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Abstract: We study a Crank–Nicolson type time discretisation (known as Tustin’s method in
engineering literature) for a conservative, infinite-dimensional linear dynamical system whose
transfer function is scalar and inner. We show that this discretisation approximates the state
trajectory at any given time. We first prove the result for canonical Hankel range realisations,
and the general case is then obtained using the state space isomorphism.
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1. INTRODUCTION

Let us introduce the purpose of this paper in the finite-
dimensional case where X = Cn for n < ∞, and the state-
space system S is defined by the block matrix S := [ A B

C D ] :
[X
C
] → [X

C
]. The corresponding dynamical equations are






z′(t) = Az(t) +Bu(t),

y(t) = Cz(t) +Du(t), t ≥ −T,

z(−T ) = z−T .

(1)

That such a system S is (scattering) conservative means
the following: for all initial times −T < 0, input signals
u, ud ∈ C2([−T,∞)), and initial states z−T , z

d
−T ∈ X , the

energy balance equations

d

dt
‖z(t)‖2X = |u(t)|2 − |y(t)|2 and

d

dt
‖zd(t)‖2X = |ud(t)|2 − |yd(t)|2

(2)

hold for all t > −T where z, y are given by (1), and zd, yd

are given by






d
dtz

d(t) = A∗zd(t) + C∗ud(t),

yd(t) = B∗zd(t) +D∗ud(t), t ≥ −T,

zd(−T ) = zd−T .

(3)

The Cayley–Tustin discretisation (or transform) of (1) is
defined for any time step h > 0 by











z
(h)
j = Aσz

(h)
j−1 +Bσu

(h)
j ,

y
(h)
j = Cσz

(h)
j−1 +Dσu

(h)
j , j > −Jh,

z
(h)
−Jh

= 0

(4)

where we define 1 Aσ := (σ+A)(σ−A)−1, Bσ :=
√
2σ(σ−

A)−1B, Cσ :=
√
2σC(σ −A)−1, Dσ := Ĝ(σ),

Jh := ⌈T/h⌉ ∈ {1, 2, . . .} and σ := 2/h > 0. (5)

1 Thus, Jh is the unique integer satisfying hJh ∈ (T, T + 1/h].

Suppose now that z−T = 0 in (1), and that equations

(1) and (4) are connected by {u(h)
j }j∈Z = Tσu where the

discretising (or sampling) operator Tσ is given by 2

u
(h)
j =

1√
h

∫ jh

(j−1)h

u(t) dt for all j ∈ Z. (6)

In the finite-dimensional case, the main result – Theo-
rem 12 – of this paper takes the following form:

Theorem 1. Let S = [ A B
C D ] be a finite-dimensional, conser-

vative state space system with scalar signals, such that the
contraction semigroup T(t) := eAt is exponentially stable.
For any T > 0 and u ∈ C2([−T,∞)) with supp(u) ⊂
(−T, 0], define the continuous trajectory z by (1) with

z−T = 0. Define the discrete trajectory {z(h)j }j=−Jh...0 by

(4) – (5) for all h > 0. Then limh→0+‖z(h)0 − z(0)‖X = 0.

The proof of this theorem is given at the end of the paper.

Remark 2. Instead of using t = 0 as the final state to be
approximated in Theorem 1, this time point can be chosen
arbitrarily by translation invariance. That also the input-
output mapping of system S is approximated by Tustin’s
method, has already been treated in Havu and Malinen
(2005, 2007).

In this paper, Theorem 1 is proved in a considerably more
general form. Indeed, the assumption dimX < ∞ is not
required at all, allowing infinite-dimensional conservative
system nodes S =

[

A&B
C&D

]

on a separable Hilbert (state)
space X . A thorough introduction to such system nodes
and their Cayley–Tustin transforms can be found in (Havu
and Malinen, 2007, Section 1), and we assume that reader
has access to this text. Moreover, the exponential stability
assumption in Theorem 1 can be weakened to mere strong
stability of both the contraction semigroups T(·) and

T
d(t) := eA

∗t; this is equivalent with the property that the

(scalar) transfer function Ĝ(·) of system node S is inner.
All these generalisations are presented in Theorem 12.
2 We extend u ∈ C2([−T,∞)) by zero for t < −T in (6).



It is possible to further extend Theorem 12 for systems
whose external signals u and y are not scalar but live in a
separable Hilbert space. After this final generalisation (not
presented here to reduce technicality), applications cover
many practical linear systems in applied mathematics
and physics; e.g., the scattering conservative, boundary
controlled wave equation treated in Malinen and Staffans
(2006), wave propagation in transmission graphs as treated
in Aalto and Malinen (2011) using Webster’s equation.

