## An Algebraic Geometric Approach to <br> Multidimensional Symbolic Dynamics

## Jarkko Kari and Michal Szabados

Department of Mathematics and Statistics
University of Turku, Finland

We study how local constraints enforce global regularities

This is a common phenomenon is sciences. For example, formation of crystals:


Atoms attach to each other in a limited number of ways $\Longrightarrow$ periodic arrangement of the atoms

Our goal is to understand fundamental underlying principles that connect local rules to the global regularities observed in the structures.

Our setup: multidimensional symbolic dynamics (=tilings)

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Configurations are infinite $d$-dimensional grids of symbols.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\mathbf{~}$



For a fixed finite shape $D$, we observe the $D$-patterns in the configuration.


For a fixed finite shape $D$, we observe the $D$-patterns in the configuration.


For a fixed finite shape $D$, we observe the $D$-patterns in the configuration.


For a fixed finite shape $D$, we observe the $D$-patterns in the configuration.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



For a fixed finite shape $D$, we observe the $D$-patterns in the configuration.

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\square$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



A quantity to measure local complexity: the pattern complexity

$$
P(c, D)=\# \text { of } D \text {-patterns in } c .
$$

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



If this quantity is small, for some $D$, global regularities ensue. The relevant low complexity threshold:

$$
P(c, D) \leq|D|
$$




Global regularity of interest is periodicity: Configuration is periodic if it is invariant under a non-zero translation.

Open problem 1: Nivat's conjecture

Consider $d=2$ and rectangular $D$.


Conjecture (Nivat 1997) If $P(c, D) \leq|D|$ for some rectangle $D$ then $c$ is periodic.

Open problem 1: Nivat's conjecture

Consider $d=2$ and rectangular $D$.


Conjecture (Nivat 1997) If $P(c, D) \leq|D|$ for some rectangle $D$ then $c$ is periodic.

This would extend the one-dimensional case $d=1$ :
Morse-Hedlund theorem: Let $c \in A^{\mathbb{Z}}$ and $n \in \mathbb{N}$. If $c$ has at most $n$ distinct subwords of length $n$ then $c$ is periodic.

Best known bound in 2D:
Theorem (Cyr, Kra): If $P(c, D) \leq \frac{1}{2}|D|$ for some rectangle $D$ then $c$ is periodic.

Case of narrow rectangles:
Theorem (Cyr, Kra): If $D$ is a rectangle of height at most 3 and $P(c, D) \leq|D|$ then $c$ is periodic.

In 3D and higher dimensional cases the conjecture is false

Non-periodic $c$


In 3D and higher dimensional cases the conjecture is false

Non-periodic $c$
$D$ is $n \times n \times n$ cube


In 3D and higher dimensional cases the conjecture is false

Non-periodic $c$
$D$ is $n \times n \times n$ cube
$P(c, D)=1+\ldots$

In 3D and higher dimensional cases the conjecture is false

$D$ is $n \times n \times n$ cube
$P(c, D)=1+n^{2}+\ldots$

In 3D and higher dimensional cases the conjecture is false

$D$ is $n \times n \times n$ cube
$P(c, D)=1+n^{2}+n^{2}$

In 3D and higher dimensional cases the conjecture is false

$D$ is $n \times n \times n$ cube
$P(c, D)=1+n^{2}+n^{2}<n^{3}=|D|$ for large $n$.

We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If $P(c, D) \leq|D|$ for infinitely many different size rectangles $D$ then $c$ is periodic.

We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If $P(c, D) \leq|D|$ for infinitely many different size rectangles $D$ then $c$ is periodic.

Or stated as contrapositive: If $c$ is not periodic then $P(c, D)>|D|$ for all sufficiently large rectangles $D$.

## Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^{d}$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^{d}$ such that

$$
C \oplus T=\mathbb{Z}^{d}
$$

## Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^{d}$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^{d}$ such that

$$
C \oplus T=\mathbb{Z}^{d} .
$$

Graphical interpretation: $C$ gives the positions where copies of $T$ are placed to cover $\mathbb{Z}^{d}$ without gaps or overlaps.


## Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^{d}$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^{d}$ such that

$$
C \oplus T=\mathbb{Z}^{d} .
$$

Graphical interpretation: $C$ gives the positions where copies of $T$ are placed to cover $\mathbb{Z}^{d}$ without gaps or overlaps.


