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1 Introduction

Rate equations are ubiquitous in nature, and can be used to describe a wide
variety of di�erent problems ranging from chemical reactions to population
dynamics [1]. They o�er a way to carry out coarse-grained descriptions of
many dynamical problems, which are too di�cult to solve on a �microscopic�
level. There are also very e�cient numerical algorithms for solving rate equa-
tions using stochastic computer simulation techniques. However, rate equa-
tions are notoriously di�cult to solve analytically. The problem presented
here � which actually comprises several parts � deals with constructing ana-
lytic solutions to a class of rate equations, also called Smoluchowski equations
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by physicists, which describe systems where there are competing processes.
Typical processes of this type are growth (aggregation) of clusters of single
particles, and fragmentation of such clusters. Aided by physical intuition
and computer simulations, particular type of solutions are expected to exist,
as will be described below. The aim here is to �nd such solutions and study
their existence.

2 Rate equations

2.1 Smoluchowski equation

The starting point here is the Smoluchowski rate equation, originally de-
rived to describe aggregation of particles in a colloidal solution. The number
density ns of clusters of size s, comprising s �atoms�, evolves as

dns

dt
=

1

2

∑
i+j=s

K(i, j)ninj −
∞∑

j=1

K(j, s)njns, (1)

with the initial condition ns(t = 0) = δs,1, where δi,j = 1 is the Kronecker
delta function. The quantity K(j, s) is called the reaction kernel, which
denotes the rate of aggregation of clusters of sizes i and j. The rate equation
allows so-called scaling solutions (see below) if the kernels have homogeneous
form, i.e. K(ai, aj) = aλK(i, j) (physically it can be argued that λ ≤ 2).

To de�ne what the scaling solutions mean, we �rst de�ne a quantity
called the mean cluster size as s̄ =

∑
s s2ns/

∑
s sns. The scaling solutions

to Eq. (1) are separable solutions of the form

ns(t) = g(t)f(s/s̄). (2)

Physical mass conservation requires (for λ < 1) that g(t) = M1/s̄
2, where

M1 =
∑

sns is the total mass of the system (note that for 1 < λ ≤ 2 an in�-
nite cluster appears at some �nite time t = tc). Inserting the corresponding
scaling form

ns = M1s̄
−2f(s/s̄) (3)
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into Eq. (1), and taking the continuum limit s, s̄ →∞, x = s/s̄, y = j/s̄, we
get an integro-di�erential equation of the form

−w[xf ′(x) + 2f(x)] = limε→0

[
1

2

∫ (1−ε)x

εx

dyK(y, x− y)f(y)f(x− y)

−f(x)

∫ ∞

εx

K(x, y)f(y)

]
, (4)

where w is the separation constant (for t and x dependence) such that M1w =
s̄−λds̄/dt. This gives for the mean cluster size

s̄ = [C + (1− λ)M1wt]z, (5)

where C is an integration constant, and the so-called dynamic scaling expo-
nent is de�ned by

z ≡ 1/(1− λ), (6)
for λ < 1. Existence and uniqueness of the solution is guaranteed if K(i, j) ≤
K0(i + j), which means that usually ns decays exponentially fast for large x.
The corresponding solution is of the form

f(x) = Ax−λ exp(−ax), (7)

where A and a are constants. The small x behavior depends on convergence
of the integrals: classifying the kernel according to the asymptotic behavior
K(i, j) ∼ iµjν (j À i) we have the following cases:

• For µ > 0, f(x) = Bx−τ (x → 0) with τ = 1 + λ, B = const.;

• For µ = 0, f(x) as in (i), but τ = 2−Mλ/w, where Mλ =
∫

dxxλf(x);

• For µ < 0 (where all integrals converge at the lower limit), f(x) ∼
exp(−x−|µ|), whose exact algebraic form depends on the kernel (e.g.
K(i, j) = x−µ + y−µ, µ > 0, gives f(x) ∼ x−1 exp(−x−µ)).

2.2 First Generalized Smoluchowski Equation: Cluster
Fragmentation

Since it is physically possible that some of the growing clusters of size s can
break up to smaller fragments, we add the so-called cluster fragmentation
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term into Eq. (1) (with the initial condition ns(t = 0) = δs,1), which gives
the rate equation

dns

dt
=

1

2

∑
i+j=s

[K(i, j)ninj − κF (i, j)ni+j]−
∞∑

j=1

[K(j, s)njns − κF (j, s)nj+s] .