System nodes have been introduced under different names
(such as operator colligations or Livšic – Brodskĭı nodes)
in, e.g., Helton (1976); Brodskĭı (1971a,b, 1978); Malinen
et al. (2006); Malinen and Staffans (2006, 2007); Livšic and
Yantsevich (1977); Smuljan (1986); Staffans (2004); Sz.-
Nagy and Foias (1970). References to Cayley transform
in numerical analysis include, e.g., Arov and Gavrilyuk
(1993); Gavrilyuk and Makarov (1994, 1998).

Outline of this paper is as follows: In Section 2 we
introduce canonical Hankel range realisations of Ĝ ∈
H∞(C+), express them as system nodes SG, and compute
their Cayley–Tustin transforms φG

σ . The main result of this
paper is given in Section 3 for the special case of SG; see
Theorem 11. Using the state space isomorphism, this result
is translated to general systems S =

[

A&B
C&D

]

(satisfying the
conditions of Theorem 12) in Section 4.

Notation

The real axis and the complex plane are R and C, and we
write R+ = (0,∞), iR = {z : Re z = 0}, C+ = {z : Re z >
0}, and D = {z : |z| < 1}. The set Z denotes integers,
and Z+ = {0, 1, . . .}, Z− = {. . . ,−1, 0}, and N = {1, . . .}.
Square summable sequences are denoted by ℓ2(Z), ℓ2(N),
etc., with the norm ‖{uj}‖2ℓ2(Z) =

∑

j∈Z
|uj |2.

Bounded linear operators between Hilbert spaces X,Z are
denoted by L(X ;Z) and L(X) if Z = X . The spectrum
of A ∈ L(X) are denoted by σ(A). By C(I) we denote
the continuous functions on I = [a, b] ⊂ R. For n =
1, 2, . . ., the space Cn(R) denotes the n times continuously
differentiable functions, and Cn(I) denotes the restrictions
of Cn(R) to I. By Cn

0 (I) denote those f ∈ Cn(R) for which
supp(f) ⊂ I.

The Laplace transform is defined by f̂(s) = (Lf) (s) :=
∫∞
0 e−stf(t) dt for s ∈ C+. By Plancherel’s theorem,

L : L2(R+) → H2(C+) is a unitary operator. The Fourier
transform is defined by (Ff) (iω) :=

∫∞
−∞ e−iωtf(t) dt for

f ∈ L1(R) and iω ∈ iR. The operator F has an extension
from L1(R) ∩ L2(R) to a unitary operator F : L2(R) →
L2(iR) if ‖f‖2L2(iR) :=

1
2π

∫∞
−∞ |f(iω)|2 dω.

2. TUSTIN TRANSFORM OF HANKEL RANGE
REALISATIONS

2.1 Generating operators and conservativity

For any z ∈ L2(R) and t′ ∈ R, define the translation group
by (τ tz)(t′) := z(t+ t′). For a closed interval I ⊂ R, define
the orthogonal projection πI on L2(R) by

(πIz)(t
′) :=

{

z(t′) for t′ ∈ I,

0 for t′ /∈ I;

π+ := πR+
, and π− := πR−

. We identify L2(R+) =
range (π+) and L2(R−) = range (π−).

Let Ĝ ∈ H∞(C+) be arbitrary, denote by G ∈ L(L2(R))
the corresponding I/O-map, and define the Hankel state
space

H := range (π+Gπ−) ⊂ L2(R+) (7)
where the closure is taken in L2(R+). The space H is
given the norm of L2(R), its inner product is denoted by
〈·, ·〉H , and it is invariant under the unilateral backward
translation; i.e., π+τ

tH ⊂ H holds for all t ≥ 0.

Consider now the well-posed linear system ΣG defined by

ΣG :

{

γ(t) = π+τ
tγ0 + π+Gπ−τ

tu for t ≥ 0,

y = π+γ0 + π+Gπ+u
(8)

for initial state γ0 ∈ H and input signal u ∈ L2(R+)
where the functions γ(·) and y are the state trajectory and
output signal of ΣG, respectively. As a well-posed linear
system, ΣG is associated to a unique system node; see
(Havu and Malinen, 2007, Definition 1.1) and (Staffans,
2004, Theorem 4.6.5).

