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Abstract. Let H and Y be separable Hilbert spaces, U finite dimensional. Let A ∈ L(H), B ∈ L(U, H),
C ∈ L(H,Y ), D ∈ L(U,Y ), and suppose that the open loop transfer function D(z) := D + zC(I − zA)−1B ∈

H∞(U, Y ). Let J ≥ 0 be a cost operator. We study a subset of self adjoint solutions P of the discrete time

algebraic Riccati equation (DARE)
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:

A∗PA − P + C∗JC = K∗

P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

where ΛP , Λ−1

P
∈ L(U) and KP ∈ L(H ;U). We further assume that a critical solution P crit of DARE

exists, such that X (z) := I − zKP crit(I − zAP crit)−1B ∈ H∞(U, Y ) is an outer factor of D(z). Here

AP crit := A + BKP crit .

We study connections between the nonnegative solutions of DARE and the invariant subspace structure of

(Acrit)∗.
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1. Introduction

In this paper, we consider the connection between
the solution set of a discrete time (H∞) Riccati
equation (DARE) and the invariant subspaces of
a linear operator.

Let us introduce first some notions and defini-
tions. The basic object of this work is an operator
valued H∞ transfer function. A state space real-
ization of this transfer function is a discrete time
linear system (DLS) φ. As is well know, it can be
given by the system of difference equations:

{
xj+1 = Axj + Buj ,

yj = Cxj + Duj , j ≥ 0,
(1)

where uj ∈ U , xj ∈ H , yj ∈ Y , and A, B, C, D

are bounded linear operators between appropriate
(separable) Hilbert spaces. We call the ordered
quadruple φ = ( A B

C D ) a DLS in difference equa-
tion form. The three Hilbert spaces are as follows:
U is the input space, H is the state space and Y is
the output space of φ. There is also another equiv-
alent form for DLS, DLS in I/O form. It consists
of four linear operators in the ordered quadruple

Φ :=

[
Aj Bτ∗j

C D

]
.

The operator A ∈ L(H) is the semi-group gener-
ator of Φ, and it is the same operator as in equa-

tion (1). B : ℓ2(Z−; U) ⊃ dom(B) → H is the
controllability map that maps the past input into
the present state. C : H ⊃ dom(C) → ℓ2(Z+; Y )
is the observability map that maps the present
state into the future outputs. The last operator
D : ℓ2(Z; U) → ℓ2(Z; Y ) is the I/O map that maps
the input into output in a causal and shift invari-
ant way. We remark that the same DLS is denoted
in I/O-form by the capital Φ, and in the difference
equation form by φ.

If B or C is bounded, we say that Φ is input sta-
ble or output stable, respectively. If D is bounded
then Φ is I/O-stable and the transfer function
D(z) ∈ H∞(L(U ; Y )). If limj→∞ Ajx0 = 0 for
all x0 ∈ H , then the semi-group generator A is
strongly stable.

Let Φ be an I/O-stable and output stable DLS,
and J ∈ L(Y ) a nonnegative, self adjoint cost op-
erator. The symbol Ric(Φ, J) denotes the associ-
ated discrete time Riccati equation, given by






A∗PA − P + C∗JC = K∗

P ΛP KP ,

ΛP = D∗JD + B∗PB,

ΛP KP = −D∗JC − B∗PA,

where Λ−1
P is required to be bounded. If P

is a self adjoint solution of Ric(Φ, J), we write
P ∈ Ric(Φ, J). Several subsets of the solution set



Ric(Φ, J) are defined and studied in [10, Sections
XXX]. The operator ΛP is the indicator, and KP

is the feedback operator of P

For fixed Φ and J , two additional DLS’s are
associated to each solution P ∈ Ric(Φ, J)

φP :=

(
A B

−KP I

)
, φP :=

(
AP B

CP D

)
, (2)

where AP := A+BKP , CP = C +DKP . The ob-
jects φP , (φP ) is called the lower DLS (upper DLS,
respectively), centered at P . The algebraic and
partial ordering properties of DARE can be con-
veniently described with the aid of these DLS’s,
see [10]. It also appears that φP and φP are fun-
damental notions in the infinite dimensional inner-
outer factorization theory, as developed [11].

