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Being a Statistician Then

“You haven’t told me yet,” said Lady Nuttal, “what it is your
fiance does for a living.”

“He’s a statistician,” replied Lamia, with an annoying sense of
being on the defensive.

Lady Nuttal was obviously taken aback. It had not occurred to her
that statisticians entered into normal social relationships. The
species, she would have surmised, was perpetuated in some
collateral manner, like mules.
...

taken from Kendall and Stuart
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Being a Statistician Now
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The Data Deluge

“We’re drowning in information and starving for knowledge.”
- Rutherford D. Rogers.
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Data, Data Everywhere

Atacama Large Millimeter Array yields hundreds of TB (1012

bytes)/year

CERN experiment generates data at rate of PB (1015

bytes)/second

annual internet traffic crushed ZB (1021 bytes) borderline

Big Data challenge: how to process data at internet scale?
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The Three V’s of Big Data

Volume: deal with Zettabyte (= 1021 bytes) scale data

Velocity: CERN experiment generates Petabytes (= 1015

bytes) per second

Variety: heterogeneous data (text, audio, video, graphs, ... )
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Big Data over Networks

often the datasets have an intrinsic network structure

chip design internet bioinformatics

social networks universe material science

cf. L. Lovász, “Large Networks and Graph Limits”
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Big Data over Networks

observe dataset D={z1, . . . , zp} with data points zi

particular data point zi might be audio, video or text data

data points are structured by some notion of “similarity”

zi , zj similar if they belong to same user account

represent data point zi by node i ∈ V of graph G = (V, E)

edge (i , j) connects similar data points zi and zj
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Graph Signals for Supervised Learning

consider supervised machine learning from dataset D

data point zi associated with a label r [i ] (e.g., persons
preference for buying red shoes)

entire labelling is a graph signal r [·] : V → R

graph signal r [·] maps node i ∈ V to its label r [i ]

graph signal processing (GSP) provides efficient tools for
handling large-scale graph signals
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GSP generalizes DSP

view discrete-time signals as graph signals over chain graph

· · ·· · ·
r[−1] r[0] r[1]

label r [i ] might correspond to presence of “clipping” at time i

(greyscale) images are signals over grid graph

· · ·
···

r[i]

label r [i ] might be presence of certain object at location i
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Fast Algorithms on Graphs

GSP theory yields fast algorithms for large-scale graphs

generalizes FFT from chain graph to general graphs

based on product graph structure

6

For the Cartesian graph product, denoted as G = G1 × G2,
the adjacency matrix is

A× = A1 ⊗ IN2 + IN1 ⊗A2. (25)

Finally, for the strong product, denoted as G = G1 ! G2, the
adjacency matrix is

A! = A1 ⊗ A2 + A1 ⊗ IN2 + IN1 ⊗A2. (26)

The strong product can be seen as a combination of the Kro-
necker and Cartesian products. Since the products (23), (25),
and (26) are associative, Kronecker, Cartesian, and strong graph
products can be defined for an arbitrary number of graphs.
Product graphs arise in different applications, including

signal and image processing [32], computational sciences
and data mining [33], and computational biology [34]. Their
probabilistic counterparts are used in network modeling and
generation [35], [36], [37]. Multiple approaches have been
proposed for the decomposition and approximation of graphs
with product graphs [38], [30], [31], [39].
Product graphs offer a versatile graph model for the represen-

tation of complex datasets in multi-level and multi-parameter
ways. In traditional DSP, multi-dimensional signals, such as
digital images and video, reside on rectangular lattices that
are Cartesian products of line graphs. Fig. 2(a) shows a two-
dimensional lattice formed by the Cartesian product of two
one-dimensional lattices.
Another example of graph signals residing on product graphs

is data collected by a sensor network over a period of time.
In this case, the graph signal formed by measurements of all
sensors at all time steps resides on the product of the sensor
network graph with the time series graph. As the example in
Fig. 2(b) illustrates, the kth measurement of the nth sensor is
indexed by the nth node of the kth copy of the sensor graph
(or, equivalently, the kth node of the nth copy of the time series
graph). Depending on the choice of product, a measurement of
a sensor is related to the measurements collected by this sensor
and its neighbors at the same time and previous and following
time steps. For instance, the strong product in Fig. 2(b) relates
the measurement of the nth sensor at time step k to its
measurements at time steps k − 1 and k + 1, as well as to
measurements of its neighbors at times k − 1, k, and k + 1.
A social network with multiple communities also may be