Definition 3. Let Ĝ ∈ H∞(C+). Denote by SG =
[

[A&B]G
[C&D]G

]

the system node on Hilbert spaces (C, H,C)

with the domain dom
(

SG
)

, associated to the well-posed

linear system ΣG in (8). Denote for σ > 0 by φG
σ =

[

AG

σ
BG

σ

CG

σ
DG

σ

]

the Cayley–Tustin transform of SG as defined

in (Havu and Malinen, 2007, Section 1.3).

The transfer function of φG
σ is given by

D̂σ(z) = Ĝ

(

1− z

1 + z
σ

)

for z ∈ D. (9)

Since we need an explicit expression for φG
σ , we must

compute the generating operators of SG:

Proposition 4. Let SG be as in Definition 3, and define
H by (7). Then the main operator AG, input operator
BG, and the output operator CG of SG are given by the
equations

AG =
d

dt

∣

∣

dom(AG) where dom
(

AG
)

= H1(R+) ∩H,

(10)

(σ −AG

−1)
−1BGu = π+G(eσu)

for all u ∈ U and σ > 0, and (11)

CGz = z(0) for all z ∈ dom
(

AG
)

(12)

where AG
−1 ∈ L(H ;H−1) is the Yosida extension of AG

−1
(see (Havu and Malinen, 2007, Section 1.3)), and

eσ(t) :=

{

0 for t > 0,

eσt for t ≤ 0.
(13)

The domain of SG is given by 3 dom
(

SG
)

=
{

[ xu ] ∈ [HU ] : x− π+G(eσu) ∈ H1(R+) for some σ > 0
}

, and

the transfer function of SG is Ĝ.

Proof. The generator of the backward translation semi-
group S(t) := π+τ

t on L2(R+) is

A = d
dt with domain dom (A) = H1(R+).

3 H1(R+) :=
{

h ∈ L2(R+) : ∃h′(t) a.e. t ∈ R+ and h′ ∈ L2(R+)
}

is the Sobolev space.



Because S(t)H ⊂ H , it follows that the generator
AG of S(t) |H is given by (10). That (11) holds fol-
lows from (Staffans, 2004, p. 214). The characterisa-
tion of dom

(

SG
)

follows from what we have already

computed, together with the definition dom
(

SG
)

:=
{

[ xu ] ∈ [HU ] : AG
−1x+BGu ∈ H

}

. Remaining claims follow

from (8) and the correspondence of SG and ΣG by
(Staffans, 2004, Theorem 4.6.5).

Using the operators given by Proposition 4 and assuming
that u ∈ C2(R+) and

[ γ0

u(0)

]

∈ dom
(

SG
)

, the dynamical

equations (8) for the classical solution can be written in
the differential form

{

γ′(t) = AG

−1γ(t) +BGu(t),

y(t) = [C&D]G

[

γ(t)
u(t)

] (14)

for t ≥ 0 where [C&D]G is given for [ xu ] ∈ dom
(

SG
)

by

[C&D]G [ xu ] = [x− π+G(eσu)] (0) + Ĝ(σ)u.

Recall that Ĝ ∈ H∞(C+) is inner if |Ĝ(iy)| = 1 for almost
all y ∈ R. By Parseval’s identity, the corresponding I/O-
mapping of such a transfer function satisfies

G
∗
G = GG

∗ = I on L2(R). (15)

If G is the I/O-mapping of a conservative system S,
then (15) means that S (and also its dual system Sd as
characterised in (Malinen et al., 2006, Proposition 2.4))
cannot permanently trap a strictly positive amount of
energy inside its state space.

Proposition 5. Suppose that Ĝ is inner. Then its Hankel
range realisation SG is a linear system that is exactly con-
trollable (in infinite time), exactly observable (in infinite
time), and (scattering) conservative.

This is well-known in the model theory for Hilbert space
contractions (see, e.g., (Staffans, 2004, Corollary 11.7.4)).

2.2 Cayley–Tustin transform of SG

We next compute the Cayley–Tustin transform φG
σ =

[

AG

σ
BG

σ

CG

σ
DG

σ

]

of SG. The feed-through operator DG
σ of φG

σ

can be directly read from (9):

DG

σ = D̂σ(0) = Ĝ (σ) . (16)

The input operator BG
σ =

√
2σ(σ − AG)−1BG of φG

σ is
easy to obtain by (Staffans, 2004, p. 214). We get

BG

σ u =
√
2σπ+G(eσu) for all u ∈ U (17)

where eσ(t) is given by (13) with the Fourier transform

êσ(iω) = (σ − iω)
−1

for all ω ∈ R. (18)

Let us proceed to the cogenerator AG
σ := (σ + AG)(σ −

AG)−1 ∈ L(H). We need an auxiliary result:

Lemma 6. For all σ > 0, the operator

(Dσ ĝ) (s) :=







ĝ(s)− ĝ(σ)

s− σ
for s 6= σ,

g′(σ) for s = σ
(19)

for ĝ ∈ H2(C+) satisfies ‖σDσ‖L(H2(C+)) ≤ 1 + 1√
8π

, and

its adjoint is given by (D∗
σ f̂)(s) = − f̂(s)

s+σ for f̂ ∈ H2(C+).

