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Abstract. Let H and Y be separable Hilbert spaces, U finite dimensional. Let A € L(H), B € L(U, H),
C € L(H,Y),D € L(U,Y), and suppose that the open loop transfer function D(z) := D 4 2C(I — 2A)"'B €
H*(U,Y). Let J > 0 be a cost operator. We study a subset of self adjoint solutions P of the discrete time
algebraic Riccati equation (DARE)

A*PA—P+C*JC = KpApKp,
Ap = D*JD + B*PB,
ApKp = —D*JC — B*PA,

where Ap,Ap' € L(U) and Kp € L(H;U). We further assume that a critical solution P"* of DARE
exists, such that X (2) := I — 2Kperit(I — 2Aperis) "B € H®(U,Y) is an outer factor of D(z). Here
Aperit :== A+ BKperit.

We study connections between the nonnegative solutions of DARE and the invariant subspace structure of

(Acrit)*.
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1. Introduction

In this paper, we consider the connection between
the solution set of a discrete time (H°°) Riccati
equation (DARE) and the invariant subspaces of
a linear operator.

Let us introduce first some notions and defini-
tions. The basic object of this work is an operator
valued H* transfer function. A state space real-
ization of this transfer function is a discrete time
linear system (DLS) ¢. As is well know, it can be
given by the system of difference equations:

{SCjJrl = AZL']' + B’U,j7

_ (1)
y; = Cx; + Du;,

J =0,

where u; e U, z; € H,y; € Y, and A, B, C, D
are bounded linear operators between appropriate
(separable) Hilbert spaces. We call the ordered
quadruple ¢ = (A B) a DLS in difference equa-
tion form. The three Hilbert spaces are as follows:
U is the input space, H is the state space and Y is
the output space of ¢. There is also another equiv-
alent form for DLS, DLS in I/O form. It consists
of four linear operators in the ordered quadruple

Al Br*
o[ 5

The operator A € L(H) is the semi-group gener-
ator of @, and it is the same operator as in equa-

tion (1). B : ¢*(Z_;U) D dom(B) — H is the
controllability map that maps the past input into
the present state. C : H D dom(C) — (*(Z;Y)
is the observability map that maps the present
state into the future outputs. The last operator
D : (*(Z;U) — (*(Z;Y) is the I/O map that maps
the input into output in a causal and shift invari-
ant way. We remark that the same DLS is denoted
in I/O-form by the capital ®, and in the difference
equation form by ¢.

If B or C is bounded, we say that ® is input sta-
ble or output stable, respectively. If D is bounded
then @ is I/O-stable and the transfer function
D(z) € H®(L(U;Y)). If limj_o A’z = 0 for
all zop € H, then the semi-group generator A is
strongly stable.

Let @ be an I/O-stable and output stable DLS,
and J € L£(Y') a nonnegative, self adjoint cost op-
erator. The symbol Ric(®, J) denotes the associ-
ated discrete time Riccati equation, given by

A*PA— P+ C*JC = KiApKp,
Ap = D*JD + B*PB,
ApKp = —D*JC — B*PA,

where A;l is required to be bounded. If P
is a self adjoint solution of Ric(®,.J), we write
P € Ric(®,J). Several subsets of the solution set



Ric(®, J) are defined and studied in [10, Sections
XXX]. The operator Ap is the indicator, and Kp
is the feedback operator of P

For fixed ® and J, two additional DLS’s are
associated to each solution P € Ric(®, J)

op = (_f}P ?) oF = <g‘§ g) @)

where Ap := A+ BKp, Cp = C+ DKp. The ob-
jects ¢p, (¢7) is called the lower DLS (upper DLS,
respectively), centered at P. The algebraic and
partial ordering properties of DARE can be con-
veniently described with the aid of these DLS’s,
see [10]. It also appears that ¢p and ¢* are fun-
damental notions in the infinite dimensional inner-
outer factorization theory, as developed [11].

