An Algebraic Geometric Approach to Multidimensional Symbolic Dynamics

Jarkko Kari and Michal Szabados

Department of Mathematics and Statistics
University of Turku, Finland
We study how **local constraints** enforce **global regularities**.

This is a common phenomenon in sciences. For example, formation of crystals:

Atoms attach to each other in a limited number of ways

⇒ periodic arrangement of the atoms
Our goal is to understand **fundamental underlying principles** that connect local rules to the global regularities observed in the structures.

Our setup: multidimensional symbolic dynamics (=tilings)
Configurations are infinite d-dimensional grids of symbols.
For a fixed finite shape D, we observe the D-patterns in the configuration.
For a fixed finite shape D, we observe the D-patterns in the configuration.
For a fixed finite shape D, we observe the D-patterns in the configuration.
For a fixed finite shape D, we observe the D-patterns in the configuration.
For a fixed finite shape D, we observe the D-patterns in the configuration.
A quantity to measure local complexity: the **pattern complexity**

\[P(c, D) = \# \text{ of } D\text{-patterns in } c. \]
If this quantity is small, for some D, global regularities ensue. The relevant **low complexity threshold**:

$$P(c, D) \leq |D|$$
Global regularity of interest is periodicity: Configuration is **periodic** if it is invariant under a non-zero translation.
Open problem 1: Nivat’s conjecture

Consider $d = 2$ and rectangular D.

Conjecture (Nivat 1997) If $P(c, D) \leq |D|$ for some rectangle D then c is periodic.
Open problem 1: Nivat’s conjecture

Consider $d = 2$ and rectangular D.

Conjecture (Nivat 1997) If $P(c, D) \leq |D|$ for some rectangle D then c is periodic.

This would extend the one-dimensional case $d = 1$:

Morse-Hedlund theorem: Let $c \in A^\mathbb{Z}$ and $n \in \mathbb{N}$. If c has at most n distinct subwords of length n then c is periodic.
Best known bound in 2D:

Theorem (Cyr, Kra): If $P(c, D) \leq \frac{1}{2} |D|$ for some rectangle D then c is periodic.

Case of narrow rectangles:

Theorem (Cyr, Kra): If D is a rectangle of height at most 3 and $P(c, D) \leq |D|$ then c is periodic.
In 3D and higher dimensional cases the conjecture is false.

Non-periodic c
In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is $n \times n \times n$ cube
In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is $n \times n \times n$ cube

$P(c, D) = 1 + \ldots$
In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is $n \times n \times n$ cube

$P(c, D) = 1 + n^2 + \ldots$
In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is $n \times n \times n$ cube

$P(c, D) = 1 + n^2 + n^2$
In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is $n \times n \times n$ cube

$P(c, D) = 1 + n^2 + n^2 < n^3 = |D|$ for large n.
We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If $P(c, D) \leq |D|$ for infinitely many different size rectangles D then c is periodic.
We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If $P(c, D) \leq |D|$ for infinitely many different size rectangles D then c is periodic.

Or stated as **contrapositive:** If c is not periodic then $P(c, D) > |D|$ for all sufficiently large rectangles D.
Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^d$ be finite, and call it a \textit{tile}. A \textit{tiling} is any $C \subseteq \mathbb{Z}^d$ such that

$$C \oplus T = \mathbb{Z}^d.$$
Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^d$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^d$ such that

$$C \oplus T = \mathbb{Z}^d.$$

Graphical interpretation: C gives the positions where copies of T are placed to cover \mathbb{Z}^d without gaps or overlaps.
Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^d$ be finite, and call it a **tile**. A **tiling** is any $C \subseteq \mathbb{Z}^d$ such that

$$C \oplus T = \mathbb{Z}^d.$$

Graphical interpretation: C gives the positions where copies of T are placed to cover \mathbb{Z}^d without gaps or overlaps.
Open problem 2: Periodic tiling problem

Let $T \subseteq \mathbb{Z}^d$ be finite, and call it a tile. A tiling is any $C \subseteq \mathbb{Z}^d$ such that

$$C \oplus T = \mathbb{Z}^d.$$

Graphical interpretation: C gives the positions where copies of T are placed to cover \mathbb{Z}^d without gaps or overlaps.
Interpret C as the binary configuration c with

$$c(i) = * \iff i \in C.$$
$(-T)$-patterns of c contain exactly one symbol \ast.
\((-T)\)-patterns of \(c\) contain exactly one symbol \(*\).
(−T)-patterns of \(c \) contain exactly one symbol *.
\((-T)\)-patterns of \(c\) contain exactly one symbol \(*\).
$(-T)$-patterns of c contain exactly one symbol \ast.
\((-T)\)-patterns of \(c\) contain exactly one symbol \(*\).