(8)
Here it is also assumed that the fragmentation kernel is a homogeneous func-
tion F (ai, aj) = aαF (i, j), and κ is a parameter indicating the relative im-
portance of fragmentation with respect to aggregation. Since now there are
two competing but opposite processes, we can assume on physical grounds
that a steady state can be reached, at least in a limited region of the para-
meter space of the rate equation. We insert the scaling ansatz into this (and
set M1 = 1), and taking the continuum limit gives

− ˙̄s

s̄2
[f(x) + xf ′(x)] = s̄λ−3G1(x)− s̄α−1κG2(x), (9)

where ˙̄s is the time derivative, and the functions G1(x) and G2(x) are given
by

G1(x) =
1

2

∫ (1−ε)x

εx

dyK(y, x− y)f(y)f(x− y)− f(x)

∫ ∞

εx

dyK(x, y)f(y);

G2(x) =
1

2

∫ (1−ε)x

εx

dyF (y, x− y)f(x)−
∫ ∞

εx

dyF (x, y)f(x + y).

(10)
There is at least one physically sensible scaling function in the steady state
which satis�es the equation, given by

f(x) ∼ xδ exp(−x), (11)

where δ = −λ + α + 1, if we assume that the integrals above converge.

The equation for the mean cluster size s̄ is obtained by multiplying Eq. (8)
with s2, summing over s, and taking the continuum limit with the scaling
ansatz inserted. This gives

ds̄

dt
= As̄λ −Bκs̄α+2, (12)
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where
A =

∫ ∞

0

dx

∫ ∞

0

dy xyK(x, y)f(x)f(y);

B =

∫ ∞

0

dx

∫ ∞

0

dy xyF (x, y)f(x + y).

(13)

From this it can be shown that the steady state value s̄0 scales as s̄0 ∼ κq

with q = 1/(2 − λ + α). Linear stability analysis predicts that this value is
stable as long as q > 0.

2.3 The Generalized Smoluchowski Equation II: Cluster
Fragmentation and Monomer Addition

Next we generalize Eq. (8) to include monomer addition (or atom deposition)
into the system. This introduces a source term in the rate equation, which
now reads as

dns

dt
= Φδ1,s +

1

2

∑
i+j=s

[K(i, j)ninj − κF (i, j)ns] (14)

−
∞∑

j=1

[K(s, j)nsnj − κF (s, j)ns+j],

where Φ is the new addition rate.

To derive the continuum integro-di�erential equation for Eq. (14) we
insert the scaling form of Eq. (2) into it, take the continuum limit s, i, s̄ →∞,
s/s̄ = const., and rede�ne time as t̃ = Φt. This gives

1

s̄2
f(x)− t̃ ˙̄s

s̄3
[2f(x)− xf ′(x)] = R [

t̃2s̄λ−3G1(x)− κ t̃s̄α−1G2(x)
]
, (15)

where ˙̄s denotes the time derivative, f ′(x) = df/dx, x = s/s̄ (and R = 1/Φ
and κ are constants, as before). Note that the deposition term vanishes in
the continuum limit and the only e�ect of deposition is to increase time. The
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functions G1,2(x) are given by

G1(x) =
1

2

∫ (1−ε)x

εx

dyK(y, x− y)f(y)f(x− y)− f(x)

∫ ∞

εx

dyK(x, y)f(y);

G2(x) =
1

2

∫ (1−ε)x

εx

dyF (y, x− y)f(x)−
∫ ∞

εx

dyF (x, y)f(x + y).

(16)
In the following, we assume that all the integrals converge, and set ε = 0.

There are two limits where the solutions to Eq. (15) are of interest here:

1. On physical grounds, at the onset of growth the fragmentation term is
negligible (since the clusters have not grown yet), and we are left with
the equation

s̄f(x)− 2t̃ ˙̄sf(x)− t̃ ˙̄sxf ′(x) = t̃2s̄λRG1(x). (17)

Apparently, the only way that the t and x dependence can be separated
is that s̄ follows an algebraic form in time, i.e. s̄ ∼ Rγtβ. Matching the
powers of the various terms in Eq. (17) gives the following results for
the scaling exponents:

γ =
1

2
β;

β =
2

1− λ
.