Some solution of DARE are more interesting
that others. If P € Ric(®,J) is such that the
lower DLS ¢p is I/O-stable and output stable, we
call P an H*-solution, and write P € ric(®, J).
By relating P € Ric(®,J) to an associated cost
optimization problem (see [7]), it makes sense to
classify the solutions in terms of the residual costs
(in the infinite future). If the residual cost opera-
tor L4 p exists and satisfies

Lap:i=s—limj_ A" PAI =0,

then the strong residual cost condition is satis-
fied, and we write P € Rico(®,J). Further-
more, Ricy,(®,J) is the set of such solutions P
that satisfy the wultra weak residual cost condi-
tion: (PBT*a,Br*ia)y — 0 for all @ € (*(Z1;U)
where 7% denotes the backward shift. The set
of regular solutions is defined as ricycq(®,J) =
Rico(D, J) N Ricyw (P, J) Nric(®, J).

A solution P € Ric,,(®,J) is critical if
the transfer function Dy .., (2) of the lower DLS
@perie s in H*, together with its inverse. The
equivalent conditions for the existence of such
Perit are discussed in [7], under quite general
assumptions. The I/O-map of such ¢peric is
the outer factor (with a bounded inverse) in the
(J, A perit )-inner-outer factorization D = NX, in-
duced by the critical P°"®. P when it ex-
ists, can be replaced by another critical P§™ €
Ticreq(®, J), given by P§" = (C*)* JC*. Here
Cc’rit = (I — ﬁ+D(ﬁ+D*JDﬁ+)_1ﬁ+D*J)C is the
critical closed loop observability map.

A detailed treatment of fundamental notions
of DLS’s (such as state feedback structure and
various stability notions) is given in [8]. For a
less general, introductory presentation, see the in-
troduction in [10]. For associated cost optimiza-
tion problems, spectral factorization problems and
critical solutions of DARE under weak assump-
tions, see [6] and [7]. See also the early discrete
time paper [5]. For factorizations of the Popov
operator and the I/O-map via nonnegative solu-
tions of an associated DARE, see [10] and [11].

Nonnegative solutions of CARE are considered in
[2] which has a considerable intersection with our
work [11]; however, the [2] contains deeper control
theoretic considerations. See also the references in
[2], in particular the earlier [1]. A more complete
presentation of the results of this paper are given
in [9]. The above notions are closely related to
the concept of a continuous time stable well-posed
linear system by O. Staffans in [13], [14] and G.
Weiss in [16], [17].

After these preliminary considerations, we con-
tinue to discuss this work. Our starting point
is the following Lemma 1. It relates the natu-
ral partial ordering of the nonnegative solutions
P € Ricyy(®,J) to the partial ordering of certain
(normalized) chains of partial inner factors of the
I/O-map D.

Lemma 1. Let J > 0 be a cost operator. Let
¢ = [f‘g ng be an I/O-stable and output stable
DLS. Assume that the input space U is finite di-
mensional and that a critical solution P ezists.

If P, Py € Ricyy(®,J) satisfy 0 < P; < Py,
then range(/\?ﬁlhr) C range(/\~/‘§27’r+).

Also a two-way result on the partial ordering is
given in [11], but we do not use it here. To explain

what the Toeplitz operator Np7, is, consider the
following DLS’s

ke 1) )

¢P,P0”“ = (Kcrit —Kp I
((Acrit)* (Kcrit _ KP)*)

¢P,P0Cm = B* I

where K¢t := Kperit, and Acrit .= A 4 BKerit,

So, the DLS ¢p perit is the adjoint of ¢p perit.
The I/O-map of ¢p perie equals Np, where Dy, =
NpX is the (Ap, A perie )-inner-outer factorization,
see [10]. Normalize and adjoin to obtain ./\713 =
A;é“/\N/pAflg, where F(z) := F(z)* and anal-
ogously for the I/O-maps, DLS’s and DARE’s.
Now the transfer function N (%) is inner L(U)-
valued analytic function in D, having unitary non-
tangential boundary limits N'3(e?) a.e. e € T.
So as to the range spaces range(]\7§7_r+), the reader
will immediately notice that this situation is de-
scribed by the Beurling-Lax-Halmos-theorem of
forward shift invariant subspaces.