Open problem 2: Periodic tiling problem
Let $T \subseteq \mathbb{Z}^{d}$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^{d}$ such that

$$
C \oplus T=\mathbb{Z}^{d}
$$

Graphical interpretation: $C$ gives the positions where copies of $T$ are placed to cover $\mathbb{Z}^{d}$ without gaps or overlaps.

| * |  | * |  | * |  | * |  | * |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |



Interpret $C$ as the binary configuration $c$ with

$$
c(i)=* \Longleftrightarrow i \in C
$$

| * |  | * |  | * |  | * |  | * |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

|  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ | $*$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  | $*$ | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ | $*$ |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ |  |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ |  |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

| * |  | * |  | * |  | * |  | * |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

| * |  | * |  | * |  | * |  | * |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

|  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ | $*$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |
|  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |
|  |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ | $*$ |  |
|  | $*$ |  |  | $*$ |  |  | $*$ | $*$ |  | $*$ |  |  |  | $*$ |  |  | $*$ |  |  |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

$$
P(c,-T)=|-T|
$$

|  | $*$ |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |
|  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |
|  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |
|  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ | $*$ |  |  | $*$ |  |
|  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  | $*$ |  |  |  |
|  |  | $*$ |  |  | $*$ |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |  |  | $*$ |  |


$(-T)$-patterns of $c$ contain exactly one symbol $*$.

$$
P(c,-T)=|-T|
$$

(Also $P(c, T)=|T|$ as any tiling for $T$ is also a tiling for $-T$.)

| * |  | * |  | * |  | * |  | * |  | * |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |
| * |  | * |  | * |  | * |  | * |  | * |  |  |
|  | * |  | * |  | * |  | * |  | * |  | * |  |



If $X$ is the set of all tilings by $T$ then

$$
P(X, T)=|T|
$$

where $P(X, T)$ is the number of $T$-patterns in $c \in X$.
Set $X$ is a low complexity subshift of finite type (SFT).

Periodic tiling problem (Lagarias and Wang 1996): If $T$ admits a tiling $C$, does it necessarily admit a periodic tiling?

Periodic tiling problem (Lagarias and Wang 1996): If $T$ admits a tiling $C$, does it necessarily admit a periodic tiling?

Known results:

- Yes if $|T|$ is a prime number (Szegedy 1998).
- Yes in 2D
- if $T$ is 4-connected (Beauquier and Nivat 1991),
- in general (Bhattacharya 2016).

Both the Nivat's conjecture and the Periodic tiling problem concern periodicity under complexity constraint $P(c, D) \leq|D|$.

We are interested in analogous questions generally.

- Algorithmic question: given at most $|D|$ patterns of shape $D$, does there exist a configuration with only these given $D$-patterns ? (=emptyness problem of a given low complexity subshift of finite type)
- Periodicity: If there exists a configuration whose $D$-patterns are among the given $\leq|D|$ ones, does there necessarily exist such a configuration that is periodic ?

We study configurations using algebra, so we first replace symbols by integers:


We study configurations using algebra, so we first replace symbols by integers:

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

We study configurations using algebra, so we first replace symbols by integers:

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |


| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

$D$-patterns are viewed as $|D|$-dimensional numerical vectors.

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

$D$-patterns are viewed as $|D|$-dimensional numerical vectors.

$$
(1,1,1,2)
$$

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

$D$-patterns are viewed as $|D|$-dimensional numerical vectors.

$$
\begin{aligned}
& (1,1,1,2) \\
& (1,1,2,1)
\end{aligned}
$$

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

$D$-patterns are viewed as $|D|$-dimensional numerical vectors.

$$
\begin{aligned}
& (1,1,1,2) \\
& (1,1,2,1) \\
& (2,2,1,2)
\end{aligned}
$$

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

$D$-patterns are viewed as $|D|$-dimensional numerical vectors.

$$
\begin{aligned}
& (1,1,1,2) \\
& (1,1,2,1) \\
& (2,2,1,2) \\
& (2,2,1,1)
\end{aligned}
$$

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

- If $P(c, D)<|D|$ then there is an (integer) vector orthogonal to all $D$-patterns of $c$.

Indeed: the number $P(c, D)$ of distinct vectors is less than the dimension $|D|$ of the linear space.

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

- If $P(c, D)<|D|$ then there is an (integer) vector orthogonal to all $D$-patterns of $c$.
- Even if $P(c, D)=|D|$ we can add a suitable rational constant to $c$ to make the vectors linearly dependent. Also then an orthogonal vector exists.

