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Introduction

The modeling of many interesting physical phenomena leads to evolution-
ary partial differential equations with solutions containing highly oscillatory
components. The numerical simulation with standard integrators requires
time-steps which are restricted by the inverse of the highest frequency.

In this talk we discuss the origin of limitations of standard schemes for
such problems and we present alternative methods which overcome the step-
size restrictions.

Splitting methods

Splitting methods can be applied to problems of the type

y′ = f(y) + g(y), y(t0) = y0.

The idea is to replace the exact flow of the complete system by decomposing
the flows, i.e. by solving y′ = f(y) and y′ = g(y) separately. This idea is
promising whenever the integration of the single flows is computationally
easier than that of the complete flow. If we denote the flows by ϕf and ϕg,
respectively, then a symmetric splitting method is given by

y(t + h) ≈
(

ϕf (h/2) ◦ ϕg(h) ◦ ϕf (h/2)
)

y(t).

Typical applications are Schrödinger equations in quantum dynamics, as-
trophysics, or plasma dynamics.

In this talk we discuss splitting methods for linear and cubically nonlinear
Schrödinger equations.



Exponential methods

In the second part of the talk we will give an overview on the construction,
analysis, and implementation of various exponential integrators.

After a short motivation on the construction of general purpose expo-
nential integrators, special methods for highly oscillatory problems including
Schrödinger equations with time-dependent Hamiltonian and second order
equations will be discussed. It will be shown that these integrators admit
error bounds which are independent of the product of the step size with the
frequencies.

Finally, we present new numerical schemes for the solution of nonlinear
Klein-Gordon equations arising in modeling the interaction of relativistically
intense electromagnetic waves with a plasma.

Possible topics for informal sessions

1. Basics on numerical time integration

2. Implementation of exponential integrators

3. Numerical methods for time-dependent Schrödinger equations

4. Numerical methods for nonlinear wave equations

5. Numerical methods for parabolic problems
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