—3)

B(X{)? O\ (BZH)(EZY) . EX{)?(BZ2)P\
~ (1 ket WA g 2y |
( H‘( EX; Bzi YN TEXT Bz

e P2—4|1—-3,1-4,2—3)
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12 directed clustering coefficients

(corresponds to “diclique clustering”)
\ Potential Theory for Directed Networks

broken bifan broken biparallel broken 4-node feedforward loops

broken feedforward loops WT \T—)T T—)T . T—-r w’

@' ----- > v @- ----- 3\9 ‘u)' """ ><

S7 Sg S]]

broken biparallel “broken 4-cycle

broken feedforward loop T—— & o . 2 i e—@ W W
w w
ul-----= > v.} U Gm—————— > V) _ - ] : ’

QM Zhang, L LG WQ Wang, YXi Zhu, T Zhou, PLoS ONE 2013.



Clustering in real directed networks

Table 1. AUC values of the 12 predictors shown in figure 5.

e

diclique clustering

e

Datasets S S> S; Sy Ss ol Sq Sq Ssg Sg S S Siz
FW1 0.7400 0.4634 0.6156 0.4903 0.92066 06147 0.7811 04172 0.7848 0.4254 0.3236 0.5697
FW2 0.7629 0.5507 0.6367 0.4809 0.8964 0.6965 0.7838 0.4972 0.6822 0.4255 0.3818 0.5456
FW3 0.7333 0.5364 0.5675 0.3997 0.9105 0.7282 0.7757 0.4303 0.6683 0.3517 0.3210 0.4532
C.elegans 0.7886 0.7127 0.7569 0.5671 0.8679 0.7686 0.7991 0.5755 0.7990 0.6528 0.6667 0.7591
SmaGri 0.7074 0.6517 0.6905 0.4922 0.8852 0.7108 0.7476 0.4851 0.6677 0.6242 0.5982 0.5761
Kohonen 0.6693 0.6124 0.6642 0.4991 0.8605 0.6333 0.7335 0.4985 0.6148 0.5614 0.5778 0.5946
SciMet 0.6462 0.6192 0.6371 0.4980 0.8371 0.6672 0.7045 0.4968 0.5977 0.5794 0.5753 0.5895
PB 0.9025 0.8181 0.8243 0.6948 0.9595 0.8659 0.8679 0.7518 0.9479 0.8349 0.7616 0.8584
Delicious 0.7298 0.7077 0.7192 0.6577 0.7839 0.7141 0.7344 0.6739 0.7378 0.7081 0.7046 0.7273
Youtube 0.7518 0.7453 0.7522 0.7456 0.8517 0.8422 0.8576 0.8442 0.8505 0.8430 0.8507 0.8624
FriendFeed 0.8801 0.7503 0.7382 0.5895 0.9766 0.7863 0.8100 0.7150 0.9690 0.8324 0.7318 0.8027
Epinions 0.8273 0.8326 0.8081 0.7460 0.9101 0.8969 0.8843 0.8584 0.8995 0.8956 0.8804 0.8831
Slashdot 0.7164 0.7133 0.7124 0.7072 0.9035 0.8984 0.8982 0.8925 0.9009 0.8982 0.8926 0.8985
Wikivote 0.9073 0.7448 0.7470 0.5962 0.9699 0.7679 0.7451 0.6209 0.9583 0.7562 0.6096 0.7468
Twitter 0.8937 0.7226 0.8289 0.7586 09734  0.7856 0.9444 0.7545 0.9582 0.8108 0.7557 0.9527
Average 0.7771 0.6787 0.7133 0.5949 0.8995 0.7584 0.8045 0.6341 0.8024 0.6800 0.6421 0.7213

QM Zhang, L L0 WQ Wang, YXi Zhu, T Zhou, PLoS ONE 2013.



Summary and conclusions

In undirected graphs
- Clustering coefficients measure transitivity (triplet closure):

“Your friends are likely to be friends”

- Most sparse random graphs have negligible transitivity
- Random intersection graphs form an exception

In directed graphs

- There are 4 different ways to define a triplet closure

- Most sparse random graphs have negligible triplet closure rates

- A prominent type of clustering in real graphs is diclique clustering:
“Your followers are likely to follow common targets”

- Directed random intersection graphs capture this phenomenon
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