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

- If $P(c, D)<|D|$ then there is an (integer) vector orthogonal to all $D$-patterns of $c$.
- Even if $P(c, D)=|D|$ we can add a suitable rational constant to $c$ to make the vectors linearly dependent. Also then an orthogonal vector exists.

This is OK: we are free to choose the numerical encoding.

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

(1, 1, 1, 2)
$(1,1,2,1)$
$\perp$
(1, -1, 0, 0)
$(2,2,1,2)$
$(2,2,1,1)$ )

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |



The orthogonal vector is a filter whose convolution with $c$ is the zero configuration. We say it annihilates configuration $c$.

| 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 |
| 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 |
| 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
| 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 1 |

Conclusion: If $P(c, D) \leq|D|$ then symbols can be represented as integers in such a way that some non-trivial integer filter annihilates $c$.

To use algebraic geometry, we next represent $c$ as a power series (negative exponents included).

| 2 | 1 | 2 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 1 | 1 | 2 |
| 2 | 1 | 1 | 2 | 1 |
| 1 | 1 | 2 | 1 | 2 |
| 1 | 2 | 1 | 2 | 1 |

$$
c \longleftrightarrow \sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}} c\left(i_{1}, \ldots, i_{d}\right) x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
$$

To use algebraic geometry, we next represent $c$ as a power series (negative exponents included).

| $2 x^{3} y^{2}$ | $x^{3} y^{2}$ | $2 x^{0} y^{2}$ | $x^{1} y^{2}$ | $x^{2} y^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\bar{x}^{2} y^{1}$ | $2 x^{-1} y^{1}$ | $x^{0} y^{1}$ | $x^{1} y^{1}$ | $2 x^{2} y^{1}$ |
| $2 x^{2} y^{0}$ | $x^{-1} y^{0}$ | $x^{0} y^{0}$ | $2 x^{1} y^{0}$ | $x^{2} y^{0}$ |
| $\bar{x}^{2} y^{-1}$ | $\bar{x}^{1} \bar{y}^{-1}$ | $2 x^{0} \bar{y}^{1}$ | $x^{1} \bar{y}^{-1}$ | $2 x^{2} y^{1}$ |
| $\bar{x}^{2} \bar{y}^{-2}$ | $2 \bar{x}^{1} \bar{y}^{2}$ | $x^{0} \bar{y}^{2}$ | $2 x^{1} \bar{y}^{2}$ | $x^{2} y^{2}$ |

$$
c \longleftrightarrow \sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}} c\left(i_{1}, \ldots, i_{d}\right) x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
$$

To use algebraic geometry, we next represent $c$ as a power series (negative exponents included).

$$
\begin{gathered}
\ldots+2 x^{3} y^{2}+x^{3} y^{2}+2 x^{0} y^{2}+x^{1} y^{2}+x^{2} y^{2}+\ldots \\
\ldots+x^{2} y^{1}+2 x^{-1} y^{1}+x^{0} y^{1}+x^{1} y^{1}+2 x^{2} y^{1}+\ldots \\
\ldots+2 x^{2} y^{0}+x^{-1} y^{0}+x^{0} y^{0}+2 x x^{1} y^{0}+x^{2} y^{0}+\ldots \\
\ldots+\bar{x}^{2} y^{-1}+\bar{x}^{1} y^{1}+2 x^{0} \bar{y}^{1}+x^{1} y^{1}+2 x^{2} y^{1}+\ldots \\
\ldots+\bar{x}^{2} y^{2}+2 x^{1} y^{1} \bar{y}^{2}+x^{0} \bar{y}^{2}+2 x^{1} \bar{y}^{2}+x^{2} y^{2}+\ldots \\
c \longleftrightarrow \sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}}^{\longleftrightarrow} c\left(i_{1}, \ldots, i_{d}\right) x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
\end{gathered}
$$



Notations:

- $X=\left(x_{1}, \ldots, x_{d}\right)$
- For $I=\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}$ we denote by

$$
X^{I}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
$$

the monomial that represents cell $I$.
$c \longleftrightarrow \sum_{\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}} c\left(i_{1}, \ldots, i_{d}\right) x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}=\underbrace{\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I}}_{c(X)}$

## Notations:

- $X=\left(x_{1}, \ldots, x_{d}\right)$
- For $I=\left(i_{1}, \ldots, i_{d}\right) \in \mathbb{Z}^{d}$ we denote by

$$
X^{I}=x_{1}^{i_{1}} \ldots x_{d}^{i_{d}}
$$

the monomial that represents cell $I$.