By looking at the realization (3), we see that
the semi-group generator ¢p perit 1S independent
of P. Moreover, the operator K¢ — Kp in
a sense, “measures the distance” of P from the
critical P, The extreme case appears when
P = P§™ and the state space is no longer vis-
ible from the output of ¢p perit- This gives us the
idea that for a given P, only the “visible part”
of (A°#)* is responsible for the structure of the



corresponding I/O-map, namely N 2 (normaliza-
tion is here immaterial). Furthermore, it is rea-
sonable to expect that these “parts” of (A°)*
were ‘“ordered” in the same sense as the opera-
tors Np. If that were the case, then the partial
ordering of Lemma 1 could be carried from the so-
lution set Ricyw (P, J) to the “parts” of the semi-
group (A°")*. With even more luck, we might be
able to connect the function theoretic structure of
N3(z) to the operator theoretic structure of the
corresponding part of (A°")*  in a general, truly
infinite dimensional manner. This is the battle
plan of this paper.

For a rigorous treatment, we first assume that
the I/O-map of ¢ = (A 5) is (J, Aperie)-inner,
see Section 2. For such inner systems, the par-
tial ordering of Ric(®, J) is related to certain A*-
invariant subspaces H” .

In Section 3, we present the characteristic DLS
¢(P), which is a reduced, observable version of

e

¢p. The adjoint DLS ¢(P) has the semi-group
generator (AF)* := IIpA*|H?, a compression of
the original A (Ilp is the orthogonal projection
onto HT). Now, a normalized ¢°(P) is approxi-
mately controllable, has the semi-group generator
(AP)* and the I/O-map N3. We proceed to con-
nect the function theoretic properties of the inner
function N3 (z) to the operator theoretic proper-
ties of (AF)*.

This is done by the tools of Sections 4 and 5.
Here, a special case of the Sz.Nagy-Foias operator
model (for Cpp-contractions) is introduced. These
tools are applied in Section 6. More precisely, the
characteristic function Np(z) is connected to the
restriction of the backward shift S* onto the (clo-
sure of the) range of the observability map C D)
Then the basic identity S*Cd;;(—P/) = Cd??(};) (AT)
is used to connect the restricted shift (and simul-
taneously /\71‘3(2)) to the semi-group (AF)*.

In the final Section 7, we indicate how the ap-
proach is valid for a general non-inner DLS ®.
This is done by making a preliminary state feed-
back, associated to the critical solution P§"*. The
upper (closed loop) DLS ngocm has (J, Aperit)-
inner I/O-map, and the solution sets of DARE’s
coincide: Ric(®,.J) = Ric(¢T™",J). Because
we must require extra structure from the useful
solutions P € Ric(gbpocm,l]), it follows that not
all P € Ric(¢,J) are relevant for our purposes.
When A is strongly stable, and ¢ is both input and
output stable, then the relevant solutions are con-
veniently characterized and presented here. The
general case (when A is not strongly stable) is
more complicated.

To clarify the presentation, the following
standing assumptions are used throughout this pa-

per.

= [4 5] = (AE5)is an input stable,
output stable and I/O-stable DLS, such that
dom(C) :={x € H | Cx € *(Zy;Y)} =

H. Also range(B) = H is assumed.

e The cost operator J is nonnegative, and the
input space U is finite dimensional.

e The DARE Ric(®,J) has a non-
negative critical regular solution P§"*

(CEritY* JCT € ricyeq (P, J).

e The I/O-map D of ® is assumed to be
(J, Aperic)-inner, except in the last section.
This means that in the (J, Aperic)-inner-
outer factorization D = NX, induced by a
critical P°"%, the outer part is an identity
operator.

e All the solutions P € Ric(®, J) are consid-
ered to be regular, unless explicitly other-
wise stated.