Some solution of DARE are more interesting
that others. If P ∈ Ric(Φ, J) is such that the
lower DLS φP is I/O-stable and output stable, we
call P an H∞-solution, and write P ∈ ric(Φ, J).
By relating P ∈ Ric(Φ, J) to an associated cost
optimization problem (see [7]), it makes sense to
classify the solutions in terms of the residual costs
(in the infinite future). If the residual cost opera-
tor LA,P exists and satisfies

LA,P := s − limj→∞A∗jPAj = 0,

then the strong residual cost condition is satis-
fied, and we write P ∈ Ric0(Φ, J). Further-
more, Ricuw(Φ, J) is the set of such solutions P

that satisfy the ultra weak residual cost condi-
tion:

〈
PBτ∗jũ,Bτ∗jũ

〉
→ 0 for all ũ ∈ ℓ2(Z+; U)

where τ∗ denotes the backward shift. The set
of regular solutions is defined as ricreg(Φ, J) :=
Ric0(Φ, J) ∩ Ricuw(Φ, J) ∩ ric(Φ, J).

A solution P crit ∈ Ricuw(Φ, J) is critical if
the transfer function Dφ

Pcrit
(z) of the lower DLS

φP crit is in H∞, together with its inverse. The
equivalent conditions for the existence of such
P crit are discussed in [7], under quite general
assumptions. The I/O-map of such φP crit is
the outer factor (with a bounded inverse) in the
(J, ΛP crit)-inner-outer factorization D = NX , in-
duced by the critical P crit. P crit, when it ex-
ists, can be replaced by another critical P crit

0 ∈
ricreg(Φ, J), given by P crit

0 = (Ccrit)∗JCcrit. Here
Ccrit := (I − π̄+D(π̄+D

∗JDπ̄+)−1π̄+D
∗J)C is the

critical closed loop observability map.
A detailed treatment of fundamental notions

of DLS’s (such as state feedback structure and
various stability notions) is given in [8]. For a
less general, introductory presentation, see the in-
troduction in [10]. For associated cost optimiza-
tion problems, spectral factorization problems and
critical solutions of DARE under weak assump-
tions, see [6] and [7]. See also the early discrete
time paper [5]. For factorizations of the Popov
operator and the I/O-map via nonnegative solu-
tions of an associated DARE, see [10] and [11].

Nonnegative solutions of CARE are considered in
[2] which has a considerable intersection with our
work [11]; however, the [2] contains deeper control
theoretic considerations. See also the references in
[2], in particular the earlier [1]. A more complete
presentation of the results of this paper are given
in [9]. The above notions are closely related to
the concept of a continuous time stable well-posed
linear system by O. Staffans in [13], [14] and G.
Weiss in [16], [17].

After these preliminary considerations, we con-
tinue to discuss this work. Our starting point
is the following Lemma 1. It relates the natu-
ral partial ordering of the nonnegative solutions
P ∈ Ricuw(Φ, J) to the partial ordering of certain
(normalized) chains of partial inner factors of the
I/O-map D.

Lemma 1. Let J ≥ 0 be a cost operator. Let
Φ =

[
Aj

Bτ∗j

C D

]
be an I/O-stable and output stable

DLS. Assume that the input space U is finite di-
mensional and that a critical solution P crit exists.

If P1, P2 ∈ Ricuw(Φ, J) satisfy 0 ≤ P1 ≤ P2,

then range(Ñ ◦

P1
π̄+) ⊂ range(Ñ ◦

P2
π̄+).

Also a two-way result on the partial ordering is
given in [11], but we do not use it here. To explain

what the Toeplitz operator Ñ ◦

P π̄+ is, consider the
following DLS’s

φP,P crit
0

:=

(
Acrit B

Kcrit − KP I

)
, (3)

φ̃P,P crit
0

=

(
(Acrit)∗ (Kcrit − KP )∗

B∗ I

)
,

where Kcrit := KP crit
0

, and Acrit := A + BKcrit.

So, the DLS φ̃P,P crit is the adjoint of φP,P crit .
The I/O-map of φP,P crit equals NP , where DφP

=
NPX is the (ΛP , ΛP crit)-inner-outer factorization,

see [10]. Normalize and adjoin to obtain Ñ ◦

P :=

Λ
−

1

2

P critÑP Λ
1

2

P , where F̃ (z) := F (z̄)∗ and anal-
ogously for the I/O-maps, DLS’s and DARE’s.

Now the transfer function Ñ ◦

P (z) is inner L(U)-
valued analytic function in D, having unitary non-
tangential boundary limits Ñ ◦

P (eiθ) a.e. eiθ ∈ T.