$$
c(X)=\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I}
$$

The configuration is now a power series $c(X)$ that is

- integral (=all coefficients are integers), and
- finitary (=finite number of distinct coefficients)

$$
c(X)=\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I}
$$

Multiplying $c(X)$ by monomial $X^{J}$ gives translation by $J \in \mathbb{Z}^{d}$ :

$$
X^{J} \cdot c(X)=\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I+J}
$$

So $c(X)$ is $J$-periodic if and only if $X^{J} \cdot c(X)=c(X)$, i.e.,

$$
\left(X^{J}-1\right) c(X)=0
$$

$$
c(X)=\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I}
$$

Multiplying $c(X)$ by a (Laurent) polynomial $f(X)$ is a convolution, corresponding to filtering operation.

We say that $f(X)$ annihilates $c(X)$ if $f(X) c(X)=0$.

$$
c(X)=\sum_{I \in \mathbb{Z}^{d}} c(I) X^{I}
$$

- Zero polynomial $f(X)=0$ annihilates every configuration it is the trivial annihilator.
- Binomial $X^{I}-1$ annihilates $c(X)$ if and only if $c(X)$ is $I$-periodic.
- Annihilators of $c(X)$ form an ideal:
- if $f(X)$ and $g(X)$ annihilate $c(X)$, also $f(X)+g(X)$ annihilates it,
- if $f(X)$ annihilates $c(X)$ then also $g(X) f(X)$ annihilates it, for all $g(X)$.

Define

$$
\operatorname{Ann}(c)=\{f(X) \in \mathbb{C}[X] \mid f(X) c(X)=0\}
$$

This is the polynomial ideal that contains all annihilators of $c$.

Define

$$
\operatorname{Ann}(c)=\{f(X) \in \mathbb{C}[X] \mid f(X) c(X)=0\}
$$

This is the polynomial ideal that contains all annihilators of $c$.

## Remarks:

- We consider polynomials (not Laurent polynomials!) so that we can directly rely on polynomial algebra. No problem: any Laurent polynomial annihilator can be made into a proper polynomial annihilator by multiplying it with suitable monomial $X^{I}$.
- We allow complex coefficients because we need algebraicly closed field to apply Hilbert's Nullstellensatz.
- $\operatorname{Ann}(c)$ is indeed an ideal of the polynomial ring $\mathbb{C}[X]$.

$$
\operatorname{Ann}(c)=\{f(X) \in \mathbb{C}[X] \mid f(X) c(X)=0\}
$$

Our setup (=low complexity configuration) is an integral, finitary $c(X)$ that has some non-trivial integral annihilator

$$
f(X) \in \operatorname{Ann}(c) \cap \mathbb{Z}[X]
$$

$$
\operatorname{Ann}(c)=\{f(X) \in \mathbb{C}[X] \mid f(X) c(X)=0\}
$$

Plugging in numbers for variables: For any

$$
Z=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{C}^{d}
$$

we can compute the value $f(Z) \in \mathbb{C}$ of any polynomial $f(X) \in \mathbb{C}[X]$.

$$
\operatorname{Ann}(c)=\{f(X) \in \mathbb{C}[X] \mid f(X) c(X)=0\}
$$

To prove that $\operatorname{Ann}(c)$ contains "simple" polynomials we use

Nullstellensatz (Hilbert): Let $g(X)$ be a polynomial. Suppose that $g(Z)=0$ for all $Z$ in the variety

$$
\left\{Z \in \mathbb{C}^{d} \mid f(Z)=0 \text { for all } f \in \operatorname{Ann}(c)\right\} .
$$

Then $g^{k} \in \operatorname{Ann}(c)$ for some $k \in \mathbb{N}$.
$c(X)$ a finitary, integral power series
$f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I}$ its non-trivial integral annihilator polynomial

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.
$c(X)$ a finitary, integral power series

$$
f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I} \text { its non-trivial integral annihilator polynomial }
$$

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

\[

\]

$c(X)$ a finitary, integral power series
$f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I}$ its non-trivial integral annihilator polynomial

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

$$
\begin{array}{lrl}
f\left(X^{2}\right) & & a \\
& \text { b } & \text { c } \\
& \text { d }
\end{array}
$$

$c(X)$ a finitary, integral power series
$f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I}$ its non-trivial integral annihilator polynomial

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

$$
f\left(X^{3}\right)
$$

b a d
$c(X)$ a finitary, integral power series
$f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I}$ its non-trivial integral annihilator polynomial

