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Abstract. We consider infinite-dimensional linear systems without a-priori well-
posedness assumptions, in a framework based on the works of M. Livšic, M.S. Brodskĭı,
Y.L. Smuljan and others. We define the energy in the system as the norm of the state
squared (other, possibly indefinite quadratic forms will also be considered). We derive a
number of equivalent conditions for a linear system to be energy preserving and hence,
in particular, well-posed. Similarly, we derive equivalent conditions for a system to be
conservative, which means that both the system and its dual are energy preserving. For
systems whose control operator is one-to-one and whose observation operator has dense
range, the equivalent conditions for being conservative become simpler, and reduce to
three algebraic equations.

1. Introduction. In this paper we give a number of algebraic characterizations of
energy preserving and of conservative linear systems in terms of the operators appearing
in a differential/algebraic state space description of the system. Such algebraic charac-
terizations may be useful for recognizing that certain linear partial differential or delay
equations describe energy preserving or conservative systems. Our conditions do not
include an a-priori well-posedness assumption, but well-posedness follows if the system
is energy preserving.

2000 Mathematics Subject Classification. Primary 47A48, 47N70, 93B28, 93C25.
Key words and phrases. Conservative system, energy preserving system, well-posed linear system, reg-

ular linear system, operator node, Cayley transform.
This research was supported by grants from the European Research Network on Systems Identification
(ERNSI), the Academy of Finland under grant 203991, the Mittag–Leffler Institute (Sweden) and EPSRC

(UK), under the Portfolio Partnership grant GR/S61256/01.
E-mail address: Jarmo.Malinen@hut.fi,www.abo.fi/~staffans,G.Weiss@imperial.ac.uk

c©XXXX Brown University

1



2 JARMO MALINEN and OLOF J. STAFFANS and GEORGE WEISS

To make our paper easier to understand, first we give finite-dimensional versions of
our results. Let the system Σ be described by{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1.1)

where A : X → X, B : U → X, C : X → Y and D : U → Y are operators (representable
by matrices) between the finite-dimensional spaces U , X and Y . The differential equa-
tion in (1.1) has, for any u ∈ C([0,∞);U) and any x0 ∈ X, a unique solution x ∈
C1([0,∞);X) with x(0) = x0. We call u(t), x(t) and y(t) the input, state and output of
the system at time t ≥ 0.

The system Σ is energy preserving if the balance equation

‖x(T )‖2 +

T∫
0

‖y(t)‖2dt = ‖x(0)‖2 +

T∫
0

‖u(t)‖2dt (1.2)

holds for any input signal u, any initial state x(0) and any time T ≥ 0. This corresponds
to interpreting ‖x(T )‖2 as the energy stored in the system at time T . Examples of such
systems occur often in physics and engineering: for example, they could be mechanical
systems without friction or circuits built from capacitors, inductors and transformers,
with a suitable choice of inputs and outputs.

The dual system of Σ, denoted Σd, is described by{
ż(t) = A∗z(t) + C∗w(t),

v(t) = B∗z(t) + D∗u(t),
(1.3)

where w(t), z(t) and v(t) are the input, state and output of Σd at time t ≥ 0.

Proposition 1.1. The above system Σ is energy preserving if and only if

A + A∗ = −C∗C, B∗ = −D∗C, D∗D = I. (1.4)

The dual system Σd is energy preserving if and only if

A + A∗ = −BB∗, C = −DB∗, DD∗ = I. (1.5)

Proof. The balance equation (1.2) can be written in differential form:

d
dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2. (1.6)

We can write both sides of this equality as quadratic functions in x(t) and u(t), and
the corresponding terms must be equal. By a straightforward computation, (1.4) is
equivalent to (1.6). This argument can be found in, e.g., Ball [3].

By a similar argument, (1.5) is equivalent to the dual version of (1.6), which concerns
the dual system Σd described by (1.3). �

We call the first equations in (1.4) and in (1.5) Lyapunov equations. This is not the
standard terminology: normally, equations like PA + A∗P = −C∗C, in the unknown P ,
are called Lyapunov equations. Here we have P = I, but later we shall encounter P 6= I,
when we allow a weighting matrix in the definition of the energy. Similarly, we call
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the second equations in (1.4) and in (1.5) cross-term equations, and the third equations
(concerning D∗D and DD∗) indicator equations.

If both Σ and Σd are energy preserving, then Σ is called conservative. Finite-dimen-
sional energy preserving systems Σ which satisfy Ker D∗ = {0} are actually conservative,
as the following proposition shows.

Proposition 1.2. For the finite-dimensional system Σ described by (1.1), the following
statements are equivalent:

(i) Σ is conservative.
(ii) Ker D∗ = {0} and (1.4) holds.
(iii) Ker D = {0} and (1.5) holds.

Proof. It follows from the previous proposition that if Σ is conservative, then both
(1.4) and (1.5) hold. In particular, D is unitary, so that Ker D = {0} and Ker D∗ = {0}.
Thus, statement (i) implies (ii) and (iii).

Now suppose that statement (ii) holds. Then it is easy to see that D is unitary. From
B∗ = −D∗C and DD∗ = I we get C = −DB∗. This, together with D∗D = I implies
C∗C = BB∗, so that (1.5) holds. Now (1.4) and (1.5) together imply (i), according to
Proposition 1.1. The fact that (iii) implies (i) is proved similarly. �

Remark 1.3. The conditions (ii) and (iii) can be reformulated as follows:
(ii’) dim U = dim Y and (1.4) holds.
(iii’) dim U = dim Y and (1.5) holds.
Indeed, if dim U = dim Y , then D∗D = I is equivalent to DD∗ = I, and this implies

that Ker D = {0} and Ker D∗ = {0}. The converse direction is also easy.
For a system Σ of the form (1.1), the matrix-valued function

G(s) = C(s−A)−1B + D, s ∈ ρ(A),

is called its transfer function. It follows from (1.4) that if Σ is energy preserving, then
G is inner, i.e., it is analytic on the open right half-plane C+ and

G∗(iω)G(iω) = I, ω ∈ R.

It follows from (1.5) that if the dual system Σd is energy preserving, then we have
G(iω)G(iω)∗ = I for all ω ∈ R, so that G is co-inner.

Proposition 1.2 gives the simplest characterization of conservative systems in finite
dimensions, via three algebraic equations (either (1.4) or (1.5)) and a null-space condition.
Unfortunately, this proposition cannot be generalized to infinite-dimensional systems, for
several reasons. First, dim U = dim Y is not necessarily true for conservative systems
with an infinite-dimensional state space, see [31, Section 6]. Second, regardless if the
condition dim U = dim Y holds, the operator D need not have a clear meaning in infinite
dimensions. For certain systems, called regular systems, there is a natural candidate for
D, the limit of the transfer function at +∞. However, if D is obtained in this way for a
conservative system, it need not satisfy D∗D = I or DD∗ = I (for example, for a delay
line D = 0, see [32, Section 7]). Third, the transfer function of an infinite-dimensional
energy preserving system need not be inner: it can even be zero, see [31, Section 6].
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The aim of this paper is to give a characterization of conservativity which is amenable
to infinite-dimensional generalization, with possibly unbounded A, B and C. In order
to state the finite-dimensional version of this characterization in a simple way, we make
the following additional assumptions:

Ker B = {0}, Ker C∗ = {0}. (1.7)

We call conservative systems satisfying (1.7) tory systems.1 In some sense, tory systems
have no “redundant” or “wasted” subspaces in U and Y , so that all the information is
circulated through the state space. Tory systems may seem a rather special subclass of
conservative systems, but in fact they are, in a sense, universal. Indeed, in Section 4 we
prove that for any conservative system, the input and output spaces can be decomposed
into two orthogonal components, U = U1 ⊕ U0 and Y = Y1 ⊕ Y0, with the following
property: the system can be decomposed into a tory system acting from the input space
U1 to the output space Y1 and a unitary constant acting from U0 to Y0. In most PDE
examples of conservative systems (see [27], [31], [32]), this unitary constant is absent,
and the system is tory.

Proposition 1.4. Let Σ be a finite-dimensional system described by (1.1) and satisfying
(1.7). Then Σ is conservative if and only if

A + A∗ = −C∗C, A + A∗ = −BB∗, C = −DB∗. (1.8)

Note that one of the equations in (1.8) is taken from (1.4) and two are taken from (1.5).
The last equation in (1.8) could be replaced by the corresponding equation B∗ = −D∗C

in (1.4), leading to an equivalent set of three equations.
Proof. The necessity of (1.8) follows from Proposition 1.1. Conversely, suppose that

(1.8) is satisfied. If we substitute C = −DB∗ and C∗ = −BD∗ into the first equation in
(1.8) and compare the result with the second equation, we obtain that BB∗ = BD∗DB∗.
Since Ker B = {0}, it follows that B∗ = D∗DB∗, or equivalently, B = BD∗D. Using
again that Ker B = {0}, we obtain D∗D = I. Applying D∗ to both sides of C = −DB∗,
we obtain B∗ = −D∗C, so that all the equations in (1.4) hold. According to Proposition
1.1, Σ is energy preserving.

Substituting B∗ = −D∗C into the second equation in (1.8) and comparing the result
with the first equation, we get C∗DD∗C = C∗C. This implies, using twice Ker C∗ = {0},
that DD∗ = I. Thus, all the equations in (1.5) hold. According to Proposition 1.1, Σd

is energy preserving, so that Σ is conservative. �
Propositions 1.1 and 1.4 presented earlier can easily be generalized to a restrictive

class of infinite-dimensional systems, called state linear systems in the book of Curtain
and Zwart [9]. The input, state and output spaces of such systems, denoted U , X and
Y , are Hilbert spaces. Any state linear system is described by (1.1), where A generates
a strongly continuous semigroup on X, while B : U → X, C : X → Y and D : U → Y

are bounded. The dual of the system described by (1.1) is the system described by
(1.3). In this class, energy preserving and conservative systems are defined similarly as
for finite-dimensional systems. For state linear systems, the Lyapunov equation in (1.4)

1The Conservative party in the UK is also known as the Tory party.



WHEN IS A LINEAR SYSTEM CONSERVATIVE? 5

should be understood as an equation on D(A), and the dual Lyapunov equation in (1.5)
should be understood as an equation on D(A∗). If the system is conservative, then it
follows from the two Lyapunov equations and the boundedness of B and C that, in fact,
D(A) = D(A∗).

Proposition 1.5. Propositions 1.1 and 1.4 remain valid (without change) for state linear
systems. Proposition 1.2 remains valid for systems with D(A) = D(A∗).

The proofs are similar to those for finite-dimensional systems and we omit them.
Remark 1.6. Proposition 1.2 cannot be generalized to state linear systems without

the extra assumption stated in the above proposition. Indeed, consider the following
counterexample: Let X = L2[0,∞), U = Y = C,

(Ax)(ξ) =
dx(ξ)

dξ
, D(A) = H1

0 (0,∞)

(this is the generator of the right shift semigroup). Then D(A∗) = H1(0,∞) and A+A∗ =
0 on D(A). Take B = 0, C = 0 and D = 1. Then (1.4) holds, so that (by the
last proposition) the system determined by A,B,C, D is energy preserving. We have
Ker D∗ = {0}, but clearly this system is not conservative.