\[P(c, -T) = | - T| \]
\((-T)\)-patterns of \(c\) contain exactly one symbol \(*\).

\[P(c, -T) = | - T|\]

(Also \(P(c, T) = |T|\) as any tiling for \(T\) is also a tiling for \(-T\).)
If X is the set of all tilings by T then

$$P(X, T) = |T|$$

where $P(X, T)$ is the number of T-patterns in $c \in X$. Set X is a low complexity subshift of finite type (SFT).
Periodic tiling problem (Lagarias and Wang 1996): If T admits a tiling C, does it necessarily admit a periodic tiling?
Periodic tiling problem (Lagarias and Wang 1996): If T admits a tiling C, does it necessarily admit a periodic tiling?

Known results:

- Yes if $|T|$ is a prime number (Szegedy 1998).
- Yes in 2D
 - if T is 4-connected (Beauquier and Nivat 1991),
 - in general (Bhattacharya 2016).
Both the Nivat’s conjecture and the Periodic tiling problem concern periodicity under complexity constraint $P(c, D) \leq |D|$.

We are interested in analogous questions generally.

- **Algorithmic question:** given at most $|D|$ patterns of shape D, does there exist a configuration with only these given D-patterns? (=emptyness problem of a given low complexity subshift of finite type)

- **Periodicity:** If there exists a configuration whose D-patterns are among the given $\leq |D|$ ones, does there necessarily exist such a configuration that is periodic?
We study configurations using algebra, so we first replace symbols by integers:
We study configurations using algebra, so we first replace symbols by integers:

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
We study configurations using algebra, so we first replace symbols by integers:
D-patterns are viewed as $|D|$-dimensional numerical vectors.
D-patterns are viewed as $|D|$-dimensional numerical vectors.

$(1, 1, 1, 2)$
D-patterns are viewed as $|D|$-dimensional numerical vectors.

$(1, 1, 1, 2)$

$(1, 1, 2, 1)$
D-patterns are viewed as $|D|$-dimensional numerical vectors.

$$(1, 1, 1, 2)$$

$$(1, 1, 2, 1)$$

$$(2, 2, 1, 2)$$
D-patterns are viewed as $|D|$-dimensional numerical vectors.

$(1, 1, 1, 2)$

$(1, 1, 2, 1)$

$(2, 2, 1, 2)$

$(2, 2, 1, 1)$
• If $P(c, D) < |D|$ then there is an (integer) vector orthogonal to all D-patterns of c.

Indeed: the number $P(c, D)$ of distinct vectors is less than the dimension $|D|$ of the linear space.
- If $P(c, D) < |D|$ then there is an (integer) vector orthogonal to all D-patterns of c.

- Even if $P(c, D) = |D|$ we can add a suitable rational constant to c to make the vectors linearly dependent. Also then an orthogonal vector exists.
<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

- If \(P(c, D) < |D| \) then there is an (integer) vector orthogonal to all \(D \)-patterns of \(c \).

- Even if \(P(c, D) = |D| \) we can add a suitable rational constant to \(c \) to make the vectors linearly dependent. Also then an orthogonal vector exists.

This is OK: we are free to choose the numerical encoding.
\[
\begin{array}{cccccccccccc}
2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 \\
1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 \\
2 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 \\
1 & 1 & 1 & 2 & 1 & 2 & 1 & 1 & 2 & 1 & 2 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
(1, 1, 1, 2) \\
(1, 1, 2, 1) \\
(2, 2, 1, 2) \\
(2, 2, 1, 1) \\
\end{array}
\]

\[
\begin{array}{c}
\downarrow \\
(1, -1, 0, 0)
\end{array}
\]
The orthogonal vector is a **filter** whose convolution with \(c \) is the zero configuration. We say it **annihilates** configuration \(c \).
Conclusion: If $P(c, D) \leq |D|$ then symbols can be represented as integers in such a way that some non-trivial integer filter annihilates c.
To use algebraic geometry, we next represent c as a \textbf{power series} (negative exponents included).

