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Being a Statistician Then

“You haven't told me yet,” said Lady Nuttal, “what it is your
fiance does for a living.”

“He's a statistician,” replied Lamia, with an annoying sense of
being on the defensive.

Lady Nuttal was obviously taken aback. It had not occurred to her
that statisticians entered into normal social relationships. The
species, she would have surmised, was perpetuated in some
collateral manner, like mules.

taken from Kendall and Stuart
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Being a Statistician Now

Data Scientist:

The Sexiest Job of the 21st Century

Meet the people who

can coax treasure out of
messy, unstructured data.
by Thomas H. Davenport
and D.J. Patil

70 Harvard Business Review October 2012

hen Jonathan Goldman ar-
rived for work in June 2006
at LinkedIn, the business
networking site, the place still
felt like a start-up. The com-
pany had just under 8 million
accounts, and the number was
wrowingq

ly as existing mem-
bers invited their friends and col-
leagues to join, But users weren't
seeking out connections with the peaple who were already on the site
at the rate executives had expected. Something was apparently miss-
ing In the saclal experience. As one Linkedin manager put it, “Ii was
Tike arriving at a conference reception and realizing you dor’t know
anyone. Sa you just stand In the corner sipping your drink—and you
‘probably leave early””
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The Data Deluge

“We're drowning in information and starving for knowledge.”
- Rutherford D. Rogers.
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Data,

Data Everywhere

(%

C

("

Atacama Large Millimeter Array yields hundreds of TB (10%?
bytes) /year

CERN experiment generates data at rate of PB (10'°
bytes) /second

annual internet traffic crushed ZB (10%! bytes) borderline

Big Data challenge: how to process data at internet scale?
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The Three V's of Big Data

9 Volume: deal with Zettabyte (= 10%! bytes) scale data

o Velocity: CERN experiment generates Petabytes (= 10*°
bytes) per second

o Variety: heterogeneous data (text, audio, video, graphs, ...

)
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Big Data over Networks

often the datasets have an intrinsic network structure

chip design internet bioinformatics

social networks universe material science

cf. L. Lovasz, “Large Networks and Graph Limits”
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Big Data over Networks

o observe dataset D={z,..., z,} with data points z;

o particular data point z; might be audio, video or text data
o data points are structured by some notion of “similarity”
o zj, zj similar if they belong to same user account

J represent data point z; by node i € V of graph G = (V,€)

o edge (i, j) connects similar data points z; and z;
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Graph Signals for Supervised Learning

o consider supervised machine learning from dataset D

o data point z; associated with a label r[i] (e.g., persons
preference for buying red shoes)

o entire labelling is a graph signal r[-]: V — R
o graph signal r[-] maps node i € V to its label r|i]

» graph signal processing (GSP) provides efficient tools for
handling large-scale graph signals
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GSP generalizes DSP

o view discrete-time signals as graph signals over chain graph

-1 0] 1]
et O—O——0O- -

label r[i] might correspond to presence of “clipping” at time i

o (greyscale) images are signals over grid graph

label r[i] might be presence of certain object at location i
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Fast Algorithms on Graphs

0 GSP theory yields fast algorithms for large-scale graphs
o generalizes FFT from chain graph to general graphs

2 based on product graph structure

Measurements of one sensor

b

Sensor network measurements Sensor network Time series

(b)

- xS

Intercommunity Community
communication structure

Social network with communities structure

©
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Graph Models: Perfect Match for 3 Vs of Big Data

C

graph models lead to message passing algorithms

2 message passing algorithms are perfectly scalable

C

copes with volume (distributed computing) and velocity
(parallel computing) of big data

C

“ship computation to data” and not vice-versal

C

graph models also allow to process heterogeneous data

13 /45



Semi-Supervised Learning for Big Data over Networks

o consider graph signal r[i] representing labeled dataset D

2 observe labels only at sampling set S CV

2 acquiring labels is costly

2 how to recover remaining unobserved labels r[i] for i € V\ S

o central smoothness hypothesis of supervised learning

close-by data points in high-density regions have similar labels ‘

O
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Aquiring Labels (Sampling) in Marine Biology
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Aquiring Labels (Sampling) in Particle Physics
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Aquiring Labels (Sampling) in Pharmacology
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Key Problems

given a graph signal representation of the learning problem:

9 how many labels (samples) do we need?
2 which nodes should we sample ?
9 what are efficient learning algorithms?

all this presupposes that we know the graph structure!
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® Probabilistic Graphical Models

IID Training
Non-1ID Training
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Conditional Independence Graph

C

interpret ith data point as realization of random variable z;

o associate z; with node i € V of undirected graph G = (V, )

C

connect /,j € V by undirected edge if z; and z; conditionally
independent given {z/}/ey\ (i j}

G is the conditional independence graph (CIG) of {z}%_;

C
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Modelling Assumptions

C

assume the z; to be jointly Gaussian N(0,C) with C - 0

edges of CIG G characterized by non-zero entries of K = C1:

(.