In Sections 3–4 we will give results analogous to Propositions 1.1 and 1.4 in a much
more general framework than the state linear systems considered in Proposition 1.5.
Our framework permits us to consider systems with unbounded control and observation
operators, in particular, linear PDE systems with boundary control and/or boundary
observation, as well as certain delay equations.

We shall state in this introduction a slightly simplified version of the result that we
consider to be the most important. For this we have to make some assumptions and
introduce some concepts. Consider the system Σ described by{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1.9)

similar to (1.1). Here, A generates a strongly continuous semigroup on the state space X,
a Hilbert space. We define X1 = D(A), with the norm given by ‖x‖X1 = ‖(α − A)x‖X ,
where α ∈ ρ(A). We define X−1 to be the completion of X with respect to the norm
‖x‖X−1 = ‖(α − A)−1x‖X (for more details on these spaces, see Section 2). We assume
that B ∈ L(U ;X−1), and we introduce the space Z by

Z = X1 + (α−A)−1BU, (1.10)

where α ∈ ρ(A). Here, A really stands for the extension of A to an operator in L(X;X−1),
so that (α−A)−1 ∈ L(X−1;X). This space is sometimes called the solution space. Z is
a Hilbert space with the norm given by

‖z‖2Z = inf
{
‖x‖2X1

+ ‖v‖2U
∣∣∣ x ∈ X1, v ∈ U , z = x + (α−A)−1Bv

}
. (1.11)

If we change α ∈ ρ(A) in the last two formulas, then the space Z remains the same,
while its norm changes to an equivalent one. We have X1 ⊂ Z ⊂ X, with continuous
embeddings, and (α − A)−1B ∈ L(U ;Z) for all α ∈ ρ(A). We assume that in (1.9),
C ∈ L(Z;Y ) and D ∈ L(U ;Y ).
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The assumptions made so far (on A, B, C and D) do not imply that (1.9) defines
a well-posed system in the sense of Salamon [14], [15], Smuljan [16], Staffans [17], [22]
or Weiss [29] (see also Definition 2.7). However, they do guarantee the existence of
state trajectories x and output functions y for sufficiently smooth input functions u and
compatible initial states x0, as stated below:

Proposition 1.7. With the above assumptions, take T > 0 and let u ∈ C2([0, T ];U)
and x0 ∈ X satisfy the compatibility condition Ax0+Bu(0) ∈ X. Then the first equation
in (1.9) has a unique classical solution x ∈ C1([0, T ];X) satisfying the initial condition
x(0) = x0. Moreover, we have x ∈ C([0, T ];Z), so that y ∈ C([0, T ];Y ) can be defined
by the second equation in (1.9).

This is a consequence of Proposition 2.6 in the next section.
In the sequel we will use the notation [ X

Y ] for X×Y . Based on the above proposition,
we define for each T > 0 the space

VT =
{[

x0

u

]
∈

[
X

C2([0, T ];U)

] ∣∣∣∣ Ax0 + Bu(0) ∈ X

}
(1.12)

for which the solution of (1.9) is well-defined on [0, T ], and the operator ΣT : VT →[
X

C([0,T ];Y )

]
which associates to [ x0

u ] the corresponding pair
[

x(T )
y

]
. Thus,

[
x(T )

y

]
= ΣT

[
x0

u

]
. (1.13)

ΣT can be regarded as a densely defined operator from
[

X
L2([0,T ];U)

]
to

[
X

L2([0,T ];Y )

]
.

We define the operator C to be the restriction of C to X1, so that C ∈ L(X1;Y ).
Let Xd

−1 be the completion of X with respect to the norm ‖x‖Xd
−1

= ‖(α − A∗)−1x‖X

where α ∈ ρ(A). This space is the dual of X1 with respect to the pivot space X, so that
C∗ ∈ L(Y ;Xd

−1) (see Section 2 for more details).

Definition 1.8. Let Σ be the system determined by A, B, C, D satisfying the
assumptions listed after (1.9). We call Σ energy preserving if ΣT is isometric for all
T > 0, i.e., (1.2) holds. In this case ΣT has a unique extension to an isometric operator
from

[
X

L2([0,T ];U)

]
to

[
X

L2([0,T ];Y )

]
, denoted by the same symbol. We call Σ conservative

if it is isometric and the operators ΣT (after the extension described above) are unitary.
We call Σ tory if it is conservative and (1.7) holds.

Later we shall introduce a generalization of the concept of a conservative system
(defined using the dual system) which allows the use of (possibly indefinite) weighting
operators on U , X and Y .

At last, we are now able to state a simplified version of our main result:

Theorem 1.9. Consider the system Σ determined by A, B, C, D as in (1.9), and assume
that (1.7) holds. Then the following conditions are equivalent:

(i) Σ is conservative (hence, tory);
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(ii)


A + A∗ = −C∗C on D(A),

A + A∗ = −BB∗ on D(A∗) (hence D(A∗) ⊂ Z),

C = −DB∗ on D(A∗).

This is a consequence of Theorem 4.4. Note that in the first equation of (ii), A∗ is
actually extended to an operator from X to Xd

−1, while in the second equation of (ii), A

is extended to an operator from X to X−1.
Now we outline how weighting operators on the spaces U , X and Y can be introduced.

Our discussion here concerns finite-dimensional systems only, but the infinite-dimensional
case will be treated in the later sections. The energy balance equation (1.6) can be
replaced by the more general equation

d
dt
〈x(t), Px(t)〉 = 〈u(t), Ru(t)〉 − 〈y(t), Jy(t)〉,

with P = P ∗ ∈ L(X), J = J∗ ∈ L(Y ), and R = R∗ ∈ L(U). A system Σ defined as in
(1.1) which satisies this balance equation is called (R,P, J)-energy preserving. It can be
shown that Σ is (R,P, J)-energy preserving if and only if

PA + A∗P = −C∗JC, B∗P = −D∗JC, R = D∗JD. (1.14)

We formally get these equations from (1.4) by replacing the adjoint operators A∗, B∗,
C∗ and D∗ in (1.4) by the corresponding adjoints A† = P−1A∗P , B† = R−1B∗P ,
C† = P−1C∗J and D† = R−1D∗J computed with respect to the possibly indefinite
inner products induced by R, P and J , e.g., 〈Ax,Pz〉 = 〈x, PA†z〉.

For the remainder of this discussion (in this section) we assume that R, P and J are
invertible. We say that the system Σ is (R,P, J)-conservative if it is (R,P, J)-energy
preserving and its dual system Σd (see (1.3)) is (J−1, P−1, R−1)-energy preserving. The
fact that Σd is (J−1, P−1, R−1)-energy preserving is equivalent to the dual version of
(1.14), namely:

P−1A∗ + AP−1 = −BR−1B∗, CP−1 = −DR−1B∗, J−1 = DR−1D∗. (1.15)

Note that (1.14) and (1.15) are equivalent whenever D is invertible. Conversely, (1.14)
and (1.15) imply that D is invertible. Hence, if D is invertible, then Σ is (R,P, J)-energy
preserving if and only if it is (R,P, J)-conservative. If R, P and J are positive and
invertible, then it is possible to renorm the spaces U , X, and Y and to reduce this result
to the case where R = I, P = I and J = I.

We complete this section with a glance at previous work. Early work on conservative
systems dates back to Brodskĭı [5], [6], Helton [10], Livšic [12], Livšic and Yantsevich
[13], Sz.-Nagy and Foiaş [25] and Tsekanovski and Smuljan [26], to mention only a few.
Most of these references consider discrete-time systems, where the difficulties are consid-
erably smaller. Our system theory framework is analogous to what is called an operator
colligation, or an operator node, or Livšic–Brodskĭı node in the works mentioned above
for Hilbert space contractions (in the discrete-time case) or for contraction semigroups
(in the continuous-time case).

The continuous-time analogue of an operator colligation was first formally introduced
by Smuljan [16] in the Soviet school, but it can be found implicitly in some other works
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from the same time, such as Salamon [14]. The approach by Smuljan is influenced by
the scattering theory of Lax and Phillips [11]. Arov and Nudelman [2] use the Cayley
transform (of systems) to convert earlier known discrete-time results to Smuljan’s (and
our) continuous-time setting.

For other background material on conservative systems in the above sense, we refer
to Arov [1], Ball [3], Staffans [19], [20], [21], Staffans and Weiss [24], Tucsnak and Weiss
[27, 32], Weiss [30] and Weiss, Staffans and Tucsnak [31]. A comprehensive reference to
many aspects of linear infinite-dimensional systems is Staffans [22].

We mention that our results here can be applied to the class of systems considered in
[27, 30, 32] (which are described by second order differential equations in Hilbert spaces).
The fact that these systems are conservative was proved in [32] by a detailed argument,
which could be replaced by an application of Theorem 1.9.

2. Background on linear systems. In this section, we introduce a class of lin-
ear infinite-dimensional systems, called system nodes. System nodes are not necessarily
well-posed (in the usual sense, which will be recalled), but they have well defined state
trajectories and output functions corresponding to smooth input functions and compat-
ible initial states, as we show in Proposition 2.6. We also introduce the dual of a system
node.

In the theory of well-posed linear systems (see [22], [23], [29]) we often encounter a
strongly continuous semigroup T acting on a Hilbert space X, with generator A, which
determine two additional Hilbert spaces, denoted X1 and X−1. We have already seen
them in Theorem 1.9, and here we recall their main properties. In fact, we work in
a slightly more general framework, allowing A to be an unbounded operator but not
necessarily a semigroup generator.

Proposition 2.1. Let X be a Hilbert space and let A : D(A) ⊂ X → X be a closed,
densely defined linear operator with a nonempty resolvent set ρ(A). Take α ∈ ρ(A).

(i) For each x ∈ D(A), define ‖x‖X1 = ‖(α − A)x‖X . Then ‖·‖X1 is a norm on
X1 which makes X1 into a Hilbert space, and A ∈ L(X1;X). The operator
(α−A)−1 maps X isometrically onto X1.

(ii) Let X−1 be the completion of X with respect to the norm ‖x‖X−1 =
‖(α−A)−1x‖X . Then X is a Hilbert space and A has a unique extension to an
operator A−1 ∈ L(X;X−1). The operator (α−A−1)−1 maps X−1 isometrically
onto X. Moreover, A−1 and A are unitarily similar:

A−1 = (α−A−1)A(α−A−1)−1.

(iii) If A is the generator of a strongly continuous semigroup T = (Tt)t≥0 on X, then
the restriction T1 = T|X1 of T to X1 is a strongly continuous semigroup on X1.
T is unitarily similar to T1, since

Tt = (α−A)Tt
1(α−A)−1 ∀ t ≥ 0.

The generator of T1 is A1, the restriction of A to D(A2).
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(iv) If the semigroup T is as in (iii), then it has a unique extension to a strongly
continuous semigroup T−1 on X−1 which is unitarily similar to T, since

Tt
−1 = (α−A−1)Tt(α−A−1)−1 ∀ t ≥ 0.

The generator of T−1 is A−1.

All of this is well-known (and easy to prove) even in the Banach space context. The
operator A is often taken to be a semigroup generator also in parts (i) and (ii). For the
proof and further details we refer to [28, Section 3] or [22, Section 3.6]. By iterating
the construction in Proposition 2.1 we get an infinite sequence of Hilbert spaces . . . ⊂
X2 ⊂ X1 ⊂ X ⊂ X−1 ⊂ X−2 ⊂ . . . with continuous and dense embeddings, and the
corresponding operators An and semigroups Tn.