$$c \leftrightarrow \sum_{(i_1, \ldots, i_d) \in \mathbb{Z}^d} c(i_1, \ldots, i_d)x_1^{i_1} \cdots x_d^{i_d}$$
To use algebraic geometry, we next represent c as a *power series* (negative exponents included).

\[
\begin{array}{cccc}
2x^3y^2 & x^3y^2 & 2x^0y^2 & x^1y^2 & x^2y^2 \\
\tilde{x}^2y^1 & 2\tilde{x}^1y^1 & x^0y^1 & x^1y^1 & 2x^2y^1 \\
2x^2y^0 & \tilde{x}^1y^0 & x^0y^0 & 2x^1y^0 & x^2y^0 \\
x^2y^1 & \tilde{x}^1y^1 & 2x^0y^1 & x^1y^1 & 2x^2y^1 \\
x^2y^2 & 2\tilde{x}^1y^2 & x^0y^2 & 2x^1y^2 & x^2y^2 \\
\end{array}
\]

\[
c \leftrightarrow \sum_{(i_1, \ldots, i_d) \in \mathbb{Z}^d} c(i_1, \ldots, i_d) x_1^{i_1} \cdots x_d^{i_d}
\]
To use algebraic geometry, we next represent c as a power series (negative exponents included).

\[
\ldots + 2x^3y^2 + x^3y^2 + 2x^0y^2 + x^1y^2 + x^2y^2 + \ldots \\
\ldots + x^2y^1 + 2x^1y^1 + x^0y^1 + x^1y^1 + 2x^2y^1 + \ldots \\
\ldots + 2x^3y^0 + x^1y^0 + x^0y^0 + 2x^1y^0 + x^2y^0 + \ldots \\
\ldots + x^2y^1 + x^1y^1 + 2x^0y^1 + x^1y^1 + 2x^2y^1 + \ldots \\
\ldots + x^2y^2 + 2x^1y^2 + x^0y^2 + 2x^1y^2 + x^2y^2 + \ldots
\]

\[
c \leftrightarrow \sum_{(i_1, \ldots, i_d) \in \mathbb{Z}^d} c(i_1, \ldots, i_d)x_1^{i_1} \ldots x_d^{i_d}
\]
\[c \leftarrow \sum_{(i_1, \ldots, i_d) \in \mathbb{Z}^d} c(i_1, \ldots, i_d)x_1^{i_1} \ldots x_d^{i_d} \]

Notations:

- \(X = (x_1, \ldots, x_d) \)
- For \(I = (i_1, \ldots, i_d) \in \mathbb{Z}^d \) we denote by
 \[X^I = x_1^{i_1} \ldots x_d^{i_d} \]
 the monomial that represents cell \(I \).
\[c \longleftrightarrow \sum_{(i_1, \ldots, i_d) \in \mathbb{Z}^d} c(i_1, \ldots, i_d) x_1^{i_1} \cdots x_d^{i_d} = \sum_{I \in \mathbb{Z}^d} c(I) X^I \]

Notations:

- \(X = (x_1, \ldots, x_d) \)

- For \(I = (i_1, \ldots, i_d) \in \mathbb{Z}^d \) we denote by

\[X^I = x_1^{i_1} \cdots x_d^{i_d} \]

the monomial that represents cell \(I \).
The configuration is now a power series $c(X)$ that is

- **integral** (=all coefficients are integers), and
- **finitary** (=finite number of distinct coefficients)
\[c(X) = \sum_{I \in \mathbb{Z}^d} c(I)X^I \]

Multiplying \(c(X) \) by monomial \(X^J \) gives \textbf{translation} by \(J \in \mathbb{Z}^d \):

\[
X^J \cdot c(X) = \sum_{I \in \mathbb{Z}^d} c(I)X^{I+J}
\]

So \(c(X) \) is \textbf{\(J \)-periodic} if and only if \(X^J \cdot c(X) = c(X) \), i.e.,

\[
(X^J - 1)c(X) = 0
\]
Multiplying $c(X)$ by a (Laurent) polynomial $f(X)$ is a convolution, corresponding to \textit{filtering} operation.