representable by a graph product. Fig. 2(c) shows an example
of a social network that has three communities with similar
structures, where individuals from different communities also
interact with each other. This social graph may be seen as
an approximation of the Cartesian product of the graph that
captures the community structure and the graph that captures
the interaction between communities.
Other examples where product graphs are potentially useful

for data representation include multi-way data arrays that
contain elements described by multiple features, parameters,
or characteristics, such as publications in citation databases
described by their topics, authors, and venues; or internet
connections described by their time, location, IP address, port
accesses, and other parameters. In this case, the graph factors
in (22) represent similarities or dependencies between subsets
of characteristics.
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Fig. 2. Examples of product graphs indexing various data: a) Digital images
reside on rectangular lattices that are Cartesian products of line graphs for rows
and columns; b) Measurements of a sensor network are indexed by the strong
product of the sensor network graph with the time series graph (edges of the
Cartesian product are shown in blue and green, and edges of the Kronecker
product are shown in grey; the strong product contains all edges); c) A social
network with three similar communities is approximated by a Cartesian product
of the community structure graph with the intercommunity communication
graph.

Graph products are also used for modeling entire graph
families. Kronecker products of scale-free graphs with the
same degree distribution are also scale-free and have the same
distribution [40], [35].K- and ϵ-nearest neighbor graphs, which
are used in signal processing, communications and machine
learning to represent spatial and temporal location of data,
such as sensor networks and image pixels, or data similarity
structure, can be approximated with graph products, as the
examples in Figs. 2(a) and 2(b) suggest. Other graph families,
such as trees, are constructed using rooted graph products [41],
which are not discussed in this article.

V. SIGNAL PROCESSING ON PRODUCT GRAPHS
In this Section, we discuss how product graphs help “mod-

ularize” the computation of filtering and Fourier transform on
graphs and improve algorithms, data storage and memory ac-
cess for large datasets. They lead to graph filtering and Fourier
transform implementations suitable for multi-core and clustered
platforms with distributed storage by taking advantage of
such performance optimization techniques as parallelization
and vectorization. The presented results illustrate how product
graphs offer a suitable and practical model for constructing
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Graph Models: Perfect Match for 3 Vs of Big Data

graph models lead to message passing algorithms

message passing algorithms are perfectly scalable

copes with volume (distributed computing) and velocity
(parallel computing) of big data

“ship computation to data” and not vice-versa!

graph models also allow to process heterogeneous data
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Semi-Supervised Learning for Big Data over Networks

consider graph signal r [i ] representing labeled dataset D

observe labels only at sampling set S ⊆ V

acquiring labels is costly

how to recover remaining unobserved labels r [i ] for i ∈ V \ S

central smoothness hypothesis of supervised learning

close-by data points in high-density regions have similar labels
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Aquiring Labels (Sampling) in Marine Biology
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Aquiring Labels (Sampling) in Particle Physics
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Aquiring Labels (Sampling) in Pharmacology
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Key Problems

given a graph signal representation of the learning problem:

how many labels (samples) do we need?

which nodes should we sample ?

what are efficient learning algorithms?

all this presupposes that we know the graph structure!
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Conditional Independence Graph

interpret ith data point as realization of random variable zi

associate zi with node i ∈ V of undirected graph G = (V, E)

connect i , j ∈ V by undirected edge if zi and zj conditionally
independent given {zl}l∈V\{i ,j}

G is the conditional independence graph (CIG) of {zi}pi=1
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Modelling Assumptions

assume the zj to be jointly Gaussian N (0,C) with C � 0

edges of CIG G characterized by non-zero entries of K = C−1:

{i , j} ∈ E ⇐⇒ Ki ,j 6= 0

define neighbourhood N (i) := {j ∈ V : {i , j} ∈ E} of node i

we assume CIG to be sparse, i.e.,

|N (i)| ≤ smax

for some fixed sparsity smax
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The Global Markov Property

CIG G allows to read off conditional independence relations

A B C
node set B separates A from C.

global Markov property: {zi}i∈A conditionally independent of
{zi}i∈C given {zi}i∈B
Bayes optimal estimator for zi depends only on {zj}j∈N (i)

for sparse graphs, i.e., |N (i)| � p, Bayes optimal estimator
can be implemented efficiently!

