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Abstract

Let H and Y be separable Hilbert spaces, and U finite
dimensional. Let A € L(H), Be€ L(U,H),C € L(H,Y),
D € £(U,Y), and suppose that the open loop transfer
function D(z) := D+2C(I —2A)"'B € H*(D; L(U,Y)),
where D is the open unit disk.

We consider a subset of self adjoint solutions P of
the discrete time algebraic operator Riccati equation
(DARE)

A*PA7P+C*JC:K1*3APKP,
Ap=D*JD + B*PB,
ApKp =—-D*JC — B*PA,

where J = J* € L(Y) is a cost operator, and Ap' €
L(U).

Under further assumptions, we obtain the following
results. To solutions of the DARE, we associate a
coanalytic-analytic factorization of the Popov function
D(z)*JD(z). To each nonnegative solution of the DARE,
we associate a (partial) inner-outer factorization of the
transfer function D(z) (if J > 0). We conclude that the
natural partial ordering of the (adjoints of the) inner fac-
tors of Dp(z) is consistent with the partial ordering of
the solutions P, as self adjoint operators. We obtain a
characterization of the critical solution as the maximal
nonnegative solution (if J > 0). Finally, generalizations
of these results are indicated.

1 Introduction

In this paper, we consider factorization and partial or-
derings of operator-valued H* transfer functions, via so-
lutions of an associated discrete time algebraic Riccati

equation. This work is a presentation of results given in
[9] and [10], where full proofs are given.

Let us first introduce some notions and definitions. The
basic object of this work is an operator-valued H* trans-
fer function. A state space realization of this transfer
function is a discrete time linear system (DLS) ¢. It is
given by the system of difference equations

Tjt1 = ij + BUj,
y; = Cx; + Duy, j >0,
where u; € U, ; € H, y; € Y, and A, B, C, D
are bounded linear operators between appropriate (sep-
arable) Hilbert spaces. We call the ordered quadruple
¢ = (é B) a DLS in difference equation form. The three
Hilbert spaces are as follows: U is the input space, H is
the state space and Y is the output space of ¢.
There is also another equivalent 1/0 form for a DLS. It
consists of four linear operators in the ordered quadruple
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The operator A € L(H) is the semi-group generator
of ®, and it is the same operator as in equation (1).
B : (*(Z_;U) > dom(B) — H is the controllability
map that maps the past input into the present state.
C: H D dom(C) — (*(Zy;Y) is the observability map
that maps the present state into the future outputs. The
last operator D : (3(Z;U) — (*(Z;Y) is the I/O map
that maps the input into output in a causal and shift in-
variant way. The operator 7 is the bilateral forward shift
in ¢2(Z;U), and 7., m_ are the orthogonal projections
to the future and past, respectively. We denote the same
DLS in I/O-form by the capital letter @, and in difference
equation form by ¢.

If B or C is bounded, then we say that ® is input
stable or output stable, respectively. If D is bounded
then ® is I/O-stable and the transfer function D(z) €
H>*(L(U;Y)). If limj_e ATxg = 0 for all o € H, then
the semi-group generator A is strongly stable.



Let ® = [4'577] = (A5) be a DLS, and let J =

J* € L(Y) be a cost operator. The symbol Ric(®,.J) de-
notes the associated discrete time Riccati equation, given

by

A*PA— P+ C*JC = KiApKp,
Ap = D*JD + B*PB,
ApKp = —D*JC — B*PA,

(1)

where A;l is required to be bounded. If P = P* solves
Ric(®,J), then we write P € Ric(®,J). Several subsets
of the solution set Ric(®,J) are defined and studied in
[9]. The operator Ap is the indicator, and Kp is the
feedback operator of P.

For fixed ® and J, two additional DLSs are associated
to each solution P € Ric(®,.J), namely

A B Ap B
¢P = <_KP I) ) ¢P = (Ci D) )

where Ap := A+ BKp, Cp = C + DKp. We call the
object ¢p (¢F) the lower DLS (respectively upper DLS),
centered at P. The algebraic and partial ordering prop-
erties of the solutions of the DARE are conveniently de-
scribed with the aid of these DLSs, see [9]. The DLSs
¢p and ¢ are fundamental notions in the factorization
theory, presented in this paper.

Some solutions of the DARE are more interesting that
others.

Definition 1. Let @ is output stable and I/0O-stable.

(i) If P € Ric(®,J) is such that the lower DLS ¢p is
I/O-stable and output stable, then we call P an H-
solution, and write P € ric(®,.J).

(11) If the residual cost operator La p exists and satisfies

Lap:i=s—limAYPA =0,
Jj—00
then the strong residual cost condition is satisfied,
and we write P € Rico(®, J).