{i,j}ef+=Kij#0

define neighbourhood N(i) :={j € V: {i,j} € £} of node i

C

(.

we assume CIG to be sparse, i.e.,
V(N < Smax

for some fixed sparsity Spax
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The Global Markov Property

CIG G allows to read off conditional independence relations

C

C

node set 3 separates A from C.

C

global Markov property: {z;}ic4 conditionally independent of
{zi}iec given {zi}icn

C

Bayes optimal estimator for z; depends only on {z;};c (i)

for sparse graphs, i.e., N ()| < p, Bayes optimal estimator
can be implemented efficiently!
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The Training Data

C

for each data point z;, observe samples x;[1],. .., x;[N]

stack samples into vector x[t] = (xa[t], ..., x,[t]) "

C

C

each vector sample x[t] multivariate normal ~ N(0, C[t])

C

graphical model selection (GMS): learn G from x[t]

xl[l],...,xl[N]

332[1],...,1‘2[]\7]

333[1],...,333[]\7]
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© GMS via Sparse Neighbourhood Regression
IID Training
Non-1ID Training
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Outline

© GMS via Sparse Neighbourhood Regression
1D Training
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The Idea of Neighbourhood Regression

<

consider the problem of finding neighbourhood N (/)
once we found all {N(/)};ep, we have the CIG (trivial!)

neighbourhood N/ (/) pops up in regression model for z;:

zi = E ajzj + €

JeN(i)
regression coeffs a; = — K j/Kj
error term e; uncorrelated with {z};ey\ (i}

neighbourhood N/ (/) solves sparse regression problem

N(i)= argmin E{(z — Zajzj

| supp(a)| <smax ;

26
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Learning based on Sparse Regression

2 neighbourhood N/ (i) characterized by
N(i)= argmin E{(z — Zajzj

| supp(a)|<smax I
2 not implementable since cannot evaluate expectation E
o consider i.i.d. samples x[t] ~ A/(0, C)

o replace E with sample average
N

N(i)~ argmin (1/N) Z(x,-[t] - Z ajxi[t])?

| SUPP(a)\SSmax t=1

2 involves search over (sp ) subsets (more on this later!)
max

27 /45



The Test Statistic of Sparse Regression

o for any index set Z = {i,... } CV, define statistic

Ism ax

Z(Z):= arg min (1/N) Z(X,[t] Zajxj[t]

|supp(a)|CT

= (1/N)|[Pzxili3

o with the vector x; = (x;[1],...,x[N]) "

» projection P+ on orthogonal complement of span{x;}cz

P7 =1 — Xz (X7 X7) 'XJ
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Pairwise Error

o consider index set T with |T| = spax and N(i) # T

2 with high probability Z(N(i)) < Z(T) for any T # N (i)

I T=N(i) I=T

prob(Z(Z))




Pairwise Error

» assume samples x[t] i.i.d. with ~ N(0,C)
» edges of CIG correspond to non-zero locations in K = C~1
o define (inverse) condition number & := Anpin(C)/Amax(C)

o strength of edge (7, /) quantified by minimum partial
correlation pmin 1= ming; jee |Kijl/\/KiiKj

o consider index set 7 # N (i) with IN(I)\ T|=d
o probability of confusing 7~ with A/(/) upper bounded as
Prob{Z(N(i)) > Z(T)} < 4exp (—(N—s )M)
= =P <) 64(dp2. ki + 8)

30 /45



Sample Complexity of GMS

2 combine bound on Prob{Z(N(i)) > Z(T)} with union bound
over all T = N (i) and another union bound over i € V

5 accurate GMS, i.e., Prob{G # G} — 0 for sample size
p_smax) Iog(p_smax)}

stmax—i—clmax{log( 3
KPmin

Sm ax

o allows for high-dimensional regime: large p, small N
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How Low Can We Go?

2 so far: sufficient condition (upper bound) on sample size
2 what is the fundamental lower bound on sample size N?