All this follows from a direct computation.

Proposition 7. Take Ĝ ∈ H∞(C+) and σ > 0, and let φG
σ

be as in Definition 3 with the state space H given by (7).

(i) Then the cogenerator in φG
σ satisfies AG

σ = (2Vσ −
I) |H where

(σ−1Vσz)(t) :=

∫ ∞

t

eσ(t−v)z(v) dv =
(

Lπ+τ
tz
)

(σ) ;

(20)
for z ∈ L2(R+). Moreover, L(AG

σ )jz = (−I −
2σDσ)

jLz for all z ∈ H .
(ii) For all u ∈ U and j ∈ Z+, we have

L
(

AG

σ

)j
BG

σ u = −
√
2σ(−I − 2σDσ)

jDσĜu. (21)

Proof. First part of claim (i): SinceAG
σ = 2σ

(

σ −AG
)−1−

I, it is enough to show that σ
(

σ −AG
)−1

= Vσ |H where

AG is given by (10), and Vσ is given by (20). For any
u ∈ H1(R+), we have by the Schwartz inequality

|u(t)| ≤ |u(0)|+
√
t‖u‖H1(R+) for t ≥ 0. (22)

If u = (σ − AG)−1z for z ∈ H ⊂ L2(R+), then
u ∈ dom

(

AG
)

⊂ H1(R+) and u′(t) = σu(t) − z(t) a.e.
t ∈ R+. By the variation of constants formula we get

u(t) = eσt
(

u(0)−
∫ t

0
e−σvz(v) dv

)

a.e. t ∈ R+. Since

u cannot grow exponentially by (22) and σ > 0, it
follows that u(0) =

∫∞
0

e−σvz(v) dv and hence u(t) =

eσt
∫∞
t

e−σvz(v) dv =
(

σ−1Vσz
)

(t). We conclude that (σ−
AG)−1 = σ−1Vσ |H .

The second part of claim (i): We obtain by changing the
order of integration

(LVσz) (s) = − (σDσz) (s).

for s ∈ C+ and z ∈ L2(R+). Thus LVσ = −σDσL on
L2(R+). Therefore LAG

σ z = (−I − 2σDσ)Lz holds for all
z ∈ H , and the claim follows.

Claim (ii): By (13), (18), and the fact that G operates as

multiplication by Ĝ(·) in the frequency domain, we get for
all ω ∈ R

F [G(eσu)] (iω) =
Ĝ(iω)u

σ − iω

= −(DσĜ)(iω)u− (iω − σ)−1
Ĝ(σ)u.

(23)

Now, DσĜ ∈ H∞(C+) since Ĝ ∈ H∞(C+), and also the

nontangential boundary limit function iω 7→ (DσĜ)(iω)u

is in L2(iR) for all u ∈ U . Hence, DσĜu ∈ H2(C+), and

it is easy to see that (· − σ)−1
Ĝ(σ)u ∈ H2(C−). Thus the

splitting on the right hand side of (23) is an orthogonal
direct sum, and we get for a.e. ω ∈ R the identity
L [π+G(eσu)] = −DσĜu. Using claim (ii) together with
(17), we get (21) for all j ≥ 0 and u ∈ U .

Remark 8. The adjoint of −
√
2σ(−I − 2σDσ)

jDσ in (21)

satisfies for f̂ ∈ H2(C+) and s ∈ C+ (see Lemma 6)

−
√
2σ

(

D∗
σ(−I − 2σD∗

σ)
j f̂

)

(s) =

√
2σ

σ + s

(

σ − s

σ + s

)j

f̂(s);

Note that the Laguerre basis of H2(C+) appears on the
right hand side.



3. CONVERGENCE RESULTS

Now that we have explicit descriptions for SG and φG
σ of

Definition 3 in familiar terms, it is possible to prove the
main result – Theorem 12 – in a special case.