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

$$
f\left(X^{4}\right)
$$


$c(X)$ a finitary, integral power series

$$
f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I} \text { its non-trivial integral annihilator polynomial }
$$

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

Proof: a direct application of

$$
f(X)^{p} \equiv f\left(X^{p}\right) \quad(\bmod p \mathbb{Z}[X])
$$

for prime factors $p$ of $n$.
$c(X)$ a finitary, integral power series
$f(X)=\sum_{I \in \mathcal{I}} a_{I} X^{I}$ its non-trivial integral annihilator polynomial

$$
\left(a_{I} \neq 0 \text { for all } I \in \mathcal{I}\right)
$$

Lemma: $f\left(X^{n}\right) \in \operatorname{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

In particular, $f\left(X^{1+i M}\right)$ are in $\operatorname{Ann}(c)$ for $i=0,1,2, \ldots$, where $M$ is the product of all small primes.

Let $Z \in \mathbb{C}^{d}$ be a common zero of $\operatorname{Ann}(c)$. Then

$$
f\left(Z^{1+i M}\right)=0 \text { for all } i=0,1,2, \ldots
$$

Let $Z \in \mathbb{C}^{d}$ be a common zero of $\operatorname{Ann}(c)$. Then

$$
f\left(Z^{1+i M}\right)=0 \text { for all } i=0,1,2, \ldots
$$

Then (proof omitted) $g(Z)=0$ for

$$
g(X)=X^{1} \prod_{\substack{I, J \in \mathcal{I} \\ I \neq J}}\left(X^{M I}-X^{M J}\right)
$$

Here:

- $M$ is the constant from the Lemma (product of small primes).
- $\mathcal{I} \subseteq \mathbb{Z}^{d}$ is the support of polynomial $f(X)$.

So all elements of the variety

$$
\left\{Z \in \mathbb{C}^{d} \mid f(Z)=0 \text { for all } f \in \operatorname{Ann}(c)\right\}
$$

are zeros of the polynomial

$$
g(X)=X^{1} \prod_{\substack{I, J \in \mathcal{I} \\ I \neq J}}\left(X^{M I}-X^{M J}\right)
$$

So all elements of the variety

$$
\left\{Z \in \mathbb{C}^{d} \mid f(Z)=0 \text { for all } f \in \operatorname{Ann}(c)\right\}
$$

are zeros of the polynomial

$$
g(X)=X^{1} \prod_{\substack{I, J \in \mathcal{I} \\ I \neq J}}\left(X^{M I}-X^{M J}\right)
$$

Nullstellensatz $\Longrightarrow g(X)^{n} \in \operatorname{Ann}(c)$ for some $n \in \mathbb{N}$.

So all elements of the variety

$$
\left\{Z \in \mathbb{C}^{d} \mid f(Z)=0 \text { for all } f \in \operatorname{Ann}(c)\right\}
$$

are zeros of the polynomial

$$
g(X)=X^{1} \prod_{\substack{I, J \in \mathcal{I} \\ I \neq J}}\left(X^{M I}-X^{M J}\right)
$$

Nullstellensatz $\Longrightarrow g(X)^{n} \in \operatorname{Ann}(c)$ for some $n \in \mathbb{N}$.
Dividing $g(X)^{n}$ by a suitable monomial gives:
Theorem. Finitary, integral $c(X)$ that has a non-trivial annihilator is annihilated by a Laurent polynomial of the form

$$
\left(1-X^{I_{1}}\right)\left(1-X^{I_{2}}\right) \ldots\left(1-X^{I_{k}}\right)
$$

## Annihilator: $\left(1-X^{I_{1}}\right)\left(1-X^{I_{2}}\right) \ldots\left(1-X^{I_{k}}\right)$

Binomials ( $1-X^{I}$ ) correspond to difference operators that subtract from a configuration its own $I$-translation.

The theorem states that configuration $c(X)$ can be annihilated by a sequence of difference operations.

$$
\text { Annihilator: }\left(1-X^{I_{1}}\right)\left(1-X^{I_{2}}\right) \ldots\left(1-X^{I_{k}}\right)
$$

Binomials ( $1-X^{I}$ ) correspond to difference operators that subtract from a configuration its own $I$-translation.

The theorem states that configuration $c(X)$ can be annihilated by a sequence of difference operations.

If $k=1$ then $c(X)$ is periodic.
More generally, we can prove that $c(X)$ is a sum of $k$ (possibly non-finitary) integral configurations that are periodic.