J it can be shown that for sample size

|og(p_5max)

2
KPmin

ANY GMS fails with non-negligible probability

NSCQ

o thus, sample complexity of GMS is

|og(p*5max)

2
KPmin

N x

2 sample complexity driven by minimum partial correlation ppi,
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Outline

© GMS via Sparse Neighbourhood Regression

Non-IID Training
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Non-lID Samples

o samples x[f]~N(0, C[f]) still independent but varying C[f]
2 model useful for two particular process classes:

> x[f] are Fourier coeffs of stationary process y[t]:

N
x[f] = yltlexp(—(2m/N)(t—1)(f 1))

> local cosine basis coeffs of locally stationary process y[t]:

N
x[f] = yltlg"[t]
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Sample Complexity for Non-IID Samples

2 RECALL sample complexity for iid case:

| T 2max
N o 108(P—Smax)

2
KPmin

9 replace ppin with minimum average partial correlation

N
Pmin = min (1/N) D KZIF1/(Kiilf1K,£])
F=1

with K[f] := C1[f]

2 sample complexity for non-iid case:

N o |og(p_—2 Smax)
KPmin
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Average Partial Correlation

KZ;[f]
Ki,i[f]f(j,j [f]

151211111 /_\

Qﬁ
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Basic Idea: Break Into Pieces

smoothness assumption: cov. C[f] ~ constant over L samples

<

C

split samples x[1],...,x[N] evenly into size-L blocks

C

do sparse neighbourhood regression block-wise

new test statistic

<

N/L
Z(Z):= argmin (1/N) Z Z (xi[t] — Z aj(-b)xj'[t])2
| supp(a(®))|CT b=1 teBlockb j
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IID Training
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O Efficient GMS via Convex Optimization
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Just Relax

2 consider (vectorized) sparse neighbourhood regression

N(i)~ argmin |x; —Z ajxjH%
J

| supp(a)|<smax
= arg min ||x; — Xal|3 + \| supp(a)|
a
with X := {x;};+; and some multiplier A

2 involves intractable search over (P ) supports supp(a)

o RELAX penalty A|supp(a)| with convex function A||al|;
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The LASSO

o convex relaxation of sparse neighbourhood regression
: 2
aLasso € arg min [|x; —Xa;j|5 + Allal|1
a

for some suitable multiplier A
2 convex optimization problem

o (Lagrangian form) least absolute shrinkage and selection
operator (LASSO)

2 LASSO found widespread use in statistics/signal processing
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Sample Complexity of LASSO

consider LASSO estimator
Alasso € arg min ||X,'—Xa_,'H§ + )\||a|]1
a

C

C

assume that z; are only weakly correlated

[E{ziz}| < \/E{z?}E{z]}/(25max)

C

we have supp(arasso) = N (i) with high prob. if
N > (c1Smax + €2/ (Kpmin)) 108(P—Smax)

thus, for prznin & 1/spax the LASSO is sample-size optimal!

C
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Structure of LASSO

2 consider LASSO
arg min x; — Xal33 + Allall
a
5 sum of smooth term ||x; — Xa||3 and non-smooth ||a||;
2 highly developed methods around for such problems

o e.g., proximal gradient method, alternating direction method
of multipliers (ADMM), Pock-Chambolle primal-dual, etc....

o basic idea: splitting of minimization of the two terms
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ADMM for LASSO

> LASSO: apasq0 € arg min,_y, ||Ix; — Xal3 + A||b||1

> ADMM amounts to iterating (for some p > 0)
alith) — (XTX + pl)_l(XTx,- + p(bt¥) — c(k)y)
p(k+1) — 5>\/p(a(k+l) 4 c(k))
(k1) — (k) 4 (k1) _ p(k+D)

:S,.;(a)

/ﬂ'ja
— /JL
/ K 2K

o convergence under very general conditions
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Further Reading at Arxiv

C

C

A. Jung, “Sparse Label Propagation”, Dec. 2016.

A. Jung, “Learning the Conditional Independence Structure of
Stationary Time Series: A Multitask Learning Approach”,
Jan. 2015.

N. Tran Quang and A. Jung, “Learning conditional
independence structure for high-dimensional uncorrelated
vector processes”, Sep. 2016.

G. Hannak and A. Jung and N. Goertz, “"On the
Information-theoretic Limits of Graphical Model Selection for
Gaussian Time Series”, Mar. 2014.
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Thank You for Your Attention

Frohe Weihnachten

und einen

Guten Rutsch!
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