The discretised Hankel state trajectory {γ(h)
j }j∈Z ⊂ H for

input u ∈ C2
0 ([−T, 0]) is given by











γ
(h)
j = AG

σ γ
(h)
j−1 +BG

σ u
(h)
j ,

y
(h)
j = CG

σ γ
(h)
j−1 +DG

σ u
(h)
j , j > −Jh,

γ
(h)
−Jh

= 0

(24)

where Jh, h are given (5), and {u(h)
j } = Tσu by (6). The

main task in this section is to prove the weak convergence

lim
h→0+

〈

γ, γ(0)− γ
(h)
0

〉

H
= 0 for all γ ∈ H (25)

which is easiest carried out in frequency domain. Theo-
rem 11 follows from (25) and the following:

Proposition 9. Let Ĝ(·), u, SG, and φG
σ be as above.

Assume, in addition, that Ĝ(·) is inner from both sides.

Define γ(0) and γ
(h)
0 for h > 0 by (14) and (24), respec-

tively. Define u(h) ∈ L2(R−) as the down-sampled input
given by (see (6))

u(h) := T ∗
σTσu with σ = 2/h. (26)

Then

(i) limh→0+

〈

γ, γ
(h)
0 − π+Gu(h)

〉

H
= 0 for all γ ∈ H if

and only if (25) holds; and

(ii) if (25) holds, then limh→0+ ‖γ(h)
0 − γ(0)‖H = 0.

Proof. Claim (i): Because

lim
h→0+

‖u(h) − u‖L2(R) = 0 for all u ∈ L2(R) (27)

and ‖G‖L(L2(R)) = 1, we get

‖γ(0)− π+Gu(h)‖H ≤ ‖u− u(h)‖L2(R−) → 0 as h → 0 + .

Claim (ii) follows from (Havu and Malinen, 2007, Propo-

sition 7) and the fact that limh→0+ ‖γ(h)
0 ‖H = ‖γ(0)‖H

which is a consequence of the conservativity of both SG

and φG
σ ; see Proposition 5 and (Havu and Malinen,

2007, Proposition 1.4). The details are as follows: The
conservativity of SG implies the energy balance ‖γ(0)‖2H =
‖u‖2L2(R−)−‖y

∣

∣

R−
‖2L2(R−) for the solution of (14), and the

conservativity of φG
σ implies the energy balance ‖γ(h)

0 ‖2H =

‖{u(h)
j }‖2ℓ2(Z−) − ‖{y(h)j }j≤0‖2ℓ2(Z−) for the solution of (24)

where {u(h)
j } := Tσu ∈ ℓ2(Z−) since u ∈ C2

0 ([−T, 0]).

Because the hold operator T ∗
σ : ℓ2(Z−) → L2(R−) is

an isometry, we have ‖u(h)‖L2(R−) = ‖{u(h)
j }‖2ℓ2(Z−) for

u(h) = T ∗
σ{u(h)

j } = T ∗
σTσu ∈ L2(R−), and similarly

‖y(h)
∣

∣

R−
‖L2(R−) = ‖{y(h)j }j≤0‖2ℓ2(Z−) where we define

y(h) := T ∗
σ{y(h)j }j∈Z ∈ L2(R). The claim now follows by

taking the limit as h → 0+ (with σ = 2/h) of these energy
balances because clearly ‖u(h)‖L2(R−) → ‖u‖L2(R−), and

‖(y(h)−y)
∣

∣

R−
‖L2(R−) → 0 by time translation from (Havu

and Malinen, 2007, Theorem 4.3).

In frequency domain, we have by Proposition 7 the follow-
ing formula for the controllability map of φG

σ :

γ̂
(h)
0 = −

√
2σDσ

Jh
∑

j=0

(−I − 2σDσ)
j(Ĝu

(h)
−j ) (28)

where σ = 2/h > 0 and {u(h)
j } = Tσu for u ∈ C2

0 ([−T, 0]).

The Fourier transform of u(h) ∈ L2(R−) (see (26)) is

û(h)(s) =
esh − 1

s
√
h

∑

j≥0

esjhu
(h)
−j for s ∈ iR. (29)

By Proposition 9 together with (28) – (29), equation (25)
in frequency domain takes the form 4

lim
h→0+

〈

γ̂,−
√
2σDσ

Jh
∑

j=0

(−I − 2σDσ)
j(Ĝ(·)u(h)

−j )

−Ĝû(h)
〉

L2(iR)
= 0 for all γ̂ ∈ H2(C+).