(18)

These are in contrast to the original Smoluchowski equation Eq. (6),
where β = z = 1/(1− λ) and the exponent γ does not even exist since
it is due to the new deposition term.
If we assume that the scaling function has the form

f(x) ∼ xδ exp(−x), (19)

(as is the case when fragmentation is included), the scaling exponent δ
for the size distribution function follows through the x dependence of
Eq. (17):

δ = 1− λ. (20)
These results have been found to be valid numerically to a good degree
of accuracy.
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2. The second regime is at later times where fragmentation becomes im-
portant and one presumably has a quasi-stationary state where only
time increases. Requiring the right hand side of Eq. (15) equals to zero
gives s̄ ∼ κ−βtβ, similar to the fragmentation case, with the scaling
exponent

β = 1/(−λ + α + 2). (21)
The scaling exponent of the scaling function is obtained by requiring
that G1(x) ∝ G2(x). Inserting Eq. (19) into the relation between
G1,2(x) gives

G1(x) = C1e
−x xλ+2δ−1;

G2(x) = C2e
−x xδ+α,

(22)

where C1 and C2 are constants depending on the explicit form of the
reaction kernels. Equating the powers of x of these expressions gives

δ = −λ + α + 1. (23)

3 Formulation of the Research Problem

The research problem formulated here concentrates on studying the existence
and nature of solutions to the generalized Smoluchowski rate equation of Eq.
(15). For simplicity, it can be assumed that the kernels K(i, j) and F (i, j) are
homogenous, as discussed in the previous sections. In addition, it may or may
not be important to consider limitations to the corresponding parameters λ
and α, as discussed in the text. More speci�cally:

1. Study the existence and nature of possible scaling solutions to Eq.(9)
in order to obtain more insight into the most general case of Eq. (17).

2. Study Eq. (15) in the quasi-stationary limit (i.e. where the right hand
size equals zero).

3. Study Eq. (15) without any assumptions about vanishing terms.

Even if it were impossible to �nd exact analytic solutions to all of these
equations, it would be important to know under what conditions scaling type
of solutions might possibly exist.

7



References
[1] F. Leyvraz, "Scaling theory and exactly solved models in the kinetics of

irreversible aggregation", Phys. Rep. 383, 95 (2003).

[2] I. Koponen, M. Rusanen, and J. Heinonen, Phys. Rev. E 58, 4037 (1998).

[3] P.L. Krapivsky, J.F.F. Mendes, and S. Redner, Eur. Phys. J. B 4, 401
(1998).

[4] K. Kang and S. Redner, Phys. Rev. A 30, 2833 (1984); Phys. Rev. Lett.
52, 955 (1984).

[5] K. Kang, S. Redner, P. Meakin, and F. Leyvraz, Phys. Rev. A 33, 1171
(1986)

[6] A.F. Voter, Phys. Rev. B 34, 6819 (1986); S.V. Khare, N.C. Bartelt
and T.L. Einstein, Phys. Rev. Lett. 75, 2148 (1995); W.W. Pai, A.K.
Swan, Z. Zhang and J.F. Wendelken, Phys. Rev. Lett. 79, 3210 (1997);
L. Bitar, P.A. Serena, P. García-Mochales, N. García, and V. T. Binh,
Surf. Sci. 339, 221 (1995).

[7] M.C. Bartelt and J.W. Evans, Phys. Rev. B 46, 12675 (1992).

[8] G.S. Bales and D.C. Chrzan, Phys. Rev. B 50, 6057 (1994); Phys. Rev.
Lett. 74, 4879 (1995).

[9] C.M. Sorensen, H.X. Zhang and T.W. Taylor, Phys. Rev. Lett. 59, 363
(1987); R.D. Vigil and R.M. Zi�, Phys. Rev. Lett. 61, 1431 (1988).

[10] E. Adam, L. Billard, and F. Lancon, Phys. Rev. E 59, 1212 (1999).

[11] R. Botet, R. Jullien, and M. Kolb, J. Phys. A 17, L75 (1984); Phys.
Rev. A 30, 2150 (1984).

8