We remark that the choice of α ∈ ρ(A) does not change the spaces X1 or X−1, since
different values of α ∈ ρ(A) lead to equivalent norms in X1 and X−1.

In the sequel, we shall use the notation [ X
Y ] for X × Y .

Definition 2.2. Let U , X and Y be Hilbert spaces. An operator

S :=
[
A&B

C&D

]
:

[
X

U

]
⊃ D(S) →

[
X

Y

]
is called an operator node on (U,X, Y ) if it has the following structure:

(i) A is a densely defined operator on X with a nonempty resolvent set (which we
extend to an operator A−1 ∈ L(X;X−1) as explained in Proposition 2.1).

(ii) B ∈ L(U ;X−1).
(iii) D(S) = V , where V :=

{
[ x
u ] ∈ [ X

U ]
∣∣ A−1x + Bu ∈ X

}
.

(iv) A&B =
[
A−1 B

]
|V ; we use on V the graph norm of A&B:∥∥[ x

u ]
∥∥2

V
:= ‖x‖2X + ‖u‖2U + ‖A−1x + Bu‖2X .

Then it clearly follows that A&B ∈ L(V,X).
(v) C&D ∈ L(V ;Y ).

If, in addition to the above, A generates a strongly continuous semigroup on X, then S

is called a system node.
Definition 2.2 is roughly analogous to what is known as an operator node or a col-

ligation in the works of Livšic [12], Livšic and Yantsevich [13], Brodskĭı [6], Sz.-Nagy
and Foiaş [25], for Hilbert space contractions (in the discrete-time case) or for contrac-
tion semigroups (in the continuous-time case). Smuljan developed a theory of infinite-
dimensional systems in [16] which was later used by Arov and Nudelman [2]. His approach
resembles the theory of well-posed linear systems in general, and its formulation in this
section in particular. System nodes in the above framework have been used in Staffans
[19, 20, 21].

Remark 2.3. Since
[
A−1 B

]
is bounded from [ X

U ] to X−1, it follows that A&B is
closed (as a densely defined operator from [ X

U ] to X). This implies that V is complete,
hence a Hilbert space. It also implies that S is closed (as a densely defined operator
from [ X

U ] to [ X
Y ]). Indeed, this follows from the facts that A&B is closed, that C&D has

the same domain as A&B, and that C&D is continuous with respect to the graph norm
of A&B.
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We call A ∈ L(X1;X) the main operator of S, B ∈ L(U ;X−1) is its control operator,
and C&D ∈ L(V ;Y ) is its combined observation/feedthrough operator. From the last
operator we can extract C ∈ L(X1;Y ), the observation operator of S, defined by

Cx := C&D

[
x

0

]
, x ∈ X1. (2.1)

A short computation shows that for each α ∈ ρ(A), the operator

Eα :=
[
I (α−A−1)−1B

0 I

]
(2.2)

is a bounded bijection from [ X
U ] onto itself and also from

[
X1
U

]
onto V . Since

[
X1
U

]
is

dense in [ X
U ], this implies that also V is dense in [ X

U ]. Since the second column of Eα

maps U into V , we can define the transfer function of S by

G(s) := C&D

[
(s−A−1)−1B

I

]
, s ∈ ρ(A), (2.3)

which is an L(U ;Y )-valued analytic function. Clearly, for any two α, β ∈ ρ(A),

G(α)−G(β) = C[(α−A−1)−1 − (β −A−1)−1]B. (2.4)

In our construction, the operator node S, the observation operator C, and the transfer
function G are determined by the operators A, B and C&D. Alternatively, S and G
may be constructed from A, B, C and and the value of G at one point in ρ(A). More
precisely, given A ∈ L(X1;X) and B ∈ L(U ;X−1) we first define V and A&B as in
Definition 2.2. Then, for any C ∈ L(X1;Y ), E ∈ L(U ;Y ) and α ∈ ρ(A), there is a
unique C&D ∈ L(V ;Y ) such that (2.1) holds and the function G from (2.3) satisfies
G(α) = E. This operator is explicitly given by

C&D

[
x

u

]
:= C[x− (α−A−1)−1Bu] + Eu. (2.5)

We will also need the (unbounded) adjoint of an operator node. Let A∗ be the un-
bounded adjoint of A, which is defined on D(A∗) ⊂ X. In addition to the spaces X1

and X−1 induced by the operator A, we will also need the corresponding spaces induced
by A∗. We denote the analogue of X1 by Xd

1 and the analogue of X−1 by Xd
−1, so that

Xd
1 ⊂ X ⊂ Xd

−1. The corresponding norms will be denoted by ‖·‖Xd
1

and ‖·‖Xd
−1

. It is
easy to check that Xd

−1 is the dual of X1 with respect to the pivot space X. To explain
this in greater detail, note that for any x ∈ X,

‖x‖Xd
−1

= sup
z∈X1, ‖z‖X1≤1

|〈z, x〉|. (2.6)

This implies that the scalar product on X, restricted to X1×X, has a unique continuous
extension to X1 ×Xd

−1 and (2.6) remains valid for x ∈ Xd
−1. Similarly, X−1 is the dual

of Xd
1 with respect to the pivot space X.

In the sequel we shall also need the extensions of A∗ and T∗ to Xd
−1 (with D(A∗) = X)

and also their restrictions to Xd
1 . However, rather than introducing any further notation,

we shall denote these extensions and restrictions by A∗ respectively T∗. Likewise, in the
sequel we write A instead of An and T instead of Tn.
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We will always identify U , X and Y with their duals.

Proposition 2.4. Let S be an operator node on (U,X, Y ) with main operator A, control
operator B, observation operator C, and transfer function G. Then the (unbounded)
adjoint of S is given by

S∗ =
[
[A&B]d

[C&D]d

]
: V d →

[
X

U

]
,

with domain

D(S∗) = V d :=
{[

x

y

]
∈

[
X

Y

] ∣∣∣∣ A∗x + C∗y ∈ X

}
,

where [A&B]d =
[
A∗ C∗

]
|V d

and, for every α ∈ ρ(A∗),

[C&D]d
[
x

y

]
:= B∗

[
x− (α−A∗)−1C∗y

]
+ G(α)∗y.

Furthermore, S∗ is an operator node on (Y, X,U) with main operator A∗, so that if S is
a system node, then so is S∗.

The operator S∗ is called the dual node of S. It is easy to see that the transfer
functions of S∗ and S are related by Gd(s) = G(s)∗, for all s ∈ ρ(A∗).

Proof. Choose α ∈ ρ(A) and let Eα ∈ L([ X
U ]) be given by (2.2). Since Eα is invertible,

E∗αS∗ = (SEα)∗. (2.7)

A straightforward algebraic manipulation using (2.1) and (2.3) gives

SEα =
[
A&B

C&D

] [
I (α−A)−1B

0 I

]
=

[
A α(α−A)−1B

C G(α)

]
. (2.8)

The unbounded adjoint of SEα is given by

(SEα)∗
[
x

y

]
=

[
A∗ C∗

B∗α(α−A∗)−1 G(α)∗

] [
x

y

]
,

[
x

y

]
∈ V d, (2.9)

where V d is the space defined in the statement of the proposition: Indeed, if we regard
SEα as a bounded operator form

[
X1
U

]
to [ X

Y ], then its adjoint is clearly given by (2.9),

mapping [ X
Y ] into

[
Xd
−1
U

]
. The unbounded adjoint of SEα must be the restriction of

this bounded adjoint to its natural domain V d consisting of those [ x
y ] ∈ [ X

Y ] for which
(SEα)∗ [ x

y ] ∈ [ X
U ]. From (2.7) and (2.9) we get for all [ x

y ] ∈ V d the following expressions
for [A&B]d [ x

y ] and [C&D]d [ x
y ]:

S∗
[
x

y

]
= E−∗α (SEα)∗

[
x

y

]
=

[
I 0

−B
∗
(α−A∗)−1 I

] [
A∗x + C∗y

B∗α(α−A∗)−1x + G(α)∗y

]
=

[
A∗x + C∗y

B∗(x− (α−A∗)−1C∗y) + G(α)∗y

]
=

[
[A&B]d

[C&D]d

] [
x

y

]
.
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Checking Definition 2.2 we find that S∗ is an operator node on (Y,X,U) with D(S∗) =
V d and main operator A∗. If A is the generator of a strongly continuous semigroup, then
so is A∗, hence S∗ is then a system node. �

As the following proposition shows, every operator node induces a natural decomposi-
tion in its input and output spaces that separate the “nontrivial” part of the node from
its trivial “static” part.

Proposition 2.5. Let S :=
[

A&B
C&D

]
be an operator node on (U,X, Y ) with D(S) = V ,

main operator A, control operator B, and observation operator C. Decompose the spaces
U and Y into the (not necessarily orthogonal) direct sums of closed subspaces

U =
[
U1

U0

]
, Y =

[
Y1

Y0

]
, U0 = Ker B, Y1 = Ran C. (2.10)

These decompositions induce a (unique) decomposition of S into

S =

[A&B]r 0
[C&D]r D10

0 D01 D00

 :
[
Vr

U0

]
→

X

Y1

Y0

 , (2.11)

where Sr :=
[

[A&B]r
[C&D]r

]
is an operator node on (U1, X, Y1) with D(Sr) = Vr. The main

operator of Sr is A, its control operator Br is obtained from B =
[
Br 0

]
, and its

observation operator Cr is C, with range space Y1. Br is one-to-one and Cr has dense
range, D01 ∈ L(U1;Y0), D10 ∈ L(U0;Y1), and D00 ∈ L(U0;Y0). The transfer function G
of S has the decomposition

G(s) =
[
Gr(s) D10

D01 D00

]
, s ∈ ρ(A),

where Gr is the transfer function of Sr. We have
[

x
u1
u0

]
∈ V if and only if [ x

u1 ] ∈ Vr.

Proof. Let [ x
u ] ∈ V . We split u into u = [ u1

u0 ] ∈
[

U1
U0

]
. Since B [ u1

u0 ] =
[
Br 0

]
[ u1
u0 ] =

Bru1 for all [ u1
u0 ] ∈

[
U1
U0

]
, we have B

[
0
u0

]
= 0. This implies that

[
0
u0

]
∈ V , hence also

[ x
u1 ] ∈ V . In other words, V =

[
Vr

U0

]
, where Vr =

{
[ x
u ] ∈ V

∣∣ u ∈ U1

}
. We split S

accordingly into S =
[
Sr S0

]
. These operators can be regarded as the restrictions of

the original (unbounded) operator S to the subspaces
[

X
U1

]
respectively

[
0

U0

]
of [ X

U ].
Both of these are closed, and this implies that both Sr and S0 are closed.

The domain of S0 is U0 and its range is contained in [ 0
Y ], so by the closed graph

theorem, S0 =
[

0
D0

]
for some D0 ∈ L(U0;Y ). Using the decomposition Y =

[
Y1
Y0

]
, we

get D0 =
[

D10
D00

]
and S0 =

[
0

D10
D00

]
where D10 ∈ L(U0;Y1) and D00 ∈ L(U0;Y0).