(i1i) The set of regular solutions is
rico(®, J) := Rico(®,J) Nric(P, J).

denoted by

A solution Pt € Ric(®,.J) is critical if the trans-
fer function Dy ., () of the lower DLS ¢pere is in H®
together with its inverse, and a certain residual cost con-
dition is satisfied. The equivalent conditions for the ex-
istence of such a P are discussed in [6], under quite
general assumptions. The I/O-map of the correspond-
ing ¢peie is the outer factor (with a bounded inverse)
in the (J, Apen )-inner-outer factorization D = NX, in-
duced by the critical P°*. The solution P°*, when
it exists, can be replaced by another, regular critical
P§it € rico(®, ), given by P&t = (Ctit)* jCerit, Here
Ccorit .= (I — 7, D(7+D*JD7, )~ 7, D*J)C is the critical
closed loop observability map.

A detailed treatment of fundamental notions of DLSs
(such as the state feedback structure and various stabil-
ity notions) is given in [7]. For a less general, introduc-
tory presentation, see the introduction in [9]. For asso-
ciated cost optimization problems, spectral factorization
problems, and critical solutions of DARE under weak as-
sumptions, see [5] and [6]. See also the early discrete time
paper [3]. For factorizations of the Popov operator and
the I/O-map via nonnegative solutions of an associated
DARE, see [9] and [10]. Nonnegative solutions of CAREs
are considered in [2] which has a considerable intersection
with our work [10]; however, [2] contains deeper control
theoretic considerations. See also the references in [2],
in particular [1]. Related results for the continuous time
stable well-posed linear system are given in [11], [12], [13],
[14], [15]. For the theory of matrix CARE and DARE,
see [4].

After these preliminary considerations, we continue to
discuss this work. In Section 2, we consider the factor-
ization of the Popov operator. Non-negativity of the cost
operator J or solution P is not yet required. In Section
3, the I/O-map is inner-outer-factorized, by means of the
nonnegative solutions of the DARE. Because of the Lia-
punov equation techniques, we now assume J > 0. Some
control theoretic interpretation of the inner-outer factor-
ization is given in Section 4. Moreover, this factorization
has some order theoretic implications, considered in Sec-
tion 5. In the final Section 6, we indicate various gener-
alizations of these results.

To clarify the presentation, the following simplifying
assumptions are used throughout this paper.

e The basic DLS ® = [4/ 577] = (A 5) is an out-
put stable and I/O-stable DLS, such that dom(C) :=
{reH | Cxel?*(Zs;Y)} = H. The input space
U is finite dimensional, and the output space Y is
separable.

e The DARE Ric(®, J) has a non-negative critical reg-
ular solution P§™t = (CM1t)* JCt € ricy(®, J).

These assumptions can be significantly relaxed, as men-
tioned in the final section.

2 Factorization of the Popov operator

The Popov operator refers to the Toeplitz operator
74+ D*JD74 or the shift invariant operator D*JD. We
remark that the following factorization result does not
require the cost operator J = J* € L(Y') to be nonnega-
tive.

Theorem 2. Let & = [f‘g ng
stable and output stable DLS.

= (45) be an 1/0-

(i) For each solution P € rico(®, J), the Popov operator
has the factorization

D*JD =D;,, ApDy,,



where ¢p is the lower DLS (of ® and J), centered
at P.

Assume, in addition that range(B) = H. Assume
that the Popov operator has a factorization of form

(ii)

D*JD = D}, ADy,

where ¢/ = (%) is an I/O-stable and output
stable DLS, with K € L(H,U), and A = A*, A7 €
L(U). Then ¢ = ¢p and A = Ap for some P €
rico(®, J).

If J > 0, we need not a priori assume that P is
a H*-solution in claim (i) because then rico(®,J) =
Rico(®,J), see [9]. For an analogous but somewhat dif-
ferent discrete time result, see [3, Theorem 4.6].

3  Factorization of the I/O-map

In this section, we assume that the cost operator J is non-
negative. The operator Np denotes the (Ap, A perit )-inner
factor of Dy .. Its existence follows from the assumed ex-
istence of a critical solution of the DARE ric(®, J), as
shown in [9].

Theorem 3. Let ® = [4 57| be an 1/O-stable and
output stable DLS. Let P € Rico(®,J), P > 0. Then
both ¢p and J%qbp are output stable and I/0-stable. We
have the factorization

JED = JiDypr - Dy, = J:Dyr - Np - X,

where all factors are I/0-stable. Here J%D(bp is (I, Ap)-
inner, Np is (Ap, Aperic)-inner, and X is outer with a
bounded inverse.