So as to the range spaces range(Ñ ◦

Pπ̄+), the reader
will immediately notice that this situation is de-
scribed by the Beurling-Lax-Halmos-theorem of
forward shift invariant subspaces.

By looking at the realization (3), we see that
the semi-group generator φP,P crit

0

is independent

of P . Moreover, the operator Kcrit − KP in
a sense, “measures the distance” of P from the
critical P crit

0 . The extreme case appears when
P = P crit

0 , and the state space is no longer vis-
ible from the output of φP,P crit

0

. This gives us the
idea that for a given P , only the “visible part”
of (Acrit)∗ is responsible for the structure of the



corresponding I/O-map, namely Ñ ◦

P (normaliza-
tion is here immaterial). Furthermore, it is rea-
sonable to expect that these “parts” of (Acrit)∗

were “ordered” in the same sense as the opera-
tors Ñ ◦

P . If that were the case, then the partial
ordering of Lemma 1 could be carried from the so-
lution set Ricuw(Φ, J) to the “parts” of the semi-
group (Acrit)∗. With even more luck, we might be
able to connect the function theoretic structure of
Ñ ◦

P (z) to the operator theoretic structure of the
corresponding part of (Acrit)∗, in a general, truly
infinite dimensional manner. This is the battle
plan of this paper.

For a rigorous treatment, we first assume that
the I/O-map of φ = ( A B

C D ) is (J, ΛP crit)-inner,
see Section 2. For such inner systems, the par-
tial ordering of Ric(Φ, J) is related to certain A∗-
invariant subspaces HP .

In Section 3, we present the characteristic DLS
φ(P ), which is a reduced, observable version of

φP . The adjoint DLS φ̃(P ) has the semi-group
generator (AP )∗ := ΠP A∗|HP , a compression of
the original A (ΠP is the orthogonal projection

onto HP ). Now, a normalized φ̃◦(P ) is approxi-
mately controllable, has the semi-group generator
(AP )∗ and the I/O-map Ñ ◦

P . We proceed to con-
nect the function theoretic properties of the inner
function Ñ ◦

P (z) to the operator theoretic proper-
ties of (AP )∗.

This is done by the tools of Sections 4 and 5.
Here, a special case of the Sz.Nagy-Foias operator
model (for C00-contractions) is introduced. These
tools are applied in Section 6. More precisely, the
characteristic function Ñ ◦

P (z) is connected to the
restriction of the backward shift S∗ onto the (clo-
sure of the) range of the observability map C

φ̃◦(P )
.

Then the basic identity S∗C
φ̃◦(P )

= C
φ̃◦(P )

(AP )∗

is used to connect the restricted shift (and simul-

taneously Ñ ◦

P (z)) to the semi-group (AP )∗.

In the final Section 7, we indicate how the ap-
proach is valid for a general non-inner DLS Φ.
This is done by making a preliminary state feed-
back, associated to the critical solution P crit

0 . The

upper (closed loop) DLS φP crit
0 has (J, ΛP crit)-

inner I/O-map, and the solution sets of DARE’s

coincide: Ric(Φ, J) = Ric(φP crit
0 , J). Because

we must require extra structure from the useful
solutions P ∈ Ric(φP crit

0 , J), it follows that not
all P ∈ Ric(φ, J) are relevant for our purposes.
When A is strongly stable, and φ is both input and
output stable, then the relevant solutions are con-
veniently characterized and presented here. The
general case (when A is not strongly stable) is
more complicated.

To clarify the presentation, the following
standing assumptions are used throughout this pa-
per.

• Φ =
[

Aj
Bτ∗j

C D

]
= ( A B

C D ) is an input stable,
output stable and I/O-stable DLS, such that
dom(C) := {x ∈ H | Cx ∈ ℓ2(Z+; Y )} =
H . Also range(B) = H is assumed.

• The cost operator J is nonnegative, and the
input space U is finite dimensional.

• The DARE Ric(Φ, J) has a non-
negative critical regular solution P crit

0 =
(Ccrit)∗JCcrit ∈ ricreg(Φ, J).

• The I/O-map D of Φ is assumed to be
(J, ΛP crit)-inner, except in the last section.
This means that in the (J, ΛP crit)-inner-
outer factorization D = NX , induced by a
critical P crit, the outer part is an identity
operator.

• All the solutions P ∈ Ric(Φ, J) are consid-
ered to be regular, unless explicitly other-
wise stated.