It is easy to see that Sr is an operator node on (U1, X, Y1) with domain Vr. Thus, if

we decompose Sr as Sr =
[

[A&B]r
[C&D]r
[C&D]0

]
in accordance with the decomposition of its range

space
[

X
Y1
Y0

]
, then [C&D]r ∈ L(Vr;Y1), [C&D]0 ∈ L(Vr;Y0), and both Sr =

[
[A&B]r
[C&D]r

]
and[

[A&B]r
[C&D]0

]
are operator nodes, with domain Vr and output space Y1, respectively Y0. We

get the observation operators of these operator nodes by decomposing C =
[

Cr

C0

]
. Since
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Y1 = Ran C, we have Ran Cr = Y1 and C0 = 0. The latter fact implies that [C&D]0 has
a (unique) extension to an operator

[
0 D01

]
∈ L(

[
X
U1

]
;Y0).

The given decomposition of the transfer function G is an immediate consequence of
the decompositions of B into

[
Br 0

]
and of C&D into

[
[C&D]r D10
0 D01 D00

]
. �

Up to now, we have only treated S as a closed unbounded operator to which we
have applied certain algebraic manipulations, and we have said nothing about dynamical
systems. If S is a system node, i.e, if its main operator generates a strongly continuous
semigroup, then S defines a linear dynamical system of a rather general type (and this
is the reason for calling S a system node).

Proposition 2.6. Let S =
[

A&B
C&D

]
be a system node on (U,X, Y ) with domain V . Let

u ∈ C2([0,∞);U) and
[ x0

u(0)

]
∈ V . Then the equation[

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0, (2.12)

has a unique (classical) solution [ x
y ] satisfying x ∈ C1([0,∞);X) ∩ C2([0,∞);X−1),

[ x
u ] ∈ C([0,∞);V ), and y ∈ C([0,∞);Y ).

Proof. Denote the main operator of S by A, the semigroup generated by A by T, and
the control operator of S by B. Since A&B =

[
A B

]
|V , we can write the top half of

(2.12) as an equation in X−1 (here A stands for A−1, as agreed):

ẋ(t) = Ax(t) + Bu(t), t ≥ 0, x(0) = x0. (2.13)

For each u ∈ C([0,∞);U) and x0 ∈ X−1, the equation (2.13) has the unique mild solution
(where T stands for T−1, as agreed):

x(t) := Ttx0 +

t∫
0

Tt−σBu(σ) dσ, t ≥ 0. (2.14)

We denote by C0([0,∞);U) the space of continuous U -valued functions vanishing at
infinity, and Ck

0 ([0,∞);U) ⊂ C0([0,∞);U) for k = 0, 1, 2 consists of those functions
whose k first derivatives are also in C0([0,∞);U). These are Banach spaces with the
norms ‖u‖Ck

0 ([0,∞);U) := max0≤j≤k,t≥0 ‖u(j)(t)‖U . As the restriction of x (as given in
(2.14)) to any finite interval [0, t1] depends only on x0 and the restriction of u to the
same interval, it will be enough to prove the proposition for u ∈ C2

0 ([0,∞);U) (by
redefining u on (t1,∞) if necessary).

We denote the (strongly continuous) backward shift semigroup on C0([0,∞);U) by τ ,
i.e., (τ tu)(θ) = u(θ + t) for θ, t ≥ 0. The generator of τ is the differentiation operator,
with domain C1

0 ([0,∞);U). If we denote

Btu :=

t∫
0

Tt−σBu(σ) dσ,

then Bt ∈ L(C0([0,∞);U);X−1) for each t ≥ 0, and (2.14) can be written in the form
x(t) = Ttx0 + Btu, t ≥ 0. Introduce the Banach space X =

[
X−1

C0([0,∞);U)

]
, and for each
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t ≥ 0, define the operator Tt : X → X by

Tt :=
[
Tt Bt

0 τ t

]
.

A straightforward algebraic computation shows that T is a semigroup on X, and it is
also easy to see that T is strongly continuous. Moreover, for each t ≥ 0, Tt [ x0

u ] =
[

x(t)

τtu

]
,

where x is the mild solution in (2.14).
It is not difficult to verify that the generator of T is

A
[
x0

u

]
=

[
Ax0 + Bu(0)

u̇

]
,

[
x0

u

]
∈ D(A) =

[
X

C1
0 ([0,∞);U)

]
,

and that the domain of A2 is

D(A2) =
{
[ x0

u ] ∈ D(A)
∣∣ A [ x0

u ] ∈ D(A)
}

=
{

[ x0
u ] ∈

[
X

C2
0 ([0,∞);U)

] ∣∣∣ [ x0
u(0)

]
∈ V

}
.

(2.15)

Thus, the assumptions on the data in Proposition 2.6 have been chosen in such a way
that [ x0

u ] ∈ D(A2) (assuming that u, u′ and u′′ vanish at infinity).
By standard semigroup theory, if [ x0

u ] ∈ D(A2), then Tt [ x0
u ] =

[
x(t)

τtu

]
is two times

continuously differentiable in X, so that x ∈ C2([0,∞);X−1). Since, from (2.13),

x(t) = (α−A)−1[αx(t)− ẋ(t) + Bu(t)], t ≥ 0, α ∈ ρ(A),

where (α − A)−1 ∈ L(X−1;X) and αx − ẋ + Bu ∈ C1([0,∞);X−1), we obtain that
x ∈ C1([0,∞);X). From (2.15) it is easy to see that the operator Γ defined by Γ [ x0

u ] =[ x0
u(0)

]
is continuous from D(A2) to V . Since

[
x(t)
u(t)

]
= ΓTt [ x0

u ], it follows that [ x
u ] ∈

C([0,∞);V ), and this implies y ∈ C([0,∞);Y ). �
It is easy to show that under the assumptions of Proposition 2.6, if

[ x0
u(0)

]
∈ V and

ü(t) = O(eωt) as t →∞ for some ω < ∞, then the Laplace transforms û, x̂, and ŷ satisfy

x̂(s) = (s−A)−1[x0 + Bû(s)],

ŷ(s) = C(s−A)−1x0 + G(s)û(s),

for all s with sufficiently large real part (see, for example, [22, Lemma 4.7.11]).
We obtain the well-known class of well-posed linear systems by adding one more as-

sumption to those in Definition 2.2.
Definition 2.7. Let S =

[
A&B
C&D

]
be a system node on (U,X, Y ). We call S well-posed

if there is a function K : (0,∞) → (0,∞) such that for all t > 0,

‖x(t)‖2X + ‖y‖2L2([0,t];Y ) ≤ K(t)
(
‖x0‖2X + ‖u‖2L2([0,t];U)

)
, (2.16)

for all x, y, x0, and u satisfying the conditions of Proposition 2.6.
For a well-posed system node, the operator ΣT defined in (1.13) (on the domain

VT from (1.12)) can be extended to a bounded linear operator from
[

X
L2([0,T ];U)

]
to[

X
L2([0,T ];Y )

]
, denoted by the same symbol. The family (ΣT )T≥0 is then called a well-

posed linear system in the terminology of [17], [23], [29], [31], and [32].
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Definition 2.7 is easily seen to be equivalent to the definition used by Salamon in [14]
and by Smuljan in [16]. (Salamon phrases it in terms of A, B, C, and G rather than in
terms of the system node S.) Necessary and sufficient conditions for well-posedness were
given in Curtain and Weiss [8]. If a system node is well-posed, then its transfer function
is bounded in some right half-plane. Conversely, every L(U ;Y )-valued function which is
analytic and bounded in some right half-plane can be interpreted as the transfer function
of some well-posed system node: see, e.g., [15], [18] or [22] for details.

Definition 2.8. Let S =
[

A&B
C&D

]
be an operator node on (U,X, Y ). We call S

compatible if its observation operator C has an extension C ∈ L(Z;Y ), where Z is the
Hilbert space in (1.10) and (1.11).

If S is compatible and C is as above, then we can define D ∈ L(U ;Y ) by

Du = [C&D]
[
x

u

]
− Cx,

[
x

u

]
∈ V. (2.17)

Indeed, it follows from the definition of C in (2.1) that the above expression does not
depend on x. Choosing x = (s−A)−1u, we obtain

Du = G(s)u− C(s−A)−1Bu, s ∈ ρ(A),

so D is bounded (because G(s) ∈ L(U ;Y ) and (s − A)−1B is bounded from U to Z).
Thus, for any compatible operator node,

G(s) = D + C(s−A)−1B, s ∈ ρ(A),

which is similar to the usual formula for finite-dimensional systems. For a compatible
operator node, the extension C is usually not unique. Every well-posed system node is
compatible: this was shown in [23, Section 3]. For a compatible S, (2.12) can be written
in the simpler form (1.9).

3. Energy preserving systems.
Definition 3.1. Let U , X and Y be Hilbert spaces, and let R = R∗ ∈ L(U), P =

P ∗ ∈ L(X) and J = J∗ ∈ L(Y ). We call a system node S on (U,X, Y ) (R,P, J)-energy
preserving if for all T > 0 we have

〈x(T ), Px(T )〉X +

T∫
0

〈y(t), Jy(t)〉Y dt = 〈x0, Px0〉X +

T∫
0

〈u(t), Ru(t)〉Udt, (3.1)

for all x, y, x0, and u satisfying the conditions of Proposition 2.6. If R = I, P = I and
J = I, then we simply call the node energy preserving.

Note that (3.1) implies the well-posedness of S if P ≥ ε > 0 and J ≥ ε > 0.
We present a number of characterizations of energy preserving system nodes.

Theorem 3.2. Let S =
[

A&B
C&D

]
be a system node on (U,X, Y ) with domain V , main

operator A, control operator B, observation operator C, and transfer function G, and
let S∗ =

[
[A&B]d

[C&D]d

]
be the adjoint system node with domain V d.

Let R = R∗ ∈ L(U), P = P ∗ ∈ L(X) and J = J∗ ∈ L(Y ). Then the following
statements are equivalent:

(i) S is (R,P, J)-energy preserving;
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(ii) for all [ x0
u0 ] ∈ V ,

2<
〈
A&B [ x0

u0 ] , Px0

〉
X

= 〈u0, Ru0〉U −
〈
C&D [ x0

u0 ] , J [C&D] [ x0
u0 ]

〉
Y

; (3.2)

(iii) the operator [ P 0
0 J ]

[
I 0
C&D

]
maps V into V d, and[

[A&B]d

[C&D]d

] [
P 0
0 J

] [
I 0
C&D

]
=

[
P 0
0 R

] [
−[A&B]

0 I

]
on V ; (3.3)

(iv) for some (hence, for all) α ∈ ρ(A), we have
PA + A∗P = −C∗JC on X1,

B∗(α−A∗)−1P (α + A) + G(α)∗JC = 0 on X1,

B∗(α−A∗)−1(2<α)P (α−A)−1B + G(α)∗JG(α) = R on U ;

(3.4)

(v) for some (hence, for all) α ∈ C+ ∩ ρ(A), the operator[
A(α) B(α)
C(α) D(α)

]
=

[
(α + A)(α−A)−1

√
2<α(α−A)−1B√

2<α C(α−A)−1 G(α)

]
, (3.5)

which is in L
(
[ X

U ] ; [ X
Y ]

)
, is

(
[ P 0

0 R ] , [ P 0
0 J ]

)
-isometric, i.e.,[

A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

] [
A(α) B(α)
C(α) D(α)

]
=

[
P 0
0 R

]
. (3.6)

In the case where R = I, P = I and R = I, parts (i), (ii) and (v) of this theorem
are closely related to [1, pp. 31–32] (more general weight operators are considered later
in [1]). The operator

[
A(α) B(α)
C(α) D(α)

]
∈ L

(
[ X

U ] ; [ X
Y ]

)
defined in (v) is called the Cayley

transform (with parameter α) of S. Thus, a system node is (R,P, J)-energy preserving
if and only if its Cayley transform is

(
[ P 0

0 R ] , [ P 0
0 J ]

)
- isometric.