(30)

By Remark 8, the first part of (30) takes the form
〈

γ̂,−
√
2σDσ

Jh
∑

j=0

(−I − 2σDσ)
j(Ĝ(·)u(h)

−j )

〉

L2(iR)

=

Jh
∑

j=0

〈

f
(h)
j , F (·)u(h)

−j

〉

L2(iR)

where f
(h)
j (s) := (1−s)

√
2σ

s+σ

(

1− 2s
s+σ

)j

γ̂(s), and

F (s) :=
Ĝ(s)

s+ 1
satisfies ‖F‖H2(C+) ≤

√
π. (31)

Similarly, the latter part in (30) takes the form

〈

γ̂, Ĝû(h)
〉

L2(iR)
=

Jh
∑

j=0

〈

g
(h)
j , F (·)u(h)

−j

〉

L2(iR)

where g
(h)
j (s) := 1

s
√
h
(1 − s)

(

1− e−sh
)

e−sjhγ̂(s). Note

that f
(h)
j , g

(h)
j ∈ H2(C+), and we estimate their difference

using the multiplication operators on L2(iR), defined by

(Mh,j γ̂)(s) := (1− s)r
(h)
j (s)γ̂(s) for a.e. s ∈ iR (32)

where

r
(h)
j (s) :=

√
2σ

s+ σ

(

1− 2s

s+ σ

)j

−
(

1− e−sh
)

s
√
h

e−sjh (33)

for s ∈ C \ {0,−σ} and h = 2/σ. Clearly r
(h)
j ∈ H∞(C+),

and we show that r
(h)
j → 0 sufficiently fast on compact

sets as h → 0+:

Proposition 10. For any ω > 0 define

Mω := max
|z|≤ 2

1+1/ω

∣

∣

∣

∣

∣

∣

∑

k≥0

(

2−k−2 − 1

(k + 3)!

)

zk

∣

∣

∣

∣

∣

∣

< ∞.

(34)

(i) For all h < 1/(ω + 1), s ∈ [−iω, iω], and j ∈ N we
have

|r(h)j (s)| ≤ Mωh
5/2|s|2 + h3/2j1/2|s|.

4 We regard H2(C±) as subspaces of L2(iR) using nontangential
limits.



(ii) For any γ̂ ∈ L2(iR) with supp(γ̂) ⊂ [−iω, iω] we have

Jh
∑

j=0

‖Mh,j γ̂‖2L2(iR)

≤ (Mω + 1
2 )(1 + ω2)2 · h3(Jh + 1)(Jh +Mω) ‖γ̂‖2L2(iR).

Proof. Claim (i): Because |1− 2s
s+σ |j = 1 and | 1−e−sh

s
√
h

| ≤
h1/2 for all imaginary s and h = 2/σ > 0, we get

h−1/2|r(h)j (s)| ≤
∣

∣

∣

∣

∣

1

1 + sh
2

− 1− e−sh

sh

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

(

1− 2s

s+ σ

)j

− e−sjh

∣

∣

∣

∣

∣

.

(35)

For the first term on the right hand side of (35), we write

1

1 + z
2

− 1− e−z

z
= z2

∑

k≥0

(

2−k−2 − 1

(k + 3)!

)

(−z)k

that clearly converges for all |z| < 2. For any s ∈ C with
|s| ≤ ω and h < 2/(ω + 1) we get Mω < ∞ in (34) and

hence | 1
1+(sh)/2 − 1−e−sh

sh | ≤ Mωh
2|s|2.

It remains to estimate the absolute value mj(sh) :=
∣

∣

∣

∣

∣

(

1− sh
2

1+
sh
2

)j

−
(

e−sh
)j

∣

∣

∣

∣

∣

for s = yi ∈ iR. Writing (1 −
sh
2 )(1 + sh

2 )−1 = e−iθ1 for θ1 ∈ (−π/2, π/2) and θ2 =

yh, elementary trigonometry yields mj(sh)
2 := |e−ijθ1 −

e−ijθ2 |2 ≤ 2j|θ1 − θ2|. Because tan θ1
2 = yh

2 = θ2
2 , we get

from Taylor’s theorem

θ2 − θ1 = 2(tan θ1
2 − θ1

2 ) = 2 · 2 sin
θ′

2

cos3 θ′

2

(

θ1
2

)2

=
sin θ′

2

cos3 θ′

2

θ21

where either 0 ≤ θ′ ≤ θ1 or θ1 ≤ θ′ ≤ 0, depending on the
sign of θ1. We also have |θ1| < |θ2|. Since |θ1| < π/2, we

have |θ1 − θ2| ≤
sin

π
4

cos3
π
4
θ21 =

θ2
1

2 and so mj(sh)
2 ≤ jθ21 ≤

jθ22 = jh2|s|2.
Claim (ii): By the first claim of this proposition, we have

‖Mh,j γ̂‖2L2(iR) =

∫ ω

−ω

(1 + y2)|r̂(h)j (iy)|2|γ̂(iy)|2 dy

≤ h3ω2(1 + ω2)
(

Mω + j1/2
)2

‖γ̂‖2L2(iR)

