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Summary In this note we introduce a method for handling general boundary conditions based on an
approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. We use
Poisson’s equations as a model problem and present the a priori and the a posteriori error estimates. Also,
we show that conventional error estimates for Dirichlet and Neumann boundary conditions are a special
case of the proposed error estimates.

Introduction
Enforcing perturbed Dirichlet boundary condition i.e. the Robin boundary condition with small
coefficient in the derivative term leads to a high condition number in the system matrix. Perturbed
boundary condition also plagues the adaptive mesh refinement based on the a posteriori error
estimate since the straight forward formulation of the problem leads to a posteriori estimate that
induces a too dense mesh on the boundary. A numerical scheme has to take these facts into
account in order to produce an efficient and numerically stable method.
Perturbed boundary conditions arise for example in linear elasticity where a solid is on a very stiff
but elastic support. Also, enforcing normal Dirichlet boundary condition with the penalty method
is equivalent to solving a problem with perturbed Dirichlet boundary conditions since the penalty
method is not consistent.
We show a method based on the Nitsche method [1] [2] [3] to circumvent the high condition
number of the system matrix in the case of the perturbed boundary condition. The method is
proposed in a way that it is possible to move continuously between the Neumann and the Dirichlet
boundary conditions. We show the a priori error estimate that has the optimal rate of convergence.
Under the saturation assumption we also show the a posteriori error estimate.

Deriving The Nitsche Method
We use the Poisson problem as a model problem.

−∆u = f

∂u

∂n
=

1
ε
(g − u) + q

u = 0

in Ω

onΓ

on∂Ω \ Γ

(1)

whereΩ is a bounded domain in space with polygonal boundary,f ∈ L2(Ω), g, q ∈ L2(Γ) and
ε ∈ R, ε > 0.

Remark 1. The value of the parameterε allows to move between the Dirichlet and Neumann
problems continuously i.e.

ε → 0 ⇒ u = g

ε →∞ ⇒ ∂u

∂n
= q

onΓ

onΓ .
(2)

We suppose that we have shape regular finite element partitionsTh of the domainΩ ∈ RN ,
N = 2, 3. By K ∈ Th we denote an element of the mesh and byE we denote an edge of the
element. The mesh induces a partitioning also to the boundary of the domain∂Ω and we denote

Gh = {E : K ∩ Γ, K ∈ Th} .



(The Nitsche Method). Find uh ∈ Vh such that

Bh(uh, v) = Fh(v) ∀v ∈ Vh (3)
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Remark 2. Settingγ = 0 in equation(3) yields the conventional variational formulation of the
model problem(1). Due to the inconsistency of the penalty method this variational form can also
be seen as the variational form induced by the application of the penalty method with penalty
parameterε to the problem

−∆u = f

u = g + εq

in Ω
onΓ .

Remark 3. Settingε = 0 in equation(3) yields the variational form of the Nitsche method applied
to problem [2]

−∆u = f

u = g

in Ω
onΓ .

Remark 4. Lettingε →∞ in equation(3) yields the variational form of the Neumann problem

−∆u = f

∂u

∂n
= q

in Ω

onΓ .

Lemma 1 states that the proposed method is indeed consistent.

Lemma 1. The solutionu of the equations(1) satisfies

Bh(u, v) = Fh(v) ∀v ∈ V . (6)

A priori error estimate
For the analysis of the method we define the following mesh-dependent norm

‖v‖2
h := ‖∇v‖2

L2(Ω) +
∑

E∈Gh

1
ε + hE

‖v‖2
L2(E) . (7)



Lemma 2. There is a positive constantCI such that [3]

∑
E∈Gh

hE

∥∥∥∥∂v

∂n

∥∥∥∥2

L2(E)

≤ CI‖∇v‖2
L2(Ω) ∀v ∈ Vh . (8)

Since it is possible to compute a value to the coefficientCI of Lemma 2, it follows from Lemma 3
that the proposed method is always stable.

Lemma 3. Suppose thatγ < 1/CI . Then there exists a positive constantC such that

Bh(v, v) ≥ C‖v‖2
h ∀v ∈ Vh . (9)

Following interpolation estimate holds [3].

Lemma 4. Suppose thatu ∈ Hs(Ω), with 3/2 < s ≤ p + 1. Then it holds

inf
v∈Vh

‖u− v‖h ≤ Chs−1‖u‖Hs(Ω) . (10)

Now we can formulate the a priori error estimate in the mesh dependent norm.

Theorem 1. Suppose thatγ < 1/CI . Then it holds

‖u− uh‖h ≤ C inf
v∈Vh

‖u− v‖h (11)

and ifu ∈ Hs(Ω) and3/2 < s < p + 1, then

‖u− uh‖h ≤ Chs−1‖u‖Hs(Ω) . (12)

A posteriori error estimate
The a posteriori error estimate of the Nitsche method is based on the saturation assumption [4].
The assumption is that refining the mesh produces better solution in the mesh dependent energy
norm.

Assumption 1. Assume there existsβ < 1 such that

‖u− uh‖h ≤ β‖u− u2h‖h , (13)

whereu2h is a solution on a mesh size2h.

Theorem 2. Suppose the saturation Assumption 1 holds and thatγ < 1/CI . Then it holds

‖u− uh‖h ≤ C
( ∑

K∈Th

E2
K(uh)

)1/2
, (14)

where
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(15)

whereI is the internal boundaries of the mesh.



Remark 5. Settingε = 0 yields

E2
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(16)

which is the a posteriori estimate of the Nitsche method for the non-perturbed problem.

Remark 6. Settingγ = 0 yields
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(17)

which is the a posteriori estimate of the penalty method or the conventional approach to the
perturbed problem.

Remark 7. Lettingε →∞ yields
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(18)

which is the a posteriori estimate of the Neumann problem.

These remarks show that the a posteriori estimate holds for all values ofε, even the limit values
of ε yield the correct a posteriori estimate. In addition, settingγ = 0 yields the conventional
approach or the penalty method, depending on the problem.
For the proofs of the error estimates check [5].
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