We say that $f(X)$ \textit{annihilates} $c(X)$ if $f(X)c(X) = 0$.

\[
c(X) = \sum_{I \in \mathbb{Z}^d} c(I)X^I
\]
\[
c(X) = \sum_{I \in \mathbb{Z}^d} c(I)X^I
\]

- Zero polynomial \(f(X) = 0 \) annihilates every configuration – it is the **trivial annihilator**.

- Binomial \(X^I - 1 \) annihilates \(c(X) \) if and only if \(c(X) \) is \(I \)-periodic.

- Annihilators of \(c(X) \) form an **ideal**:
 - if \(f(X) \) and \(g(X) \) annihilate \(c(X) \), also \(f(X) + g(X) \) annihilates it,
 - if \(f(X) \) annihilates \(c(X) \) then also \(g(X)f(X) \) annihilates it, for all \(g(X) \).
Define

$$\text{Ann}(c) = \{ f(X) \in \mathbb{C}[X] \mid f(X)c(X) = 0 \}.$$

This is the polynomial ideal that contains all annihilators of c.
Define

$$\text{Ann}(c) = \{ f(X) \in \mathbb{C}[X] \mid f(X)c(X) = 0 \}.$$

This is the polynomial ideal that contains all annihilators of c.

Remarks:

- We consider polynomials (not Laurent polynomials!) so that we can directly rely on polynomial algebra. **No problem:** any Laurent polynomial annihilator can be made into a proper polynomial annihilator by multiplying it with suitable monomial X^I.

- We allow complex coefficients because we need algebraically closed field to apply Hilbert’s Nullstellensatz.

- $\text{Ann}(c)$ is indeed an ideal of the polynomial ring $\mathbb{C}[X]$.
Our setup (=low complexity configuration) is an integral, finitary \(c(X)\) that has some non-trivial integral annihilator

\[
f(X) \in \text{Ann}(c) \cap \mathbb{Z}[X]
\]
Ann(c) = \{ f(X) \in \mathbb{C}[X] \mid f(X)c(X) = 0 \}

Plugging in numbers for variables: For any

\[Z = (z_1, \ldots, z_d) \in \mathbb{C}^d \]

we can compute the value \(f(Z) \in \mathbb{C} \) of any polynomial \(f(X) \in \mathbb{C}[X] \).
Ann(c) = \{ f(X) \in \mathbb{C}[X] \mid f(X)c(X) = 0 \}

To prove that Ann(c) contains “simple” polynomials we use

Nullstellensatz (Hilbert): Let \(g(X) \) be a polynomial. Suppose that \(g(Z) = 0 \) for all \(Z \) in the variety

\[\{ Z \in \mathbb{C}^d \mid f(Z) = 0 \text{ for all } f \in \text{Ann}(c) \}. \]

Then \(g^k \in \text{Ann}(c) \) for some \(k \in \mathbb{N} \).
$c(X)$ a finitary, integral power series

$f(X) = \sum_{I \in \mathcal{I}} a_I X^I$ its non-trivial integral annihilator polynomial

$(a_I \neq 0 \text{ for all } I \in \mathcal{I})$

Lemma: $f(X^n) \in \text{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.
$c(X)$ a finitary, integral power series

\[f(X) = \sum_{I \in \mathcal{I}} a_I X^I \] its non-trivial integral annihilator polynomial

\[(a_I \neq 0 \text{ for all } I \in \mathcal{I}) \]

Lemma: $f(X^n) \in \text{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.
\[c(X) \] a finitary, integral power series

\[f(X) = \sum_{I \in \mathcal{I}} a_I X^I \] its non-trivial integral annihilator polynomial

\[(a_I \neq 0 \text{ for all } I \in \mathcal{I}) \]

Lemma: \(f(X^n) \in \text{Ann}(c) \) for every \(n \in \mathbb{N} \) whose prime factors are sufficiently large.

\[f(X^2) \]
$c(X)$ a finitary, integral power series

\[f(X) = \sum_{I \in \mathcal{I}} a_I X^I \]

its non-trivial integral annihilator polynomial

\((a_I \neq 0 \text{ for all } I \in \mathcal{I}) \)

Lemma: \(f(X^n) \in \text{Ann}(c) \) for every \(n \in \mathbb{N} \) whose prime factors are sufficiently large.
\(c(X)\) a finitary, integral power series

\[f(X) = \sum_{I \in \mathcal{I}} a_I X^I\]
its non-trivial integral annihilator polynomial

\[a_I \neq 0 \text{ for all } I \in \mathcal{I}\]