These assumptions can be significantly relaxed, as
mentioned in the final section. Eventually, ® is re-
quired to be exactly controllable; i.e. range(B) =
H.

2. DLS with inner I/O-map

We consider an I/O-stable and output stable DLS
o = [1‘(‘; Br7] and a cost operator J > 0, such
that D is (J, Aperit)-inner.

Lemma 2. Let P € ricyeq(®,J), P > 0 be arbi-
trary.

(i) ker(P§™ —P) = ker(Cyp)-
ker(P§'™t — P) is A-invariant.

In particular,

(ii) The feedback operators satisfy Kperie =0

and Kp = —Ap'B*(P§™ — P)A. Also
Aerit = Apocrit = A. The lower DLS at P
satisfies

¢ _ A B _ Acrit B
P=\-Kp 1) \Keit —Kp 1)

(#i) The upper DLS qbpocrit equals the original ®.
For the lower lower DLS: ¢p = ¢p, perit -

The DLS with (J, Aperie)-inner I/O-map is it-
self its own closed loop system (if range(B) = H),
when the same cost operator J is used to define
the cost optimization problem. This is not surpris-
ing; you cannot further optimize what is already
optimal.

We introduce the following notation: Hp :=
ker(Cy,) C H, its orthogonal complement in H
is H”. Denote by IIp the orthogonal projec-
tion onto H. Clearly, if 0 < P, < P», then



{0} ¢ H"* ¢ H» ¢ H. This connects the par-
tial ordering of ricyeq(®,J) C Ric(®,J) to the
partial ordering of A* -invariant subspaces H”.

3. Characteristic DLS

Let ® and J > 0 be as before. Let P €
Ticreg(®, J). The characteristic DLS ¢(P) (of pair
(®,J)), centered at P is defined by

AP BP MpA/H? TpB
¢(P)_(KP I) _(KP|HP I )

where AY € L(HT), B € L(U;H?) and C¥ €
L(HF;Y). The state space of ¢(P) is H. The
DLS ¢(P) is just a reduced version of ¢p, where
the null space ker(Cy,) has been “divided away”
from the state space. Actually, the adjoint DLS

¢(P) is more interesting to us. Its properties are
given by

Lemma 3. Let P € ricreq(®,J), P > 0 be arbi-
trary. Then the following holds:

(i) qg(\[D/) is 1/O-stable, input stable, _and
range(B¢(P)) HFY. The I/O-map of qb( )
satisfies D =D~ = Np.

»(P) 2

(i) If, in addition, ® is input stable, then q;(\l_D/)
18 output stable.

The DLS ¢(P) is interesting because the
ranges of their I/O-maps N pT4+ obey the par-
tial ordering of the solutions P € Ricyq, (P, J),
by Lemma 1.

Suppose we know a solution Py of DARE.
Then we know the restricted subspace HF =
ker(Pgit — P) ™,
cause the semi-group generator (A?)*

and the projetion IIp onto it. Be-
— A*|HP
of ¢(P) is now known, we can connect the struc-
ture of the (partial inner factor) transfer function
Np(z) to this part of operator A*.

4. Ranges for Toeplitz and Hankel
operators

In the rest of this paper, we normalize the charac-
teristic DLS as follows.

—_~— 1

N = A2 NpAL,  ¢°(P) = Ap2. o(P)AL.

P(‘TZY

Then N3 (z) is an inner £(U)-valued function. It
follows that the range of the Toeplitz operator

N87, and the closure of the range of C¢O(P)
orthogonal, and fill up the whole space (%(Z; U).

