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In modern lab-on-a-chip devices electric fields are often employed to control the mo-
tion of either the liquids or dissolved particles inside microchannels. Interface instabilities
of two-phase flows have a big practical impact in many microfluidic applications. While
electrokinetic pumps and devices for liquid-liquid extraction require operational stability,
devices for mixing and dispensing would benefit from flow instabilities, particularly be-
cause of the low-Reynolds-number regime where one does not expect any turbulence. The
study of electrohydrodynamics in confined geometries has therefore become increasingly
important the past few years.

Physical model
Electrohydrodynamic stability analysis of two-phase flow in confining microsystems poses
some interesting mathematical challenges. The conventional stability analysis for un-
bounded, viscous two-phase flow [1] must be modified as the system is confined geomet-
rically in microsystems [2,3].
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Figure 1: Schematic view of the interface between two liquid dielectrics perturbed in a
normal E-field inside a microchannel.

A generic setup is shown in Fig. 1 reprinted from Ref. [3]. Two dielectric liquids
with different viscosities µ1,2, densities ρ1,2 and dielectric constants ε1,2, form an interface
described by z = ζ(x, y) inside a microchannel. The thickness of layer 1 and 2 is a and
b, respectively. The interface is influenced by the presence of the external voltage drop V
applied across the microchannel.

Our physical model includes the Navier-Stokes and continuity equations, and the



Maxwell equations of electrostatics. In each of two fluids, i = 1, 2, we have

ρ(i)Du(i)

Dt
= −∇p(i) + µ(i)∇2u(i) + ρ(i) + ∇·TM , (1)

∇·u(i) = 0, (2)

∇·(ε(i)E(i)) = 0, (3)

∇×E(i) = 0, (4)

where ρ is density, p pressure, µ viscosity, ε = ε0εr permitivity, u(x, y, z) = (u, v, w)
velocity field, E electric field, and TM the Maxwell stress tensor

TM
ik = − ε

2
E2ni + EiDknk. (5)

The Maxwell stress tensor conveniently describes coupling between electric fields and
(fluid) dielectrics. In Eq. (5), D = εE is the electric displacement vector and n is a vec-
tor normal to the interface. In our analysis we focus on homogeneous perfect dielectrics
where the coupling with E fields happens at the interface, directed normally. Thus, the
effect of E fields enter only through the normal-stress boundary condition. The boundary
conditions are summarized in Ref. [2].

Linear perturbation and stability analysis
In perturbation analysis we expand a total field f (velocity u, pressure p, electric potential
φ or normal vector n) up to the linear terms by adding a small perturbation f ′ to the
stationary flow solution f0. When variables f =f0+f ′ are put into the governing equations
and boundary conditions, the solution f0 is subtracted and the equations for f ′ obtained.

The perturbations are further expanded into normal modes of wave number k and
characteristic frequency ωk: f ′ = f̂(z) exp[i(kx − ωkt)]. If a perturbation frequency
ωk = Re ωk + iIm ωk has a positive imaginary part, the disturbance will grow in time as
exp[Im ωk], and the system will be unstable.

In case when two streaming liquids are perturbed the convective term u ·∇u will
also give a first-order contribution. Furthermore, we restrict our consideration to two-
dimensional disturbances, a valid assumption when the primary flow is parallel i.e. when
u0(x, y, z) = (u0(z), 0, 0), [2]. The perturbations can then be expressed using the stream
function ψ(x, z), and the equations that govern perturbations reduce to single ordinary
differential (Orr-Sommerfeld) equation for each liquid

d4ψ1

dz4
− 2k2d2ψ1

dz2
+ k4ψ1 = ikRe

[
(U1 − ω

k
)(

d2ψ1

dz2
− k2ψ1)− d2U1

dz2
ψ1

]
, (6)

d4ψ2

dz4
− 2k2d2ψ2

dz2
+ k4ψ2 = i

r

m
kRe

[
(U2 − ω

k
)(

d2ψ2

dz2
− k2ψ2)− d2U2

dz2
ψ2

]
. (7)

In Eqs. 6 and 7, Re = ρ1U0a/µ1 is Reynolds number (see Fig. 1), U1 and U2 are primary
flow velocities in fluids 1 and 2 respectively, m = µ2/µ1 is the viscosity ratio and r = ρ2/ρ1

the density ratio of the two fluids. As mentioned above, electric effects appear solely in
the condition for balance of normal stresses.



The challenge
The challenge is to study how, within linear stability analysis, the confinement given by
the liquid layer thicknesses a and b influence the stability of the interface as compared to
the unbounded system, where a and b tend to infinity.
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[2] G. Goranović, PhD thesis, Technical University of Denmark, 2003
http://www.mic.dtu.dk/research/MIFTS
[3] G. Goranovic, M.P. Sørensen, M. Brøns, and H. Bruus muTAS-2004, Malmö, Sweden,
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