Corollary. $c(X)=c_{1}(X)+\cdots+c_{k}(X)$ where $c_{i}(X)$ is $I_{i}$-periodic and integral (but not necessarily finitary).

Example. The 3D counter example

to Nivat's conjecture is a sum of two periodic configurations. It is annihilated by polynomial $(1-y)(1-x)$.

Our approach to Nivat's conjecture.

Suppose $P(c, D) \leq|D|$ for some rectangle $D$.
Then $c$ has annihilating polynomial

$$
f(X)=\left(1-X^{I_{1}}\right) \ldots\left(1-X^{I_{k}}\right)
$$

Take the one with smallest $k$.
If $k=1$ then $c$ is periodic, so assume that $k \geq 2$.

Our approach to Nivat's conjecture.

Suppose $P(c, D) \leq|D|$ for some rectangle $D$.
Then $c$ has annihilating polynomial

$$
f(X)=\left(1-X^{I_{1}}\right) \ldots\left(1-X^{I_{k}}\right)
$$

Take the one with smallest $k$.
If $k=1$ then $c$ is periodic, so assume that $k \geq 2$.

Denote $\delta_{i}(X)=\left(1-X^{I_{i}}\right)$ and $\phi_{i}(X)=f(X) / \delta_{i}(X)$.
Then $\phi_{i}(X) c(X)$ is annihilated by $\delta_{i}(X)$ so it is $I_{i}$-periodic. It is not doubly periodic (since otherwise $k$ could be reduced).

Viewing $c(X)$ using filter $\phi_{1}(X)$ :


Non-periodic sequence of stripes in the direction $I_{1}$.

Viewing $c(X)$ using filter $\phi_{1}(X)$ :

W.l.g. the stripes are not horizontal
$\Longrightarrow$ at least $X$ stripes are visible in every $X \times Y$ rectangle
$\Longrightarrow$ more than $X$ different $X \times Y$ blocks in $\phi_{1}(X) c(X)$ (due to the one-dimensional Morse-Hedlund theorem)

Viewing $c(X)$ using filter $\phi_{2}(X)$ :


Non-periodic sequence of stripes in a different direction $I_{2}$.

Viewing $c(X)$ using filter $\phi_{2}(X)$ :


Analogously: stripes not vertical $\Longrightarrow$ more than $Y$ different $X \times Y$ blocks in $\phi_{2}(X) c(X)$.

Pick any $X \times Y$ pattern from $\phi_{1}(X) c(X) \ldots$

$\ldots$ and any $X \times Y$ pattern from $\phi_{2}(X) c(X)$.


Directions $I_{1}$ and $I_{2}$ are different


Directions $I_{1}$ and $I_{2}$ are different

so both patterns can be seen (more or less) in the same position.

Directions $I_{1}$ and $I_{2}$ are different

so both patterns can be seen (more or less) in the same position.
$\Longrightarrow$ more than $X Y$ distinct pairs of patterns in same positions


For some constant $r$ (=radius of filters $\phi_{1}$ and $\phi_{2}$ ), each $(X+2 r) \times(Y+2 r)$ block of $c(X)$ uniquely determines the corresponding $X \times Y$ blocks in $\phi_{1}(X) c(X)$ and $\phi_{2}(X) c(X)$. $\Longrightarrow c(X)$ has at least $X Y$ patterns of size $(X+2 r) \times(Y+2 r)$.

We get that

$$
\liminf _{D} \frac{P(c, D)}{|D|} \geq 1
$$

We get that

$$
\liminf _{D} \frac{P(c, D)}{|D|} \geq 1
$$

This can be improved further to:
Theorem. If $c$ is a non-periodic 2D configuration then $P(c, D) \leq|D|$ can hold only for finitely many rectangles $D$.

Theorem. If $c$ is a non-periodic 2D configuration then $P(c, D) \leq|D|$ can hold only for finitely many rectangles $D$.

## Questions:

- What can one say for other shapes than rectangles ? Perhaps an analogous result for convex shapes ?
- Can one use the periodic decomposition to address the periodic tiling problem? What about other low complexity subshifts of finite type?
- The original Nivat's problem is still open...

Theorem. If $c$ is a non-periodic 2D configuration then $P(c, D) \leq|D|$ can hold only for finitely many rectangles $D$.

## Questions:

- What can one say for other shapes than rectangles ? Perhaps an analogous result for convex shapes?
- Can one use the periodic decomposition to address the periodic tiling problem? What about other low complexity subshifts of finite type?
- The original Nivat's problem is still open...


## Thank You