Lemma: \(f(X^n) \in \text{Ann}(c)\) for every \(n \in \mathbb{N}\) whose prime factors are sufficiently large.
$c(X)$ a finitary, integral power series

\[f(X) = \sum_{I \in \mathcal{I}} a_I X^I \] its non-trivial integral annihilator polynomial

\[(a_I \neq 0 \text{ for all } I \in \mathcal{I}) \]

Lemma: $f(X^n) \in \text{Ann}(c)$ for every $n \in \mathbb{N}$ whose prime factors are sufficiently large.

Proof: a direct application of

\[f(X)^p \equiv f(X^p) \pmod{p\mathbb{Z}[X]} \]

for prime factors p of n.
\(c(X) \) a finitary, integral power series

\[
f(X) = \sum_{I \in \mathcal{I}} a_I X^I \] its non-trivial integral annihilator polynomial

\((a_I \neq 0 \text{ for all } I \in \mathcal{I}) \)

Lemma: \(f(X^n) \in \text{Ann}(c) \) for every \(n \in \mathbb{N} \) whose prime factors are sufficiently large.

In particular, \(f(X^{1+iM}) \) are in \(\text{Ann}(c) \) for \(i = 0, 1, 2, \ldots \), where \(M \) is the product of all small primes.
Let $Z \in \mathbb{C}^d$ be a common zero of $\text{Ann}(c)$. Then

$$f(Z^{1+iM}) = 0 \text{ for all } i = 0, 1, 2, \ldots$$
Let $Z \in \mathbb{C}^d$ be a common zero of $\text{Ann}(c)$. Then

$$f(Z^{1+iM}) = 0 \text{ for all } i = 0, 1, 2, \ldots$$

Then (proof omitted) $g(Z) = 0$ for

$$g(X) = X^1 \prod_{I,J \in \mathcal{I}, I \neq J} (X^{MI} - X^{MJ}).$$

Here:

- M is the constant from the Lemma (product of small primes).
- $\mathcal{I} \subseteq \mathbb{Z}^d$ is the support of polynomial $f(X)$.
So all elements of the variety

\[\{ Z \in \mathbb{C}^d \mid f(Z) = 0 \text{ for all } f \in \text{Ann}(c) \} \]

are zeros of the polynomial

\[g(X) = X^1 \prod_{I,J \in \mathcal{I}, \ I \neq J} (X^{MI} - X^{MJ}). \]
So all elements of the variety

\[\{ Z \in \mathbb{C}^d \mid f(Z) = 0 \text{ for all } f \in \text{Ann}(c) \} \]

are zeros of the polynomial

\[g(X) = X^1 \prod_{I,J \in \mathcal{I}, I \neq J} (X^{MI} - X^{MJ}). \]

Nullstellensatz \(\implies \) \(g(X)^n \in \text{Ann}(c) \) for some \(n \in \mathbb{N} \).
So all elements of the variety

$$\{ Z \in \mathbb{C}^d \mid f(Z) = 0 \text{ for all } f \in \text{Ann}(c) \}$$

are zeros of the polynomial

$$g(X) = X^1 \prod_{I,J \in \mathbb{I}} (X^{MI} - X^{MJ}).$$

Nullstellensatz $\implies g(X)^n \in \text{Ann}(c)$ for some $n \in \mathbb{N}$.

Dividing $g(X)^n$ by a suitable monomial gives:

Theorem. Finitary, integral $c(X)$ that has a non-trivial annihilator is annihilated by a Laurent polynomial of the form

$$(1 - X^{I_1})(1 - X^{I_2}) \ldots (1 - X^{I_k}).$$
Annihilator: \((1 - X^{I_1})(1 - X^{I_2}) \ldots (1 - X^{I_k})\)

Binomials \((1 - X^I)\) correspond to difference operators that subtract from a configuration its own \(I\)-translation. The theorem states that configuration \(c(X)\) can be annihilated by a sequence of difference operations.
Annihilator: \((1 - X^{I_1})(1 - X^{I_2}) \ldots (1 - X^{I_k})\)

Binomials \((1 - X^I)\) correspond to difference operators that subtract from a configuration its own \(I\)-translation.