≤ h3(1 + ω2)2
(

M2
ω + (2Mω + 1)j

)

‖γ̂‖2L2(iR)

for all j ∈ N and h > 1/(ω+1). Claim (ii) follows from this

since
∑Jh

j=0

(

M2
ω + (2Mω + 1)j

)

= (Jh +1)((Mω + 1
2 )Jh +

M2
ω) ≤ (Mω + 1

2 )(Jh + 1)(Jh +Mω).

Putting together all these ingredients, we obtain the main
result of this paper for Hankel range realisations:

Theorem 11. Suppose that Ĝ ∈ H∞(C+) is an inner
function whose associated I/O-map is denoted by G. Let
the system node SG, its Cayley–Tustin transform φG

σ for
σ > 0, and the state space H be as in Section 2.1.

Fix T > 0 and take u ∈ C2(R) with supp(u) ⊂ [−T, 0].

Define γ(0) ∈ H by (14) and γ
(h)
0 ∈ H by (24) for all

h = 2/σ > 0. Then limh→0+ ‖γ(0)− γ
(h)
0 ‖H = 0.

Proof. We need to verify (30) for γ̂ ∈ H2(C+). Defining
F and Mh,j by (31) – (32), this takes the form
〈

γ̂,−
√
2σ

Jh
∑

j=0

Dσ(−I − 2σDσ)
j(Ĝu

(h)
−j )− Ĝû(h)

〉

L2(iR)

=

Jh
∑

j=0

〈

Mh,j γ̂, F (·)u(h)
−j

〉

H2(C+)
→ 0 (36)

as h → 0+ where σ and Jh satisfy (5), and the equality
holds for all γ̂ ∈ H2(C+). We first show the convergence
(on the right hand side of (36)) for a dense set of γ̂ ∈
L2(iR) that are compactly supported as in Proposition 10.
By (31) and the contractivity of Tσ ∈ L(L2(R); ℓ2(Z)), we
have

Jh
∑

j=0

‖F (·)u(h)
−j ‖2H2(C+) ≤ π

∑

j∈Z+

|u(h)
−j |2 ≤ π‖u‖2L2(R−) (37)

since {u(h)
j }j∈Z = Tσu. We can now estimate using Propo-

sition 10 and Schwartz inequality
∣

∣

∣

∣

∣

∣

Jh
∑

j=0

〈

Mh,j γ̂, F (·)u(h)
−j

〉

H2(C+)

∣

∣

∣

∣

∣

∣

≤





Jh
∑

j=0

‖Mh,jγ̂‖2L2(iR)





1/2

·





Jh
∑

j=0

‖F (·)u(h)
−j ‖2L2(iR)





1/2

≤ h1/2 · √π(Mω + 1
2 )

1/2(1 + ω2)‖γ̂‖cL2(iR)‖u‖L2(R)·
·
(

h2(Jh + 1)(Jh +Mω)
)1/2 → 0

since T < hJh ≤ T + h by (5), and hence h2(Jh +
1)(Jh + Mω) → T 2 as h → 0+. From (35) we get
∑Jh

j=0 ‖Mh,j γ̂‖2L2(iR) ≤ M‖(1 + y2)γ̂(iy)‖2L2(iR), and thus

the convergence in (36) holds for all γ̂ in this weighted
L2(iR)-space that has a dense intersection with H2(C+).

Because SG and each φG
σ for σ > 0 are (continuous, resp.

discrete time) conservative, their controllability maps are
contractions (see, e.g., (Havu and Malinen, 2007, Propo-
sition 1.4)), and the same holds for all the discretising
operators that contribute to the left hand side of (36).
Thus, convergence in (36) holds for all γ̂ ∈ H2(C+), and
the proof is now complete.

4. FINAL STATE APPROXIMATION

Theorem 12 below is reduced to Theorem 11 using the
state space isomorphism, and we next remind the reader
of the basic facts of it. For a full treatment, see, e.g.,
(Staffans, 2004, Theorem 11.4.13), and the references
therein.