Lemma 4. Let ® be an input stable, output stable
and I/O-stable DLS. Assume that a critical P
exists, and let P € ric,eq (P, J) be arbitrary. Then

(*(Z4;U) = range(NS7,) @ range(C(b/OZP/)).

5. Shift operator model

As usual, O(z) € H*®(L(U)) is called inner, if
the boundary trace function ©(e) is unitary a.e.
e’ € T. For an inner O(z), define the Hilbert
subspace

Ko := H*(T;U) © ©H*(T; U). (1)
We consider the restriction S*|Kg and its adjoint,
the compression PgS|Kg, where Pg is the orthog-
onal projection onto Kg. S*|Kg is a contraction
on Kg C H*(T;U). It is well known that prop-
erties of S*|Kg are coded into the characteristic
function O(e?) of S*|Ke. This is a particular
case of the famous Sz.Nagy-Foias operator model
for contractions, see [3, Chapter IX, Section 5],
[12], [15]. For compressions of the shifts in control
theory, see also [4].

The contraction S*|Kg has a number of useful
properties:

Proposition 5. Let ©(z) be a contractive ana-
lytic function. ©(z) is inner (from both sides) if
and only if S*|Ke € Coo, where Cyg is the class
of contractions T' on a Hilbert space, such that
s —limj_oT? =0, s—1limj_ T =0.

Definition 6. The spectrum o(©) of an inner
function ©(z) is defined to be the complement of
the set of z € D, such that an open neighborhood
N, of z exists with

(i) ©(z)~"

(ii) ©(z)~! can be analytically continued to a full
neighborhood N .

exists in N, N D,

The spectrum of S*|Kg € Cyp is considered in
the following:

Lemma 7. Let O(z) be as above. Define the Cop-
contraction To := PoS|Ke € L(Kg). Then

(i) o(Te) = o(0©), where o(0) C D is the spec-
trum of the characteristic function ©(z).

(1t) The point spectrum of Te and Tg satisfies

r(©(2)) # {0}}
r(0(z)" # {0}}

op(Te)={z€D | ke
op(T5) = {z€D | ke

Because we are dealing with the DARE, we use
the operator model in the time domain sequence
space (?(Z;U) instead of H?(T;U) . We adopt



the following notation for a DLS ¢’ whose I/0O-
map Dy is inner:

Ky = 0*(Z,;U) ©range(Dy 7y ),

S* =7 7",
Thus the transfer function Dy (z) is the charac-
teristic function of the contraction S*|Ky.

6. Similarity transform

By combining the contents of previous sections,

—_—

we see that the properties of ¢°(P) are as follows:

Lemma 8. Let ® = [“g B%*f} be an input stable,
output stable and I/O-stable DLS, such that the
input space U is finite dimensional. Let J > 0 be
a cost operator. Assume that there exists a critical
solution P € Ricy,(®,J) and the I/O-map D
is (J, Aperic)-inner. Let P € ricyeq(®,J), P >0
be arbitrary.
(i) The DLS ¢°(P) is input stable, output sta-
ble and I/O-stable. Its transfer function is
mner and equals /\N/'I‘; Also range(B

HP and range(C

) =

) = K

(ii) The following similarity transform holds

* e P\x
(S |K¢>°(P)) C¢°(P) C¢°(P)(A )

where (AT)*
ker(Pgrit — P)*

A*|H? and HY =
18 A*-invariant.

If, in addition, range(B) = H, then
ker(Cm) = {0}. (However, the inverse

of Cd;?(_P/) can be unbounded.)

(iii) If ® is exactly controllable (i.e. range(B) =
H), then C&Tﬁ) : HP — K&;(-P/) is a
bounded bijection, with a bounded inverse.

Theorem 9. Make the same assumption as in

claim (iii) of previous Lemma.

Then for all P € 7icreqy(®,J), P > 0,
the restriction (AT)* := A*|HT is similar to a
Coo-contraction, whose characteristic function is
N2 (2). By adjoining, the compression pA|/H”
is similar to a Cyg-contraction, whose character-
istic function is Np(z).