The theorem states that configuration \(c(X)\) can be annihilated by a sequence of difference operations.

If \(k = 1\) then \(c(X)\) is periodic.

More generally, we can prove that \(c(X)\) is a sum of \(k\) (possibly non-finitary) integral configurations that are periodic.

Corollary. \(c(X) = c_1(X) + \cdots + c_k(X)\) where \(c_i(X)\) is \(I_i\)-periodic and integral (but not necessarily finitary).
Example. The 3D counter example to Nivat’s conjecture is a sum of two periodic configurations. It is annihilated by polynomial \((1 - y)(1 - x)\).
Our approach to Nivat’s conjecture.

Suppose $P(c, D) \leq |D|$ for some rectangle D.

Then c has annihilating polynomial

$$f(X) = (1 - X^{I_1}) \ldots (1 - X^{I_k}).$$

Take the one with smallest k.

If $k = 1$ then c is periodic, so assume that $k \geq 2$.

Our approach to Nivat’s conjecture.

Suppose $P(c,D) \leq |D|$ for some rectangle D.

Then c has annihilating polynomial

$$f(X) = (1 - X^{I_1}) \ldots (1 - X^{I_k}).$$

Take the one with smallest k.

If $k = 1$ then c is periodic, so assume that $k \geq 2$.

Denote $\delta_i(X) = (1 - X^{I_i})$ and $\phi_i(X) = f(X)/\delta_i(X)$.

Then $\phi_i(X)c(X)$ is annihilated by $\delta_i(X)$ so it is I_i-periodic. It is not doubly periodic (since otherwise k could be reduced).
Viewing $c(X)$ using filter $\phi_1(X)$:

Non-periodic sequence of stripes in the direction I_1.
Viewing $c(X)$ using filter $\phi_1(X)$:

W.l.g. the stripes are not horizontal

\implies at least X stripes are visible in every $X \times Y$ rectangle

\implies more than X different $X \times Y$ blocks in $\phi_1(X)c(X)$

(due to the one-dimensional Morse-Hedlund theorem)
Viewing \(c(X) \) using filter \(\phi_2(X) \):

Non-periodic sequence of stripes in a different direction \(I_2 \).
Viewing \(c(X) \) using filter \(\phi_2(X) \):

Analogously: stripes not vertical \(\Rightarrow \) more than \(Y \) different \(X \times Y \) blocks in \(\phi_2(X)c(X) \).
Pick any $X \times Y$ pattern from $\phi_1(X)c(X)\ldots$
...and any $X \times Y$ pattern from $\phi_2(X)c(X)$.
Directions I_1 and I_2 are different
Directions I_1 and I_2 are different

so both patterns can be seen (more or less) in the same position.
Directions I_1 and I_2 are different

so both patterns can be seen (more or less) in the same position.

\implies more than XY distinct pairs of patterns in same positions
For some constant r (=radius of filters ϕ_1 and ϕ_2), each $(X + 2r) \times (Y + 2r)$ block of $c(X)$ uniquely determines the corresponding $X \times Y$ blocks in $\phi_1(X)c(X)$ and $\phi_2(X)c(X)$.

$\implies c(X)$ has at least XY patterns of size $(X + 2r) \times (Y + 2r)$.
We get that

$$\liminf_D \frac{P(c, D)}{|D|} \geq 1.$$
We get that
\[
\liminf_D \frac{P(c, D)}{|D|} \geq 1.
\]

This can be improved further to:

Theorem. If \(c\) is a non-periodic 2D configuration then
\(P(c, D) \leq |D|\) can hold only for finitely many rectangles \(D\).
Theorem. If c is a non-periodic 2D configuration then $P(c, D) \leq |D|$ can hold only for finitely many rectangles D.

Questions:

- What can one say for other shapes than rectangles? Perhaps an analogous result for convex shapes?
- Can one use the periodic decomposition to address the periodic tiling problem? What about other low complexity subshifts of finite type?
- The original Nivat’s problem is still open...
Theorem. If c is a non-periodic 2D configuration then $P(c, D) \leq |D|$ can hold only for finitely many rectangles D.

Questions:

- What can one say for other shapes than rectangles? Perhaps an analogous result for convex shapes?
- Can one use the periodic decomposition to address the periodic tiling problem? What about other low complexity subshifts of finite type?
- The original Nivat’s problem is still open…

Thank You