Proof. (i) ⇒ (ii): Let [ x0
u0 ] ∈ V , let u ∈ C2([0,∞);U) with u(0) = u0, and let

x ∈ C1([0,∞);X) and y ∈ C([0,∞);Y ) be as in Proposition 2.6. By differentiating (3.1)
with respect to T , we get

2< 〈ẋ(t), Px(t)〉X + 〈y(t), Jy(t)〉Y = 〈r(t), Ru(t)〉U , t ≥ 0,

where ẋ(t) = A&B
[

x(t)
u(t)

]
and y(t) = C&D

[
x(t)
u(t)

]
. Taking t = 0 we get (3.2).

(ii) ⇒ (i): Let [ x0
u0 ] ∈ V , let u ∈ C2([0,∞);U) with u(0) = u0, and let x ∈

C1([0,∞);X) and y ∈ C([0,∞);Y ) be as in Proposition 2.6. Replace [ x0
u0 ] in (3.2)

by
[

x(t)
u(t)

]
, observe that A&B

[
x(t)
u(t)

]
= ẋ(t), and integrate over [0, T ], to get (3.1).

(ii) ⇒ (iii): By regrouping the terms in (3.2) we get the equivalent identity〈[
A&B

C&D

] [
x0

u0

]
,

[
P 0
0 J

] [
I 0
C&D

] [
x0

u0

]〉
[X
Y ]

=
〈[

x0

u0

]
,

[
P 0
0 R

] [
−[A&B]

0 I

] [
x0

u0

]〉
[X
Y ]

,
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valid for all [ x0
u0 ] ∈ V . This, together with the polarization identity gives〈[

A&B

C&D

] [
x1

u1

]
,

[
P 0
0 J

] [
I 0
C&D

] [
x0

u0

]〉
[X
Y ]

=
〈[

x1

u1

]
,

[
P 0
0 R

] [
−[A&B]

0 I

] [
x0

u0

]〉
[X
Y ]

,

(3.7)

for all [ x0
u0 ], [ x1

u1 ] ∈ V . For each fixed [ x0
u0 ] ∈ V the right-hand side above has an extension

to a continuous functional on [ X
Y ], so that [ P 0

0 R ]
[

I 0
C&D

]
[ x0
u0 ] ∈ D(S∗) = V d and (3.3)

holds (we have used Proposition 2.4).
(iii) ⇒ (ii): This is the same computation done backwards.
(iii) ⇔ (iv): We have seen that (3.3) is equivalent to (3.7). Let us replace [ x0

u0 ] and
[ x1
u1 ] in (3.7) by Eα [ x2

u2 ] respectively Eα [ x3
u3 ], where [ x2

u2 ], [ x3
u3 ] ∈

[
X1
U

]
and Eα is as in

(2.2). Then (3.7) becomes (see (2.3) and (2.8))[
A α(α−A)−1B

C G(α)

]∗ [
P 0
0 J

] [
I (α−A)−1B

C G(α)

]
=

[
I (α−A)−1B

0 I

]∗ [
P 0
0 R

] [
−A −α(α−A)−1B

0 I

]
.

or equivalently (see (2.9)),[
A∗ C∗

B∗α(α−A∗)−1 G(α)∗

] [
P 0
0 J

] [
I (α−A)−1B

C G(α)

]
=

[
I 0

B∗(α−A∗)−1 I

] [
P 0
0 R

] [
−A −α(α−A)−1B

0 I

]
.

We may rewrite the above identity in the self-adjoint form[
PA + A∗P (α + A∗)P (α−A)−1B

B∗(α−A∗)−1P (α + A) B∗(α−A∗)−1(2<α)P (α−A)−1B

]
+

[
C∗JC C∗JG(α)

G(α)∗JC G(α)∗JG(α)

]
=

[
0 0
0 R

]
.

(3.8)

The top left corner of this identity is the first equation in (3.4). The top right corner is
the identity (α + A∗)P (α − A)−1B + C∗JG(α) = 0 on U , which is the adjoint of the
second equation in (3.4). The bottom left corner of (3.8) is the second equation in (3.4),
and the bottom right corner is the third equation in (3.4).

(iv) ⇔ (v): Recall that (3.4) is equivalent to (3.8). We get (3.6) by multiplying (3.8)
by

[√
2<α(α−A)−1 0

0 I

]
to the right and by

[√
2<α(α−A∗)−1 0

0 I

]
to the left. �

Remark 3.3. It follows from the proof of the equivalence of (iv) and (v) in Theorem
3.2 that each of the three equations in (3.4) is equivalent to the corresponding Cayley
transformed equation (for all α ∈ C+ ∩ ρ(A)):

A(α)∗PA(α) + C(α)∗JC(α) = P,

B(α)∗PA(α) + D(α)∗JC(α) = 0,

B(α)∗PB(α) + D(α)∗JD(α) = R.

(3.9)
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We call the first equation (3.4) and the corresponding equation in (3.9) the (observation
or primal) Lyapunov equation. We call the second equation the (primal) cross-term
equation, and the last one we call the (primal) indicator equation. Similar terminology
was introduced in Section 1, and the relationship between the corresponding equations
is as follows: if X is finite-dimensional and we take limits as α → +∞ in (3.4), we obtain
(1.4).

Note that the indicator equation in (3.4) implies the following: if iω ∈ ρ(A) where
ω ∈ R, then G(iω)∗JG(iω) = R.

Lemma 3.4. We use the notation of Theorem 3.2.
(i) If the Lyapunov equation PA + A∗P = −C∗JC holds on X1, then the operator

Q(α) ∈ L(X1;Y ) defined by

Q(α) := B∗(α−A∗)−1P (α + A) + G(α)∗JC

does not depend on α ∈ ρ(A).
(ii) If (i) holds and Q(α) = 0 for some (hence, for all) α ∈ ρ(A), then the operator

R(β, γ) ∈ L(U) defined by

R(β, γ) := B∗(β −A∗)−1(β + γ)P (γ −A)−1B + G(β)∗JG(γ)

is self-adjoint and independent of β, γ ∈ ρ(A).

Proof. (i) By using the Lyapunov equation PA+A∗P = −C∗JC we can rewrite Q(α)
in the form

Q(α) = B∗(α−A∗)−1
[
αP −A∗P − C∗JC

]
+ G(α)∗JC

= B∗
[
P − (α−A∗)−1C∗JC

]
+ G(α)∗JC.

If also β ∈ ρ(A), then by the dual version of (2.4)

Q(α)−Q(β) =
{
B∗

[
(β −A∗)−1 − (α−A∗)−1

]
C∗ + G(α)∗ −G(β)∗

}
JC = 0.

(ii) We first show that R(β, γ) is independent of β. Let α, β, γ ∈ ρ(A). Since Q(γ) = 0,
we also have

Q(γ)∗ = (γ + A∗)P (γ −A)−1B + C∗JG(γ) = 0.

By using this equation we can rewrite R(β, γ) in the form

R(β, γ) = B∗(β −A∗)−1
[
(β −A∗)P (γ −A)−1B − C∗JG(γ)

]
+ G(β)∗JG(γ)

= B∗
[
P (γ −A)−1B − (β −A∗)−1C∗JG(γ)

]
+ G(β)∗JG(γ).

Therefore, by the dual version of (2.4),

R(α, γ)−R(β, γ) =−B∗
[
(α−A∗)−1 − (β −A∗)−1

]
C∗JG(γ)

+
[
G(α)∗ −G(β)∗

]
JG(γ) = 0.

This shows that R(β, γ) is independent of β. It must also be independent of γ because
of the fact that R(β, γ) = R(γ, β)∗, and R(γ, β) does not depend on γ. Now, to see that
R(β, γ) is self-adjoint it suffices to take β = γ. �
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The above lemma shows that the indicator equation (the last) in (3.4) may be replaced
by the following equation, for some (hence for all) β, γ ∈ ρ(A):

B∗(β −A∗)−1(β + γ)P (γ −A)−1B + G(β)∗JG(γ) = R on U. (3.10)

Remark 3.5. If the first two equations in (3.4) hold, then by Lemma 3.4, the left-hand
side of the indicator equation in (3.4) does not depend on α ∈ ρ(A). Thus, if S, P and J

are given and if the first two equations in (3.4) hold, then the system is (R,P, J)-energy
preserving, where R is given by the indicator equation in (3.4). See also Remark 3.9 for
other formulas expressing R.

Remark 3.6. Suppose that U , X and Y are Hilbert spaces, A is a semigroup generator
on X, C ∈ L(X1;Y ), P = P ∗ ∈ L(X) is invertible, J = J∗ ∈ L(Y ), the first equation
in (3.4) holds, and there exists a number α ∈ ρ(A) such that −α ∈ ρ(A). Then we
can construct all the system nodes S with main operator A and observation operator
C which are (R,P, J)-energy preserving for some R = R∗ ∈ L(U) as follows: choose
G(α) ∈ L(U ;Y ) and define B ∈ L(U ;X−1) by

B = −(α−A)P−1(α + A∗)−1C∗JG(α).

Then the second equation in (3.4) is satisfied and so is the third, if we define R by this
equation. By Theorem 3.2, S is (R,P, J)-energy preserving.

Under a regularity assumption, the previous result can be used to cast the character-
ization of energy preserving systems into a form that looks more like (1.14).

Definition 3.7. Let S be a system node on (U,X, Y ) and let A, B, C, and G be as
in Theorem 3.2.

(i) S is weakly regular if there exists a D ∈ L(U ;Y ) such that

lim
α→+∞

〈
G(α)u0, y0

〉
=

〈
Du0, y0

〉
for all u0 ∈ U , y0 ∈ Y . In this case D is called the feedthrough operator of S.

(ii) The weak Yosida extension of C is the operator Cw : D(Cw) → Y given by

Cwx0 := weak-lim
α→+∞

α C(α−A)−1x0,

with D(Cw) consisting of those x0 ∈ X for which the above limit exists.
(iii) The weak Yosida extension of B∗ is the operator B∗w : D(B∗w) → U given by

B∗wx0 := weak-lim
α→+∞

α B∗(α−A∗)−1x0,

with D(B∗w) consisting of those x0 ∈ X for which the above limit exists.
Obviously, a system node S is weakly regular if and only if its dual node Sd is weakly

regular. We have D(A) ⊂ D(Cw) and D(A∗) ⊂ D(B∗w); see the arguments in [29].
Moreover, if S is weakly regular then for all α ∈ ρ(A),

G(α) = Cw(α−A)−1B + D, G(α)∗ = B∗w(α−A∗)−1C∗ + D∗, (3.11)

again by some arguments in [29]. In particular, (α − A)−1BU ⊂ D(Cw) and (α −
A∗)−1C∗Y ⊂ D(B∗w). Thus, weakly regular system nodes are compatible (as defined at
the end of Section 2), and we can take C to be the restriction of Cw to Z. With this
choice of C, the operator D from (2.17) is the feedthrough operator of S.
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Theorem 3.8. Let S =
[

A&B
C&D

]
be a weakly regular system node on (U,X, Y ) with

semigroup generator A, control operator B, observation operator C, and feedthrough
operator D, and let B∗w be the weak Yosida extensions of B∗. Let R = R∗ ∈ L(U),
P = P ∗ ∈ L(X) and J = J∗ ∈ L(Y ). Then S is an (R,P, J)-energy preserving if and
only if X1 ⊂ D(B∗wP ), (γ −A)−1BU ⊂ D(B∗wP ) for all γ ∈ ρ(A), and

PA + A∗P = −C∗JC on X1,

B∗wP + D∗JC = 0 on X1,

weak-lim
γ→+∞

B∗wP (γ −A)−1B + D∗JD = R.

