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1 Introduction

One of the most powerful simulation methods in physics, namely the Monte
Carlo (MC) simulation method, is based on the theory of Markov chains [1].
In virtually all practically applied simulation algorithms, the convergence of
the Markov chain to its equilibrium distribution is guaranteed by enforcing
the so-called detailed balance condition (DBC) between the transition rates.
However, while DBC is su�cient, it is not necessary for the convergence of
the chain to its equilibrium distribution. Can Monte Carlo be done more
e�ciently by not imposing the detailed balance condition?
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2 Markov Chain and Detailed Balance

Let us consider a system with a discrete and �nite number of states {ri},
where i = 1, 2, 3, ..., N . A Markov Chain is a stochastic process, where the
probability to be in state ri only depends on the probability (density) p of
being in a previous state ri−1, and not on the other states, i.e.

p(r = ri|r1, r2, r3, ..., ri−1) = p(ri|ri−1), (1)

where p(·|·) denotes the usual conditional probability density. Thus, Markov
chains have no memory beyond their present state, and from this follows a
number of powerful mathematical results concerning their properties.

If we consider a discrete, homogenous Markov chain in a con�guration
space Ω, we can de�ne the (normalized) transition probabilities between
states ri and rj to be given by Pij = P (ri, rj). If these are represented as
the elements of a N ×N transition matrix P, an equilibrium or steady-state
con�guration of the Markov chain can be de�ned by the condition

P · peq = peq, (2)

where the vector peq = [peq
1 peq

2 peq
3 ...peq

N ]T contains all the elements of the state
probability densities pi. In particular, if the Markov chain is �nite (N < ∞)
and regular (Pn > 0 ∀ n), the steady-state is unique. If we assume that
temporally the Markov chain evolves from some initial state p0 by constant
rate of transitions from each state i to state j, the rate of change of the
probability densities follows the Master equation

∂pi

∂t
= −

N∑
j=1

[wijpi − wjipj]. (3)

The quantities wij are the transition rates, de�ned by wij = Pij/τ , where τ
is some (arbitrary) transition time. From the last equation follows the usual
DBC as

Pijp
eq
i = Pjip

eq
j . (4)

Obviously, this condition is su�cient but not necessary, since there's no fun-
damental reason why each transition should pairwise satisfy Eq.(4).
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3 Boltzmann Distribution

If the detailed balance condition is enforced, it is easy to use it to construct
any desired equilibrium probability distribution. For example, in a canonical
Monte Carlo simulation, we require the distribution to be of Boltzmann type

peq
i = exp(−βEi)/Z, (5)

where Ei is the energy (function) associated with state i, Z is the partition
function (normalization constant), and β = 1/kBT the inverse temperature
(thermal energy). Using DBC gives simply that

Pij

Pji

= exp[−β(Ej − Ei)]. (6)

Thus, any Markov chain where the ratio of the transition probabilities sat-
is�es Eq.(6), converges to the unique canonical Boltzmann distribution at
�xed temperature T . One such simple choice is given by the form

wij =
1

τ
e−β(Ej−Ei), for Ej − Ei > 0;

=
1

τ
, for Ej − Ei ≤ 0. (7)

This forms the basis of the Metropolis Monte Carlo simulation method.

4 Formulation of the Research Problem

The research problem formulated here concentrates on studying alternative
schemes for realizing a Monte Carlo Markov chain without having to evoke
DBC. A more general criterion for convergence of the Markov chain is given
in Ref. [2]. While alternative schemes may be relatively easy to construct (at
least in principle!), the essential question is their performance as compared
to the usual DBC Monte Carlo schemes, such as the Metropolis scheme. To
this end, it may be useful to apply and test such alternative schemes in the
context of a simple model, such as the 2D ferromagnetic Ising model, for
which an exact solution is know for its critical properties. The Ising model
has served as a generic test bench model in the literature for new simulation
algorithms, and it should be well suited for the present purposes, too.
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