Realizations for all these factors can be given. Note

that P is not a priori required to be a H*-solution; this
is a part of the conclusion. By applying this result recur-
sively, we see that the increasing chains of nonnegative
H*°-solutions (of finite length) will give corresponding
chains of inner factors, see [10]. We remark that H*-
equations (1) generally have such nontrivial chains of so-
lutions.
Theorem 4. Let ® = [4' 577 ] = (A5) be an I/O-
stable and output stable DLS. Assume that range(B) =
H. Let P € rico(®,J). Then J:Dyr is I/O-stable if
and only if P > 0.

The result of the previous theorem can be translated to
a number of partial ordering results, some of which are
presented Section 5. In this translation, the notions of
upper and lower DLS are used, as a convenient technical
tool.

4  Control theoretic interpretation
of the factorization

We first extend the original DLS & by the state feedback
operators, associated to P € Ric(®,.J), J > 0. By closing
the feedback loop we obtain the closed loop DLS

0
A}

2 (20. ) BD, 7
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where @°*t denotes an external disturbance signal into
the feedback loop, @ is the internal input signal to the
open loop system, and z¢g € H is the initial state. We
remark that the above system makes sense even if &
is unstable. In this case any solution P > (0 makes
the DLS J %qﬁp output stable, and the transfer func-
tion J%D(bp(z) € H?(D; L(U;Y)) because dimU < oo.
Under stronger structural conditions on the semi-group,
we would have J%D¢p (z) € H*(D; L(U;Y)); ie. I/O-
stability of J2Dyp.

However, even if & were I/O-stable, the closed loop
control signal I/O-map D;Fl, — 7 would generally be un-
stable, for P > 0. If P > 0 is power stabilizing such that
o(Ap) C D, then the closed loop DLS is exponentially
stable. For non-power stabilizing P > 0, a partial sta-
bilization of the closed loop system (and the semi-group
generator Ap) would be achieved. Partial stabilization
by nonnegative solutions of CARE is considered in [2],
where the Riccati equation is different.

If ® is I/O-stable (and output stable), P € rico(®, J),
and P > 0, then the open loop control signal I/O-map
Dy, is I/O-stable (and output stable), by definition. It
then follows, under the standing hypotheses of this paper,
that J %D(bp is I/O-stable, by Theorem 3. However, D;;
is I/O-stable if (and only if) P is a critical solution.

5 Correspondence of the partial order-
ing

The operator Np is the adjoint I/O-map of N, and it is
defined via transfer functions by Np(z) := Np(2)*.

Theorem 5. Let J > 0 be a cost operator. Let ® =

[“g B = (4 5) be an I/O-stable and output stable

DLS, such that range(B) = H.
For Py, Py € rico(®, J), the following are equivalent
(i) P, < Ps.

(ii) range(Np,74) C range(Np, 7).



In other words, the mapping P +— range(Npiy)
is order preserving from the POSET rico(®,J) (par-
tially ordered set, ordered by the natural partial or-
dering of self adjoint operators) into the sub-POSET
{range(Np7y)} Perico(®,s) Of the forward shift invariant
subspaces of ¢2(Z;U) (ordered by the inclusion of sub-
spaces). This order preserving mapping is the starting
point of [8].

Corollary 6. Make the same assumptions as in Theo-
rem 5. Denote the reqular critical solution by P§™ :=
(Cerit)* JCt € ricy(®, J).

If Py € rico(®,J) is such that P§™® < Py, then Py is
critical. If, in addition, range(B) = H, then Pt = P.

The regular critical solution is extremal in the set of
reqular H*-solutions rico(®,J). We remark that if & =
[1‘(‘; Br7] is an 1/O-stable and output stable DLS, the
solution set Ric(®,J) can contain nonnegative solutions
that are not H*-solutions (provided that the semi-group

generator A is “sufficiently unstable”).

6 Generalizations

Several assumptions of this paper can be significantly
relaxed, see [9] and [10]. The input space U can al-
ways be a separable Hilbert space, if the input opera-
tor B € L(U;H) is on some occasions assumed to be
a (compact) Hilbert-Schmidt operator. The solutions
P € Ric(®,J) need not always be regular, and weaker
residual cost conditions can be introduced. The positiv-
ity of the cost operator J can be replaced by the pos-
itivity of the indicator Ap, for solutions P of interest.
This is connected to the positivity of the Popov oper-
ator 7. D*JD7y. Also an inertia result can be given,
guaranteeing that all interesting solutions have positive
indicators whenever one has.
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