(3.12)

As a part of the proof of this theorem we show that the condition X1 ⊂ D(B∗wP ) is
redundant in the sense that it is implied by the Lyapunov equation in (3.12). Likewise,
the condition (γ − A)−1BU ⊂ D(B∗wP ) for all γ ∈ ρ(A) is redundant in the sense that
it is implied by the first two equations in (3.12). Furthermore, the Lyapunov equation
implies that the restriction of B∗wP to X1 is continuous, and the first two equations imply
that B∗wP (γ −A)−1B is continuous on U . (All of these statements depend on the weak
regularity assumption.)

Proof. We show that (3.4) is equivalent to (3.12) under the additional weak regularity
assumption. For this, we assume that the Lyapunov equation PA + A∗P = −C∗JC

(which appears in both lists) holds. As in Lemma 3.4, we define

Q = B∗(α−A∗)−1P (α + A) + G(α)∗JC,

and use (3.11) and the Lyapunov equation to write Q in the form

Q = B∗w(α−A∗)−1
(
αP + PA + C∗JC

)
+ D∗JC

= B∗w(α−A∗)−1
(
α−A∗

)
P + D∗JC

= B∗wP + D∗JC on X1.

We conclude that the middle (cross-term) equations in (3.4) and (3.12) are equivalent,
whenever the Lyapunov equation holds.

It remains to show that the last (indicator) equations in (3.4) and (3.12) are equivalent
to each other whenever the first two equations in (3.4) and (3.12) hold. If the first two
equations in (3.4) hold, then by Remark 3.5, S is (R,P, J)-energy preserving, where R

is given by the indicator equation in (3.4). Thus, the only thing which we have to show
is that the indicator equations in (3.4) and (3.12) define the same operator R. Define R

by (3.10), i.e.,

R = B∗(β −A∗)−1(β + γ)P (γ −A)−1B + G(β)∗JG(γ).

By Lemma 3.4, R does not depend on β, γ ∈ ρ(A), so that it coincides with the operator
R defined by the indicator equation in (3.4). Let β = β → +∞. Then the weak limit of
the last term above exists, so the weak limit of the first term on the right-hand side also
exists. This implies that, for all u0 ∈ U and γ ∈ ρ(A), P (γ − A)−1Bu0 ∈ D(B∗w), and
that for all γ ∈ ρ(A)

R = B∗wP (γ −A)−1B + D∗JG(γ). (3.13)

Taking the weak limit as γ →∞ we get the indicator equation in (3.12). �
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Note that if B ∈ L(U ;X), then the indicator equation in (3.12) reduces to D∗JD = R,
and we recover the equations (1.14).

Remark 3.9. In the weakly regular case the indicator equation in (3.12) can be written
in still another equivalent form, namely,

R = D∗JD + (B∗wP + D∗JCw)(γ −A)−1B (3.14)

for some (hence, for all) γ ∈ ρ(A). To see this, it suffices to substitute (3.11) into (3.13).
In the strongly regular case (i.e., when limα→+∞G(α)u0 exists in Y for each u0 ∈ U) it
is possible to let α = α → +∞ in the last equation in (3.4) to get one more equivalent
form of this equation:

R = D∗JD + 2 lim
α→+∞

αB∗(α−A∗)−1P (α−A)−1B. (3.15)

4. Conservative systems. In the last section the weighting operators R, P and
J were only assumed to be self-adjoint. In this section we also require them to have
bounded inverses. This enables us to talk about (R,P, J)-conservative systems.

Definition 4.1. Let U , X and Y be Hilbert spaces, and let R = R∗ ∈ L(U), P =
P ∗ ∈ L(X) and J = J∗ ∈ L(Y ) be invertible. A system node S is (R,P, J)-conservative
if it is (R,P, J)-energy preserving and S∗ is (J−1, P−1, R−1)-energy preserving. An
(R,P, J)-conservative system node is (R,P, J)-tory if its control operator is one-to-one
and its observation operator has dense range. Instead of “(I, I, I)-conservative” we write
“conservative” and similarly for “tory”.

In many applications it is known a priori that the control operator is one-to-one and
that the observation operator has dense range. A conservative system is tory if and only
if its transfer function is purely contractive; see Theorem 6.2.

As shown in [2], every contractive analytic (Schur) function in C+ is the transfer
function of a simple conservative system S. A conservative system is called simple if it has
no nontrivial subspace which is both uncontrollable and unobservable, or equivalently,
if its semigroup T is completely nonunitary. All simple conservative realizations of a
transfer function are equivalent up to a unitary similarity transformation in the state
space.2 For more details, see [2] or [22, Chapter 11] for the continuous-time case, and [7]
or [25, pp. 255–256] for the discrete-time case.

We proceed to give equivalent conditions for a system node S to be (R,P, J)-conser-
vative. Some such conditions are obtained from Theorem 3.2, applied to both S and to
the adjoint node S∗. However, we can replace some of the resulting conditions by others
that may be more practical to work with in applications.

Since isometric operators with dense range are unitary (also in the indefinite case),
we get the following:

Theorem 4.2. Let R = R∗ ∈ L(U), P = P ∗ ∈ L(X) and J = J∗ ∈ L(Y ) have
bounded inverses. Let S =

[
A&B
C&D

]
be an (R,P, J)-energy preserving system node on

(U,X, Y ) with domain V , main operator A, control operator B, observation operator C,

2A simple conservative system is generally not minimal (in the usual system theoretic sense). Indeed,
all minimal finite-dimensional conservative systems have inner transfer functions, so every conservative

realization of a transfer function which is not inner must be infinite-dimensional.
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and transfer function G, and let S∗ =
[

[A&B]d

[C&D]d

]
be the adjoint system node with domain

V d. Then the following statements are equivalent:
(i) S is (R,P, J)-conservative;
(ii) the operator [ P 0

0 J ]
[

I 0
C&D

]
maps V onto V d;

(iii) for some (hence, for all) α ∈ C+ ∩ ρ(A), the operator
[

A(α) B(α)
C(α) D(α)

]
defined in

(3.5) is
(
[ P 0

0 R ] , [ P 0
0 J ]

)
-unitary;

(iv)
[

A&B
C&D

]
+ [ α 0

0 0 ] has dense range for some (hence, for all) α ∈ C+ ∩ ρ(A);
(v) Ran C&D = Y , and P−1A∗ + AP−1 = −BR−1B∗ on Xd

1 .
When these equivalent conditions hold, then Ran C&D = Y , and

[
A&B
C&D

]
+ [ α 0

0 0 ] has
a bounded inverse for every α ∈ C+ ∩ ρ(A).

Proof. (i) ⇒ (ii): Suppose (i). By point (iii) of Theorem 3.2, (ii) holds if we replace
the word “onto” by the word “into”. To verify that [ P 0

0 J ]
[

I 0
C&D

]
maps V onto V d, we

apply statement (iii) of Theorem 3.2 to S∗, and obtain

C&D

[
P−1 0

0 R−1

] [
I 0

[C&D]d

]
=

[
0 J−1

]
on V d.

Therefore [
P 0
0 J

] [
I 0
C&D

] [
P−1 0

0 R−1

] [
I 0

[C&D]d

]
=

[
I 0
0 I

]
on V d, (4.1)

where
[

P−1 0
0 R−1

] [
I 0

[C&D]d

]
maps V d into V . Hence, [ P 0

0 J ]
[

I 0
C&D

]
maps V onto V d.

(ii) ⇒ (i): If (ii) holds then, arguing as above with S∗ replaced by S, we get[
P−1 0

0 R−1

] [
I 0

[C&D]d

] [
P 0
0 J

] [
I 0
C&D

]
=

[
I 0
0 I

]
on V , i.e., [ P 0

0 J ]
[

I 0
C&D

]
is left-invertible as an operator from V to V d. Since it is also onto,

it is invertible and
(
[ P 0

0 J ]
[

I 0
C&D

])−1 =
[

P−1 0
0 R−1

] [
I 0

[C&D]d

]
and (4.1) holds. Multiplying

(3.3) by
[

P−1 0
0 R−1

] [
I 0

[C&D]d

]
from the right we find that

[A&B]d = −P [A&B]
[

P−1 0
0 R−1

] [
I 0

[C&D]d

]
.

This combined with (4.1) gives[
A&B

C&D

] [
P−1 0

0 R−1

] [
I 0

[C&D]d

]
=

[
P−1 0

0 J−1

] [
−[A&B]d

0 I

]
.

Thus, the dual version of (3.3) holds, and so S is conservative.
(i) ⇔ (iii): This follows from Theorem 3.2, and the fact that when we replace S and

α by S∗ and α, then the operator
[

A(α) B(α)
C(α) D(α)

]
in (3.5) is replaced by

[
A(α) B(α)
C(α) D(α)

]∗
.



WHEN IS A LINEAR SYSTEM CONSERVATIVE? 23

(iii) ⇔ (iv): It follows from (2.8) that for all α ∈ C+ ∩ ρ(A),([
A&B

C&D

]
+

[
α 0
0 0

])[
(α−A)−1 (α−A)−1B

0 I

]
=

[√
2<α 0
0 I

] [
A(α) B(α)
C(α) D(α)

][
1√
2<α

0
0 I

]
,

(4.2)

where
[

(α−A)−1 (α−A)−1B
0 I

]
maps [ X

U ] onto V . Therefore
[

A&B
C&D

]
+ [ α 0

0 0 ] has the same

range as
[

A(α) B(α)
C(α) D(α)

]
. By Theorem 3.2,

[
A(α) B(α)
C(α) D(α)

]
is

(
[ P 0

0 R ] , [ P 0
0 J ]

)
-isometric. Thus,

it is
(
[ P 0

0 R ] , [ P 0
0 J ]

)
-unitary if and only if

([
A&B
C&D

]
+ [ α 0

0 0 ]
)

has dense range.
(i)&(iv) ⇒ (v): The control Lyapunov equation follows from (i) and Theorem 3.2.