The latter claim follows from the previous,
by [12, Lemma on p.75]. In particular, this im-
plies that the spectrum o(A?) and the spectrum
inner function o(Np) coincide. Also the point
spectrum maps onto the point spectrum, in the
sense of Lemma 7. A partial result concerning
the point spectrum of A” can be given, with-
out assuming the exact controllability of ®, see
[9]. In particular, if A” is a compact operator

on HY then o(AF)\ {0} = 0,((AP)*) = {z €
D | ker(Np(z)) # {0}}; here bar denotes com-
plex conjugate, and the assumption dimU < oo
is crucial. The case of compact A is always cov-
ered. Finally, the case when the complex valued
inner function det N'3(z) is a Blaschke product is
connected to the completeness of AT (i.e. eigen-
vectors of span the whole space ), see [12, Lecture
Iv].

7. General DLS’s

We explain how the results, given above for DLS
with an inner I/O-map, can be extended to a gen-
eral DLS ®, such that there is a critical solution
Pt € Ricy,(®,J). Consider the closed loop
H>-DARE, denoted by Ric(¢76"", Aperit).

(Acrit)*PAcrit o ]5+ (Ccrit)*Jccrit _ K;AP[(P

Ap=D*JD+ B*PB
ApKp = —D*JC°rit — B* P Acrit

Because qbpocm is a critical closed loop DLS,
its I/O-map is (J, Apcrit)-inner. The full solu-
tion sets satisfy Ric(®,.J) = Ric(¢F0"", Aperir).
In a general case, the regular solutions of
Ric(¢T0"", Aperie) (that we consider in Theorem
9) can not be described in simple terms of the orig-
inal data ® and J. If both A and A°"% are strongly

stable, then this problem becomes trivial.

Theorem 10. Let J > 0 a self adjoint cost op-
erator. Let ® = [1‘(‘; BTD” be an input stable,
output stable and I/O-stable DLS, such that the
input space U is finite dimensional. Assume that

the semi-group generator A is strongly stable:

lim Alzg =0 for all x¢ € H.

J—00

Assume that the wunique critical solution ex-
ists, equaling the regular solution P§T =
(cerityxJcerit, Let P € ricreg(®,J). By ¢(P)
denote its characteristic DLS, and by Np denote
the (Ap, Aperic)-inner factor of Dy,..
If Cm is coercive, then
(i) the adjoint of (AP = TIp A" HT is
similar to a Cyg-contraction, whose charac-
teristic function is Np(z). The adjoint sim-
ilarity transform is given by

* o e — crit\Py*
(s |K¢°(P>)C¢°<P> Com (A7)

. gP s
where C¢O(P) c HY — K¢O(P) is a bounded
bijection.



(ii) o(((A)F)) = o(N3) C D, where the spec-
trum of the inner function is given in Defi-
nition 0.

(iii) Both (AT*)P and (Acrit)P)”
stable.

are strongly

In particular, the above claims hold if range(B) =
H (i.e. ® is exactly controllable).

Several assumptions of this paper can be sig-
nificantly relaxed, see [9]. The positivity of the
cost operator J can be replaced by the positiv-
ity of the indicator Ap for solutions P of inter-
est. This is connected to the positivity of the
Popov operator 7, D*JD7,.. The input space
can be a separable Hilbert space throughout the
work (with one exception), if the input opera-
tor B € L(U; H) is assumed to be a (compact)
Hilbert-Schmidt operator on some occasions. The
solutions P € Ric(®, J) need not always be reg-
ular, and some partial results will hold even if ®
is not even approximately controllable or input
stable. Theorem 10 can be generalized in many
directions. For example, the strong stability of A
is not needed, but then the description of the rel-
evant solutions in P € Ric(®,J) would be more
complicated.
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