These assumptions can be significantly relaxed, as
mentioned in the final section. Eventually, Φ is re-
quired to be exactly controllable; i.e. range(B) =
H .

2. DLS with inner I/O-map

We consider an I/O-stable and output stable DLS
Φ =

[
Aj

Bτ∗j

C D

]
and a cost operator J ≥ 0, such

that D is (J, ΛP crit)-inner.

Lemma 2. Let P ∈ ricreg(Φ, J), P ≥ 0 be arbi-
trary.

(i) ker(Pcrit
0 − P) = ker(CφP

). In particular,
ker(Pcrit

0 − P) is A-invariant.

(ii) The feedback operators satisfy KP crit
0

= 0

and KP = −Λ−1
P B∗(P crit

0 − P )A. Also
Acrit = AP crit

0

= A. The lower DLS at P

satisfies

φP =

(
A B

−KP I

)
=

(
Acrit B

Kcrit − KP I

)
.

(iii) The upper DLS φP crit
0 equals the original Φ.

For the lower lower DLS: φP = φP,P crit
0

.

The DLS with (J, ΛP crit)-inner I/O-map is it-
self its own closed loop system (if range(B) = H),
when the same cost operator J is used to define
the cost optimization problem. This is not surpris-
ing; you cannot further optimize what is already
optimal.

We introduce the following notation: HP :=
ker(CφP

) ⊂ H , its orthogonal complement in H

is HP . Denote by ΠP the orthogonal projec-
tion onto HP . Clearly, if 0 ≤ P1 ≤ P2, then



{0} ⊂ HP1 ⊂ HP2 ⊂ H . This connects the par-
tial ordering of ricreg(Φ, J) ⊂ Ric(Φ, J) to the
partial ordering of A∗ -invariant subspaces HP .

3. Characteristic DLS

Let Φ and J ≥ 0 be as before. Let P ∈
ricreg(Φ, J). The characteristic DLS φ(P ) (of pair
(Φ, J)), centered at P is defined by

φ(P ) =

(
AP BP

−KP I

)
:=

(
ΠP A|HP ΠP B

−KP |HP I

)
,

where AP ∈ L(HP ), BP ∈ L(U ; HP ) and CP ∈
L(HP ; Y ). The state space of φ(P ) is HP . The
DLS φ(P ) is just a reduced version of φP , where
the null space ker(CφP

) has been “divided away”
from the state space. Actually, the adjoint DLS

φ̃(P ) is more interesting to us. Its properties are
given by

Lemma 3. Let P ∈ ricreg(Φ, J), P ≥ 0 be arbi-
trary. Then the following holds:

(i) φ̃(P ) is I/O-stable, input stable, and

range(B
φ̃(P)

) = HP . The I/O-map of φ̃(P )

satisfies D
φ̃(P )

= DfφP
= ÑP .

(ii) If, in addition, Φ is input stable, then φ̃(P )
is output stable.

The DLS φ̃(P ) is interesting because the

ranges of their I/O-maps ÑP π̄+ obey the par-
tial ordering of the solutions P ∈ Ricuw(Φ, J),
by Lemma 1.

Suppose we know a solution P0 of DARE.
Then we know the restricted subspace HP =

ker(Pcrit
0 − P)

⊥
, and the projetion ΠP onto it. Be-

cause the semi-group generator (AP )∗ := A∗|HP

of φ̃(P ) is now known, we can connect the struc-
ture of the (partial inner factor) transfer function

ÑP (z) to this part of operator A∗.

4. Ranges for Toeplitz and Hankel
operators

In the rest of this paper, we normalize the charac-
teristic DLS as follows.

Ñ ◦

P := Λ
−

1

2

P critÑP Λ
1

2

P , φ̃◦(P ) := Λ
−

1

2

P crit φ̃(P )Λ
1

2

P .

Then Ñ ◦

P (z) is an inner L(U)-valued function. It
follows that the range of the Toeplitz operator
Ñ ◦

P π̄+ and the closure of the range of C
φ̃◦(P )

are

orthogonal, and fill up the whole space ℓ2(Z+; U).

Lemma 4. Let Φ be an input stable, output stable
and I/O-stable DLS. Assume that a critical P crit

exists, and let P ∈ ricreg(Φ, J) be arbitrary. Then

ℓ2(Z+; U) = range(Ñ ◦

Pπ̄+) ⊕ range(C
φ̃◦(P)

).