That C&D has dense range follows from (iv).
(v) ⇒ (iii): Assume (v). By Theorem 3.2,[

P−1 0
0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

] [
A(α) B(α)
C(α) D(α)

]
=

[
I 0
0 I

]
. (4.3)

This implies that the operator

Q =
[
P 0
0 J

] [
A(α) B(α)
C(α) D(α)

] [
P−1 0

0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗
(4.4)

is a
[

P−1 0
0 J−1

]
-self-adjoint projection on [ X

Y ]. By Remark 3.3 applied to S∗, we have
Q11 = I (since we assume the control Lyapunov equation to hold). This combined with
the fact that Q2 = Q (since Q is a projection) implies that

Q12

[
Q21 Q22

]
= 0, Q22Q21 = 0, Q21Q12 + Q2

22 = Q22. (4.5)

We claim that Q12 = 0. To show this it suffices to show that
[
Q21 Q22

]
has dense

range (see the first equation above). By (4.3), the operator
[

A(α) B(α)
C(α) D(α)

]∗
is onto, and

therefore, by (4.4),
[
Q21 Q22

]
has dense range if and only if

[
C(α) D(α)

]
has dense

range. But
[
C(α) D(α)

]
has the same range as C&D (see the lower row of (4.2)).

Thus, we conclude that
[
Q21 Q22

]
has dense range and that Q12 = 0. That Q is[

P−1 0
0 J−1

]
-self-adjoint means explicitly that[

P−1 0
0 R−1

] [
Q11 Q12

Q21 Q22

]
=

[
Q∗11 Q∗21
Q∗12 Q∗22

] [
P−1 0

0 R−1

]
,

and therefore Q21 = RQ∗12P
−1 = 0. Substituting Q12 = 0 and Q21 = 0 into (4.5) we find

that Q22 is a projection. We observed earlier that the range of
[
Q21 Q22

]
is dense, and

since Q21 = 0, this means that Q22 has dense range. Thus Q22 = I, and the left-hand
side of (4.4) is the identity.

Having shown that (i)–(v) are equivalent, we proceed to prove the additional claims.
We noticed earlier in the proof that

([
A&B
C&D

]
+[ α 0

0 0 ]
)

has the same range as
[

A(α) B(α)
C(α) D(α)

]
.

By (iii) this is all of [ X
Y ]. In particular, C&D maps V onto Y . That

([
A&B
C&D

]
+ [ α 0

0 0 ]
)

has a bounded inverse for all α ∈ C+ ∩ ρ(A) follows from (4.2). �
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Remark 4.3. By equations (3.3) and Theorem 4.2(ii), each (R,P, J)-conservative
systems node S satisfies

S† :=
[
P−1 0

0 R−1

]
S∗

[
P 0
0 J

]
= S← :=

[
−[A&B]

0 1

] [
I 0
C&D

]−1

on V d. As S∗ is a system node, it follows easily that S† is a system node, too. We call S←

the time-flow-inverse of S. The reason for this is the following (see [22, Section 6.5], or
in the well-posed case [24], for details): Suppose that u ∈ C([0, τ ];U), x ∈ C1([0, τ ];X)
and y ∈ C([0, τ ];Y ) satisfy (2.12) on some time interval [0, τ ]. Define ũ(t) = u(τ − t),
x̃(t) = x(τ − t) and ỹ(t) = y(τ − t) for t ∈ [0, τ ]. Then[ ˙̃x(t)

ũ(t)

]
= S←

[
x̃(t)
ỹ(t)

]
, t ∈ [0, τ ].

In other words, to get from S to S← we interchange u and y, and at the same time
change the direction of time.

Let us proceed to characterize tory systems.

Theorem 4.4. Let S =
[

A&B
C&D

]
be a system node with main operator A, control operator

B with Ker B = {0} and observation operator C with Ker C∗ = {0}. Let R = R∗ ∈ L(U),
P = P ∗ ∈ L(X) and J = J∗ ∈ L(Y ) have bounded inverses. Then S is (R,P, J)-
conservative if and only if the two Lyapunov equations

PA + A∗P = −C∗JC on X1, P−1A∗ + AP−1 = −BR−1B∗ on Xd
1 , (4.6)

and one of the two cross-term equations

[C&D]d
[

P

JC

]
= 0 on X1, (4.7)

C&D

[
P−1

R−1B∗

]
= 0 on Xd

1 , (4.8)

hold. If this is the case, then both (4.7) and (4.8) hold, as well as the following two
indicator equations (for all β, γ ∈ ρ(A))

B∗(β −A∗)−1(β + γ)P (γ −A)−1B + G(β)∗JG(γ) = R on U,

C(β −A)−1(β + γ)P−1(γ −A∗)−1C∗ + G(β)R−1G(γ)∗ = J−1 on Y.

In other words, for tory system nodes satisfying the two Lyapunov equations (4.6), the
two cross-term equations (4.7) and (4.8) are equivalent, and the indicator equations are
redundant. Note that the equations (4.6) imply that [ P

JC ]X1 ⊂ V d and
[

P−1

R−1B∗

]
Xd

1 ⊂
V , so that (4.7) and (4.8) make sense.

Proof. That (4.6)–(4.8) are necessary conditions for conservativity follows from Theo-
rem 3.2 (applied both to the original node S and the dual node Sd). Furthermore, when
we pass for S to Sd the two conditions (4.7) and (4.8) change places, so it suffices to
show that (4.6) and (4.7) imply conservativity.

Assume that (4.6) and (4.7) hold. Then we know some of the resulting elements when

we multiply
[

A(α) B(α)
C(α) D(α)

]
by

[
P−1 0

0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗
[ P 0

0 J ] from the left or from the right.
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More precisely, these products are of the form[
P−1 0

0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

] [
A(α) B(α)
C(α) D(α)

]
=

[
I 0
0 K

]
, (4.9)[

A(α) B(α)
C(α) D(α)

] [
P−1 0

0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

]
=

[
I LJ

L∗P M

]
, (4.10)

where K, L, and M are unknown operators: according to Remark 3.3, the two identity
operators in the right-hand sides of (4.9) and (4.10) follow from the two Lyapunov
equations in (4.6), and the zero in the right-hand side of (4.9) follows from the cross-term
equation in (4.7).

Multiplying the first equation by
[

A(α) B(α)
C(α) D(α)

]
from the left and the second equation

by the same operator from the right, we get two different expressions which must be
equal. Equating the two expressions, we get the identity[

A(α) B(α)K
C(α) D(α)K

]
=

[
A(α) + LJC(α) B(α) + LJD(α)

L∗PA(α) + MC(α) L∗PB(α) + MD(α)

]
. (4.11)

Hence LJC(α) = 0. Since C(α) has dense range (it has the same range as C), this implies
that L = 0. Substituting this into (4.11) and using that C(α) has dense range and B(α)
is one-to-one (since B is one-to-one), we get K = I and M = I. This means that[

A(α) B(α)
C(α) D(α)

]
is

(
[ P 0

0 R ] , [ P 0
0 J ]

)
-unitary. By Theorem 4.2, S is (R,P, J)-conservative. �

We can obtain Theorem 1.9 from Theorem 4.4 by taking R = I, P = I and J = I,
assuming that S is compatible, and writing [C&D] [ x

u ] in the form Cx + Du. Then (4.6)
and (4.8) become the three equations in statement (ii) of Theorem 1.9.

To the extent described in the following theorem, the non-tory case can be reduced to
the tory case. Here we shall require U0 := Ker B and Y1 := Ran C to be orthocomple-
mented (or regular) in U respectively Y with respect to the (possibly indefinite) inner
product induced by R respectively J . For example, in the case of U0 this means that U

is the direct sum of U0 and U1, where U1 := (RU0)⊥ is the R-orthogonal complement of
U0. We write this as U =

[
U0
U1

]
. Since U0 and U1 are closed subspaces of U they inherit

the Hilbert space structure of U . The additional assumption that they are orthocom-
plemented implies that they also inherit the Krein space structure of U equipped with
the (possibly indefinite) Krein inner product [·, ·]U := 〈·, R·〉U (see, e.g., [4, Theorems
V.1.3 and V.3.4]). Thus, there exist an invertible self-adjoint Gram operator R0 ∈ L(U0)
such that the Krein space inner product in U0 is given by [u, v]U0 = 〈u, R0v〉U0 , where
[u, v]U0 = [u, v]U and 〈u, v〉U0 = 〈u, v〉U for all u, v ∈ U0. Clearly, R0 is given by
R0 = πR|U0 , where π is the orthogonal (with respect to the standard inner product) pro-
jection in U whose range is U0. The assumptions that U0 and Y1 are orthocomplemented
are far from trivial, unless R > 0 respectively J > 0.

Theorem 4.5. Let S =
[

A&B
C&D

]
be a system node on (U,X, Y ) with transfer function G,

and let and S∗ =
[

[A&B]d

[C&D]d

]
its adjoint. Let R = R∗ ∈ L(U), P = P ∗ ∈ L(X) and J =

J∗ ∈ L(Y ) have bounded inverses. Suppose that U0 := Ker B is R-orthocomplemented
in U and that Y1 := Ran C is a J-orthocomplemented in Y (see the discussion above).
Split U and Y into U =

[
U1
U0

]
and Y =

[
Y1
Y0

]
, where U1 := (RU0)⊥ and Y0 = (JY1)⊥,
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and let R0, R1, J0, and J1 be the Gram operators of U0, U1, Y0, respectively Y1. Finally,
decompose S and G accordingly into

S =

[A&B]r 0
[C&D]r D10

0 D01 D00

 , G(α) =
[
Gr(α) D10

D01 D00

]
, α ∈ ρ(A). (4.12)

Then the following conditions are equivalent:
(i) S is (R,P, J)-conservative;
(ii) D00 is (R0, J0)-unitary, D10 = 0, D01 = 0, and Sr =

[
[A&B]r
[C&D]r

]
is an (R1, P, J1)-

tory node;
(iii) D00 is (R0, J0)-unitary, D01 = 0, and the two Lyapunov equations (4.6) and the

cross-term equation (4.7) hold;
(iv) D00 is (R0, J0)-unitary, and the two Lyapunov equations (4.6) and both cross-

term equations (4.7) and (4.8) hold.
When these conditions hold, then G(α) maps U0 (R0, J0)-unitarily onto Y0 for each
α ∈ ρ(A). In particular, dim Ker B = codim Ran C.

Remark 4.6. In the following proof we shall use the Krein space adjoints of various
operators rather than the ordinary Hilbert space adjoints. We use the superscript † to
denote a Krein space adjoint. These adjoints can easily be expressed in terms of the
ordinary Hilbert space adjoints and the corresponding weight (Gram) operators, as we
did in Section 1 (after Theorem 1.9) for the finite-dimensional case. Thus,

A† = P−1A∗P, B† = R−1B∗P, C† = P−1C∗J, G(α)† = R−1G(α)∗J,

and [
A&B

C&D

]†
=

[
P−1 0

0 R−1

] [
A&B

C&D

]∗ [
P 0
0 J

]
,[

A(α) B(α)
C(α) D(α)

]†
=

[
P−1 0

0 R−1

] [
A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

]
,

where
[

A(α) B(α)
C(α) D(α)

]
is the operator defined in (3.5).3 The main advantage of the †-adjoints,

apart for the notational simplicity, is the following: Since U0 and U1 are R-orthogonal and
Y0 and Y1 are J-orthogonal, we can compute †-adjoints of various block matrix operators
elementwise. Thus, for example, G(α)† decomposes into G(α)† =

[
Gr(α)† D†

01

D†
10 D†

00

]
, whereas

the decomposition of G(α)∗ is more complicated.
Proof of Theorem 4.5. We begin with a general observation: the decomposition of S

in (4.12) together with (4.2) implies that the operator
[

A(α) B(α)
C(α) D(α)

]
∈ L

(
[ X

U ] ; [ X
Y ]

)
defined

in (3.5) decomposes into A(α) Br(α) 0
Cr(α) Dr(α) D10

0 D01 D00

 :

X

U1

U0

 →

X

Y1

Y0

 .