22 / 45



aalto-logo-en-3

The Training Data

for each data point zi , observe samples xi [1], . . . , xi [N]

stack samples into vector x[t] = (x1[t], . . . , xp[t])T

each vector sample x[t] multivariate normal ∼ N (0,C[t])

graphical model selection (GMS): learn G from x[t]

x1[1], . . . , x1[N ]

x2[1], . . . , x2[N ]

x3[1], . . . , x3[N ]
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The Idea of Neighbourhood Regression

consider the problem of finding neighbourhood N (i)

once we found all {N (i)}i∈V , we have the CIG (trivial!)

neighbourhood N (i) pops up in regression model for zi :

zi =
∑

j∈N (i)

ajzj + ei

regression coeffs aj = −Ki ,j/Ki ,i

error term ei uncorrelated with {zj}j∈V\{i}

neighbourhood N (i) solves sparse regression problem

N (i) = arg min
| supp(a)|≤smax

E{(zi −
∑
j

ajzj)
2}
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Learning based on Sparse Regression

neighbourhood N (i) characterized by

N (i) = arg min
| supp(a)|≤smax

E{(zi −
∑
j

ajzj)
2}

not implementable since cannot evaluate expectation E

consider i.i.d. samples x[t] ∼ N (0,C)

replace E with sample average

N (i) ≈ arg min
| supp(a)|≤smax

(1/N)
N∑
t=1

(xi [t]−
∑
j

ajxj [t])2

involves search over
( p
smax

)
subsets (more on this later!)
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The Test Statistic of Sparse Regression

for any index set I = {i1, . . . , ismax} ⊆ V, define statistic

Z (I) := arg min
| supp(a)|⊆I

(1/N)
N∑
t=1

(xi [t]−
∑
j

ajxj [t])2

= (1/N)‖P⊥I xi‖22

with the vector xi = (xi [1], . . . , xi [N])T

projection P⊥I on orthogonal complement of span{xj}j∈I
P⊥I := I− XI

(
XT
I XI

)−1
XT
I
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Pairwise Error

consider index set T with |T | = smax and N (i) 6= T

i ∈ V

N (i) T

with high probability Z (N (i)) < Z (T ) for any T 6= N (i)

Z(I)

pr
ob

(Z
(I)

) I =N (i) I =T
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Pairwise Error

assume samples x[t] i.i.d. with ∼ N (0,C)

edges of CIG correspond to non-zero locations in K = C−1

define (inverse) condition number κ := λmin(C)/λmax(C)

strength of edge (i , j) quantified by minimum partial
correlation ρmin := min(i ,j)∈E |Ki ,j |/

√
Ki ,iKj ,j

consider index set T 6= N (i) with |N (i) \ T | = d

probability of confusing T with N (i) upper bounded as

Prob{Z (N (i)) ≥ Z (T )} ≤ 4 exp
(
−(N−smax)

dρ2minκ

64(dρ2minκ+ 8)

)
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Sample Complexity of GMS

combine bound on Prob{Z (N (i)) ≥ Z (T )} with union bound
over all T 6= N (i) and another union bound over i ∈ V

accurate GMS, i.e., Prob{Ĝ 6= G} → 0 for sample size

N ≥ smax + c1 max

{
log

(
p−smax

smax

)
,

log(p−smax)

κρ2min

}

allows for high-dimensional regime: large p, small N
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How Low Can We Go?

so far: sufficient condition (upper bound) on sample size

what is the fundamental lower bound on sample size N?

it can be shown that for sample size

N ≤ c2
log(p−smax)

κρ2min

ANY GMS fails with non-negligible probability

thus, sample complexity of GMS is

N ∝ log(p−smax)