5. Shift operator model

As usual, Θ(z) ∈ H∞(L(U)) is called inner, if
the boundary trace function Θ(eiθ) is unitary a.e.
eiθ ∈ T. For an inner Θ(z), define the Hilbert
subspace

KΘ := H2(T; U) ⊖ ΘH2(T; U). (1)

We consider the restriction S∗|KΘ and its adjoint,
the compression PΘS|KΘ, where PΘ is the orthog-
onal projection onto KΘ. S∗|KΘ is a contraction
on KΘ ⊂ H2(T; U). It is well known that prop-
erties of S∗|KΘ are coded into the characteristic
function Θ(eiθ) of S∗|KΘ. This is a particular
case of the famous Sz.Nagy-Foias operator model
for contractions, see [3, Chapter IX, Section 5],
[12], [15]. For compressions of the shifts in control
theory, see also [4].

The contraction S∗|KΘ has a number of useful
properties:

Proposition 5. Let Θ(z) be a contractive ana-
lytic function. Θ(z) is inner (from both sides) if
and only if S∗|KΘ ∈ C00, where C00 is the class
of contractions T on a Hilbert space, such that

s − limj→∞T j = 0, s − limj→∞T ∗j = 0.

Definition 6. The spectrum σ(Θ) of an inner
function Θ(z) is defined to be the complement of
the set of z ∈ D, such that an open neighborhood
Nz of z exists with

(i) Θ(z)−1 exists in Nz ∩D,

(ii) Θ(z)−1 can be analytically continued to a full
neighborhood Nz.

The spectrum of S∗|KΘ ∈ C00 is considered in
the following:

Lemma 7. Let Θ(z) be as above. Define the C00-
contraction TΘ := PΘS|KΘ ∈ L(KΘ). Then

(i) σ(TΘ) = σ(Θ), where σ(Θ) ⊂ D is the spec-
trum of the characteristic function Θ(z).

(ii) The point spectrum of TΘ and T ∗

Θ satisfies

σp(TΘ) = {z ∈ D | ker(Θ(z)) 6= {0}}

σp(T
∗

Θ) = {z ∈ D | ker(Θ(z̄))
∗ 6= {0}}

Because we are dealing with the DARE, we use
the operator model in the time domain sequence
space ℓ2(Z+; U) instead of H2(T; U) . We adopt



the following notation for a DLS φ′ whose I/O-
map Dφ′ is inner:

Kφ′ := ℓ2(Z+; U) ⊖ range(Dφ′ π̄+),

S∗ := π̄+τ∗.

Thus the transfer function Dφ′(z) is the charac-
teristic function of the contraction S∗|Kφ′ .

6. Similarity transform

By combining the contents of previous sections,

we see that the properties of φ̃◦(P ) are as follows:

Lemma 8. Let Φ =
[

Aj
Bτ∗j

C D

]
be an input stable,

output stable and I/O-stable DLS, such that the
input space U is finite dimensional. Let J ≥ 0 be
a cost operator. Assume that there exists a critical
solution P crit ∈ Ricuw(Φ, J) and the I/O-map D
is (J, ΛP crit)-inner. Let P ∈ ricreg(Φ, J), P ≥ 0
be arbitrary.

(i) The DLS φ̃◦(P ) is input stable, output sta-
ble and I/O-stable. Its transfer function is

inner and equals Ñ ◦

P . Also range(B
φ̃◦(P)

) =

HP and range(C
φ̃◦(P)

) = K
φ̃◦(P )

(ii) The following similarity transform holds

(
S∗|K

φ̃◦(P )

)
C

φ̃◦(P )
= C

φ̃◦(P )
(AP )∗,

where (AP )∗ := A∗|HP and HP :=

ker(Pcrit
0 − P)

⊥
is A∗-invariant.

If, in addition, range(B) = H, then
ker(C

φ̃◦(P)
) = {0}. (However, the inverse

of C
φ̃◦(P )

can be unbounded.)

(iii) If Φ is exactly controllable (i.e. range(B) =
H), then C

φ̃◦(P )
: HP → K

φ̃◦(P )
is a

bounded bijection, with a bounded inverse.

Theorem 9. Make the same assumption as in
claim (iii) of previous Lemma.