3The general rule is that one gets the †-adjoint by putting the inverse of the domain space Gram
operator to the left and the range space Gram operator to the right of the ordinary adjoint.
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Recall that, by Theorem 4.2, S is an (R,P, J)-conservative system node if and only if
the above operator is unitary with respect to the Krein inner products induced by the
weight operators

[
P 0 0
0 R1 0
0 0 R0

]
and

[
P 0 0
0 J1 0
0 0 J0

]
. Using the †-adjoint described in Remark 4.6,

this is true if and only if A(α)† Cr(α)† 0
Br(α)† Dr(α)† D†01

0 D†10 D†00


 A(α) Br(α) 0
Cr(α) Dr(α) D10

0 D01 D00

 =

I 0 0
0 I 0
0 0 I

 (4.13)

and  A(α) Br(α) 0
Cr(α) Dr(α) D10

0 D01 D00


 A(α)† Cr(α)† 0
Br(α)† Dr(α)† D†01

0 D†10 D†00

 =

I 0 0
0 I 0
0 0 I

 . (4.14)

(i) ⇒ (ii): If S is energy preserving, then (4.13) holds. The first element in the
bottom row of (4.13) gives D†10Cr(α) = 0. Since Cr(α) has dense range this implies that
D†10 = 0, or equivalently, D10 = 0. The last element in the bottom row of (4.13) gives
D†10D10+D†00D00 = I, which simplifies into D†00D00 = I. Thus D00 is (R0, J0)-isometric.
By repeating the same argument with (4.13) replaced by (4.14) we conclude that D00 is
(R0, J0)-unitary, D10 = 0, and D01 = 0. Once we know this much it is easy to show that[

A(α) Br(α)
Cr(α) Dr(α)

]
must be

([
P 0
0 R1

]
,
[

P 0
0 J1

])
-unitary, hence Sr is (R1, P, J1)-tory.

(ii) ⇒ (i): If (ii) holds, then so do (4.13) and (4.14).
(ii) ⇒ (iii) and (ii) ⇒ (iv) follow from Theorem 3.2 and the fact that (ii) ⇒ (i).
(iii) ⇒ (ii): Assume (iii). As BB† = BrB

†
r and C†C = C†rCr, it follows that the two

Lyapunov equations (4.6) hold with S replaced by Sr. By Remark 3.3, the cross-term
equation (4.7) implies that B(α)†A(α) + D(α)†C(α) = 0. Written in block matrix form
this becomes [

Br(α)†A(α)
0

]
+

[
Dr(α)†Cr(α)

D†10Cr(α)

]
=

[
0
0

]
.

The top row combined with Remark 3.3 implies (4.7) with S replaced by Sr. By Theorem
4.4, Sr is a tory node. The bottom row implies that D10 = 0 (see the paragraph after
(4.14)). Thus, (iii) ⇒ (ii).

(iv) ⇒ (ii): This proof is analogous to the proof of the implication (iii) ⇒ (ii) given
earlier. �

5. Dissipative systems.
Definition 5.1. Let U , X and Y be Hilbert spaces, and let R = R∗ ∈ L(U), P = P ∗ ∈

L(X) and J = J∗ ∈ L(Y ). We call a system node S on (U,X, Y ) (R,P, J)-dissipative if

〈x(T ), Px(T )〉X +

T∫
0

〈y(t), Jy(t)〉Y dt ≤ 〈x0, Px0〉X +

T∫
0

〈u(t), Ru(t)〉Udt, (5.1)

for all T > 0 and x, y, x0, and u satisfying the conditions of Proposition 2.6. If R = I,
P = I and J = I then we simply call the node dissipative.

Energy preserving and conservative system nodes are obviously dissipative.
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Proposition 5.2. Let S =
[

A&B
C&D

]
be a system node on (U,X, Y ) with domain V , main

operator A, control operator B, observation operator C, and transfer function G, and
let S∗ =

[
[A&B]d

[C&D]d

]
be the adjoint system node with domain V d. Let R = R∗ ∈ L(U),

P = P ∗ ∈ L(X) and J = J∗ ∈ L(Y ). Then the following statements are equivalent:
(i) S is (R,P, J)-dissipative;
(ii) for all [ x0

u0 ] ∈ V ,

2<
〈
A&B [ x0

u0 ] , Px0

〉
X
≤ 〈u0, Ru0〉U −

〈
C&D [ x0

u0 ] , JC&D [ x0
u0 ]

〉
Y

; (5.2)

(iii) for some (hence, for all) α ∈ ρ(A), we have[
PA + A∗P (α + A∗)P (α−A)−1B

B∗(α−A∗)−1P (α + A) B∗(α−A∗)−1(2<α)P (α−A)−1B

]
+

[
C∗JC C∗JG(α)

G(α)∗JC G(α)∗JG(α)

]
≤

[
0 0
0 R

]
,

(5.3)

which is an operator inequality in L
([

X1
U

]
;
[

Xd
−1
U

])
;

(iv) for some (hence, for all) α ∈ C+ ∩ ρ(A), the operator
[

A(α) B(α)
C(α) D(α)

]
defined in

(3.5) is a
(
[ P 0

0 R ] , [ P 0
0 J ]

)
-contraction, i.e.,[

A(α) B(α)
C(α) D(α)

]∗ [
P 0
0 J

] [
A(α) B(α)
C(α) D(α)

]
≤

[
P 0
0 R

]
. (5.4)

We leave the proof to the reader. It is almost identical to the proof of Theorem 3.2,
and it is also very similar to the proof of the well-posed version, see [23, Theorem 7.4]
(where R = I, P = I and J = I).

6. The Case of Positive Weight Operators. In this final section we consider take
a particular look at the case where the weighting operator P is positive and invertible.
Most of the time we shall also assume that J ≥ 0. We remark that if the system is energy
preserving, then it follows from the last (indicator) equation in (3.4) that also R ≥ 0 in
this case.

As already noticed after Definition 3.1, all (R,P, J)-energy preserving (hence, all con-
servative) system nodes are well-posed if both P and J are positive and invertible. The
same remark applies to all (R,P, J)-dissipative system nodes. It is worth mentioning that
when showing that a system node is (R,P, J)-dissipative or (R,P, J)-energy preserving,
well-posedness does not play any role, except as a conclusion if R and J happens to be
positive.

In all the main results in Sections 3–4 we have assumed S to be a system node as
opposed to an operator node, i.e., we have assumed that A generates a C0 semigroup on
X. If P is positive and invertible and J ≥ 0, then this assumption can be replaced by
the weaker assumption that ρ(A) ∩ C+ 6= 0.

Theorem 6.1. If J ≥ 0 and P is positive and invertible, then the conclusions of Theorems
3.2, 4.4, 4.5, and Proposition 5.2 remain valid for any operator node whose main operator
A satisfies ρ(A) ∩ C+ 6= ∅.
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Proof. The assumptions of all these results include either the Lyapunov equation PA+
A∗P = −C∗JC or the corresponding inequality PA+A∗P ≤ −C∗JC. Since J ≥ 0, this
implies that PA + A∗P ≤ 0. Multiply this identity by P−1/2 to the left and right to
get P 1/2AP−1/2 + P−1/2A∗P 1/2 ≤ 0. This means that the operator Ã = P 1/2AP−1/2

is dissipative. It is similar to A, so it has the same spectrum. Thus, in particular,
ρ(Ã) ∩ C+ 6= 0. This implies that Ã is maximal dissipative, and by the Lumer–Phillips
theorem, it generates a C0 contraction semigroup. As A is similar to Ã, also A generates
a C0 semigroup (which is a contraction semigroup in the norm induced by P .) �

A conservative system node with P > 0 is tory if and only if its transfer function is
purely (R, J)-contractive:

Theorem 6.2. Let S be an (R,P, J)-conservative system node with P > 0. Then S is
tory if and only S∗ is tory if and only if B is one-to-one if and only C has dense range
if and only if its transfer function G is purely (R, J)-contractive on C+ in the sense that
〈G(α)u, JG(α)u〉Y < 〈u, Ru〉U for all α ∈ C+ and all nonzero u ∈ U .

Proof. By the final remark in Theorem 4.5, B is one-to-one if and only if C has dense
range. This implies that S is tory if and only S∗ is tory if and only if B is one-to-one
if and only C has dense range. It only remains to show that S is tory if and only if G
is purely (R, J)-contractive. It is obvious from Theorem 4.5 that G(α) = D(α) is not
purely contractive if S is not tory (take some nonzero u ∈ Ker B and recall that D00 is
unitary). Conversely, suppose that S is tory. Then, for all nonzero u ∈ U we have (see
the last equation in (3.4) and recall that P > 0)

〈u, Ru〉U = 〈B(α)u, PB(α)u〉X + 〈D(α)u, JD(α)u〉Y > 〈D(α)u, JD(α)u〉Y

since B(α) is one-to-one. Hence D(α) = G(α) is purely (R, J)-contractive. �
We conclude this paper with a slight addition to Theorem 4.5 which is valid when R,

P , and J are positive.

Corollary 6.3. Let S =
[

A&B
C&D

]
be an operator node on (U,X, Y ) with main operator

A and transfer function G, and let and S∗ =
[

[A&B]d

[C&D]d

]
its adjoint. Suppose that ρ(A) ∩

C+ 6= 0, and that R ∈ L(U), P ∈ L(X) and J ∈ L(Y ) are positive and invertible. Then
the each of the conditions (i)–(iv) in Theorem 4.5 is equivalent to:

(v) D00 is (R0, J0)-unitary, Sr =
[

[A&B]r
[C&D]r

]
is an (R1, P, J1)-tory node, and G(α) is

an (R, J)-contraction for some (hence, for all) α ∈ C+.

Proof. By Theorem 6.1, S is actually a system node (i.e, A generates a C0 semigroup)
whenever any one of (i)–(iv) hold.

(i) ⇒ (v): By Remark 3.3 and the positivity of P ,

R = B(α)∗PB(α) + D(α)∗JD(α) ≤ D(α)∗JD(α).

Thus G(α) = D(α) is (R, J)-contractive. (Note that the positivity of R and J are not
needed for this implication.)
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(v) ⇒ (ii): Below we shall use the †-adjoints described in Remark 4.6. The (R, J)-
contractivity of G(α) means that G(α)†G(α) ≤ I, which in block matrix form becomes[

Gr(α)† D†01
D†10 D†00

] [
Gr(α) D10

D01 D00

]
≤

[
I 0
0 I

]
.

The bottom right corner of this identity gives D†10D10 ≤ I−D†00D00 = 0 (recall that D00

is (R0, J0)-unitary). The assumptions that R > 0 and J > 0 imply that the Krein space
inner products induced by R0 and J1 in U0 respectively Y1 are positive, and therefore
D†10D10 ≥ 0. Thus D†10D10 = 0 and D10 = 0. A similar argument which starts with the
fact that D00D

†
00 = I and G(α)G(α)† ≤ I shows that D01 = 0. Thus (v) implies (ii).

(Note that the positivity of P is not needed for this implication.) �
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