κρ2min

sample complexity driven by minimum partial correlation ρmin
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Non-IID Samples

samples x[f ]∼N (0,C[f ]) still independent but varying C[f ]

model useful for two particular process classes:

x[f ] are Fourier coeffs of stationary process y[t]:

x[f ] =
N∑
t=1

y[t] exp(−(2π/N)(t−1)(f −1))

local cosine basis coeffs of locally stationary process y[t]:

x[f ] =
N∑
t=1

y[t]g (f )[t]
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Sample Complexity for Non-IID Samples

RECALL sample complexity for iid case:

N ∝ log(p−smax)

κρ2min

replace ρmin with minimum average partial correlation

ρ̄min := min
(i ,j)∈E

√√√√(1/N)
N∑

f=1

K 2
i ,j [f ]/(Ki ,i [f ]Kj ,j [f ])

with K[f ] := C−1[f ]

sample complexity for non-iid case:

N ∝ log(p−smax)

κρ̄2min
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Average Partial Correlation

N

ρ̄2
min

f

K2
i,j [f ]

Ki,i[f ]Kj,j [f ]
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Basic Idea: Break Into Pieces

smoothness assumption: cov. C[f ] ≈ constant over L samples

split samples x[1], . . . , x[N] evenly into size-L blocks

do sparse neighbourhood regression block-wise

new test statistic

Z (I) := arg min
| supp(a(b))|⊆I

(1/N)

N/L∑
b=1

∑
t∈Blockb

(xi [t]−
∑
j

a
(b)
j xj [t])2
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Just Relax

consider (vectorized) sparse neighbourhood regression

N (i) ≈ arg min
| supp(a)|≤smax

‖xi −
∑
j

ajxj‖22

= arg min
a
‖xi − Xa‖22 + λ| supp(a)|

with X := {xj}j 6=i and some multiplier λ

involves intractable search over
( p
smax

)
supports supp(a)

RELAX penalty λ| supp(a)| with convex function λ‖a‖1
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The LASSO

convex relaxation of sparse neighbourhood regression

aLasso ∈ arg min
a
‖xi−Xaj‖22 + λ‖a‖1

for some suitable multiplier λ

convex optimization problem

(Lagrangian form) least absolute shrinkage and selection
operator (LASSO)

LASSO found widespread use in statistics/signal processing
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Sample Complexity of LASSO

consider LASSO estimator
aLasso ∈ arg min

a
‖xi−Xaj‖22 + λ‖a‖1

assume that zi are only weakly correlated

|E{zizj}| ≤
√
E{z2i }E{z2j }/(2smax)

we have supp(aLasso) = N (i) with high prob. if

N ≥ (c1smax + c2/(κρ2min)) log(p−smax)

thus, for ρ2min � 1/smax the LASSO is sample-size optimal!
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Structure of LASSO

consider LASSO
arg min

a
‖xi − Xa‖22 + λ‖a‖1

sum of smooth term ‖xi − Xa‖22 and non-smooth ‖a‖1

highly developed methods around for such problems

e.g., proximal gradient method, alternating direction method
of multipliers (ADMM), Pock-Chambolle primal-dual, etc....

basic idea: splitting of minimization of the two terms
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ADMM for LASSO

LASSO: aLasso ∈ arg mina=b ‖xi − Xa‖22 + λ‖b‖1

ADMM amounts to iterating (for some ρ > 0)

a(k+1) =
(
XTX + ρI

)−1(
XTxi + ρ(b(k) − c(k))

)
b(k+1) = Sλ/ρ(a(k+1) + c(k))

c(k+1) = c(k) + a(k+1) − b(k+1)

a

Sκ(a)

κ

κ

2κ

convergence under very general conditions
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Further Reading at Arxiv

A. Jung, “Sparse Label Propagation”, Dec. 2016.

A. Jung, “Learning the Conditional Independence Structure of
Stationary Time Series: A Multitask Learning Approach”,
Jan. 2015.

N. Tran Quang and A. Jung, “Learning conditional
independence structure for high-dimensional uncorrelated
vector processes”, Sep. 2016.

G. Hannak and A. Jung and N. Goertz, “On the
Information-theoretic Limits of Graphical Model Selection for
Gaussian Time Series”, Mar. 2014.
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Thank You for Your Attention

Frohe Weihnachten
und einen

Guten Rutsch!
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