Then for all P ∈ ricreg(Φ, J), P ≥ 0,
the restriction (AP )∗ := A∗|HP is similar to a
C00-contraction, whose characteristic function is
Ñ ◦

P (z). By adjoining, the compression ΠP A|HP

is similar to a C00-contraction, whose character-
istic function is N ◦

P (z).

The latter claim follows from the previous,
by [12, Lemma on p.75]. In particular, this im-
plies that the spectrum σ(AP ) and the spectrum
inner function σ(N ◦

P ) coincide. Also the point
spectrum maps onto the point spectrum, in the
sense of Lemma 7. A partial result concerning
the point spectrum of AP can be given, with-
out assuming the exact controllability of Φ, see
[9]. In particular, if AP is a compact operator

on HP , then σ(AP ) \ {0} = σp((AP )∗) = {z ∈
D | ker(NP(z̄)) 6= {0}}; here bar denotes com-
plex conjugate, and the assumption dimU < ∞
is crucial. The case of compact A is always cov-
ered. Finally, the case when the complex valued
inner function detN ◦

P (z) is a Blaschke product is
connected to the completeness of AP (i.e. eigen-
vectors of span the whole space ), see [12, Lecture
IV].

7. General DLS’s

We explain how the results, given above for DLS
with an inner I/O-map, can be extended to a gen-
eral DLS Φ, such that there is a critical solution
P crit ∈ Ricuw(Φ, J). Consider the closed loop

H∞-DARE, denoted by Ric(φP crit
0 , ΛP crit).





(Acrit)∗PAcrit − P̃ + (Ccrit)∗JCcrit = K̃∗

P ΛP K̃P

ΛP = D∗JD + B∗PB

ΛP K̃P = −D∗JCcrit − B∗PAcrit,

Because φP crit
0 is a critical closed loop DLS,

its I/O-map is (J, ΛP crit)-inner. The full solu-

tion sets satisfy Ric(Φ, J) = Ric(φP crit
0 , ΛP crit).

In a general case, the regular solutions of
Ric(φP crit

0 , ΛP crit) (that we consider in Theorem
9) can not be described in simple terms of the orig-
inal data Φ and J . If both A and Acrit are strongly
stable, then this problem becomes trivial.

Theorem 10. Let J ≥ 0 a self adjoint cost op-
erator. Let Φ =

[
Aj

Bτ∗j

C D

]
be an input stable,

output stable and I/O-stable DLS, such that the
input space U is finite dimensional. Assume that
the semi-group generator A is strongly stable:

lim
j→∞

Ajx0 = 0 for all x0 ∈ H.

Assume that the unique critical solution ex-
ists, equaling the regular solution P crit

0 :=
(Ccrit)∗JCcrit. Let P ∈ ricreg(Φ, J). By φ(P )
denote its characteristic DLS, and by NP denote
the (ΛP , ΛP crit

0

)-inner factor of DφP
.

If C
φ̃◦(P )

is coercive, then

(i) the adjoint of (Acrit)P := ΠP Acrit|HP is
similar to a C00-contraction, whose charac-
teristic function is N ◦

P (z). The adjoint sim-
ilarity transform is given by

(
S∗|K

φ̃◦(P )

)
C

φ̃◦(P )
= C

φ̃◦(P )
((Acrit)P )∗

where C
φ̃◦(P )

: HP → K
φ̃◦(P )

is a bounded

bijection.



(ii) σ(((Acrit)P )) = σ(Ñ ◦

P ) ⊂ D, where the spec-
trum of the inner function is given in Defi-
nition 6.

(iii) Both (Acrit)P and
(
Acrit)P

)∗
are strongly

stable.

In particular, the above claims hold if range(B) =
H (i.e. Φ is exactly controllable).

Several assumptions of this paper can be sig-
nificantly relaxed, see [9]. The positivity of the
cost operator J can be replaced by the positiv-
ity of the indicator ΛP for solutions P of inter-
est. This is connected to the positivity of the
Popov operator π̄+D∗JDπ̄+. The input space
can be a separable Hilbert space throughout the
work (with one exception), if the input opera-
tor B ∈ L(U ; H) is assumed to be a (compact)
Hilbert-Schmidt operator on some occasions. The
solutions P ∈ Ric(Φ, J) need not always be reg-
ular, and some partial results will hold even if Φ
is not even approximately controllable or input
stable. Theorem 10 can be generalized in many
directions. For example, the strong stability of A

is not needed, but then the description of the rel-
evant solutions in P ∈ Ric(Φ, J) would be more
complicated.
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