A contraction semigroup {T(t)}t≥0 on Hilbert space X
is called completely nonunitary (shortly, c.n.u.) if there
is no reducing (closed) subspace X ′ ⊂ X such that
{T(t) |X′ }t≥0 is a unitary group on X ′. Suppose now that
we are given two conservative system nodes S1and S2 that

(i) have the same transfer functions, 5 and
(ii) their semigroups T1(t), T2(t) are c.n.u. in respective

state spaces X1, X2.
5 Also known as characteristic functions in operator literature such
as, e.g., Brodskĭı (1971a); Sz.-Nagy and Foias (1970)



If conditions (i) – (ii) hold, the systems S1and S2 may only
differ by an unitary change of coordinates V : X1 → X2

between the two state spaces. In particular, given same
input signal for both such S1and S2, the state trajectories
are mapped to each other by the same unitary operator V ,
too. For σ > 0, the extension to Cayley–Tustin transforms
φ1,σ, φ2,σ of S1, S2 behave as expected: S1, S2 are state
space isomorphic if and only if φ1,σ, φ2,σ are isomorphic
in the discrete time sense with the same operator V .

Theorem 12. Let S =
[

A&B
C&D

]

be a conservative system
node on Hilbert spaces (C, X,C) whose semigroup is c.n.u.

and transfer function Ĝ is inner. For σ > 0, denote the
Cayley–Tustin transform of S by φσ =

[

Aσ Bσ

Cσ Dσ

]

.

For any T > 0 and u ∈ C2([−T, 0]), define the continuous
trajectory z(·) by

[

z′(t)
y(t)

]

=

[

A&B
C&D

]

[

z(t)
u(t)

]

, t ≥ −T, (38)

with the initial condition z(−T ) = 0. For h = 2/σ, define

the discrete trajectory {z(h)j }j=−Jh...0 by (4) – (5). Then

limh→0+‖z(h)0 − z(0)‖X = 0.

Remark 13. The unique solvability of (38) is treated in,
e.g., (Malinen et al., 2006, Section 2) for system nodes.

Proof of Theorem 12. The system node SG is con-
servative and exactly observable by Proposition 5. For
contradiction, suppose that the semigroup TG(·) of SG,
generated by AG in (10), is not c.n.u.. Because dom

(

AG
)

is dense in H , there exists x0 ∈ dom
(

AG
)

satisfy-

ing ‖TG(t)x0‖H = 1 for all t ∈ R. This would imply
‖CGTG(t)x0‖2Y =

〈

(CG)∗CGTG(t)x0,T
G(t)x0

〉

Hd

−1
,dom(AG)

= −
〈

(AG + (AG)∗−1)T
G(t)x0,T

G(t)x0

〉

Hd

−1
,dom(AG)

= − d
dt‖TG(t)x0‖2H = 0 since AG + (AG)∗−1 = −(CG)∗CG

on dom
(

AG
)

by (Malinen et al., 2006, Theorems 4.4 and

4.5) where the extrapolation space Hd
−1 is the dual of

dom
(

AG
)

usingH as the pivot space. Thus, such x0 would

be unobservable, and we conclude that AG, indeed, gen-
erates a c.n.u. contraction semigroup. By the state space
isomorphism, the node SG is isomorphic to S, and φG

σ is
isomorphic to φσ by some unitary operator V ∈ L(X ;H).

Assume that z(·) satisfies (38) and γ(·) safisfies (14)
for t ≥ −T with the initial conditions connected by
γ(−T ) = V z−T . The state space isomorphism gives now
z(t) = V ∗γ(t) for all t ≥ −T . Because φG

σ is isomorphic
to φσ by the same operator V , we conclude that the

discrete trajectories {z(h)j } in (4) and {γ(h)
j } in (24) satisfy

z
(h)
j = V ∗γ(h)

j for all j ≥ −Jh. Now by Theorem 11, we

have ‖z(h)0 − z(0)‖X = ‖V ∗(γ(h)
0 − γ(0))‖X = ‖γ(h)

0 −
γ(0)‖H → 0 as h → 0, and the proof is complete.

Proof of Theorem 1. If λ ∈ iR ∩ σ(A) and Ax̄ = λx̄
for x̄ 6= 0, then ‖eAtx̄‖X = ‖eλtx̄‖X = ‖x̄‖X for all
t ∈ R. This is impossible since the semigroup is assumed
to be exponentially stable; hence, c.n.u.. We conclude that
iR ∩ σ(A) = ∅, and thus Ĝ(s) = D + C(s − A)−1B for
s /∈ σ(A) exists for all s ∈ iR. By (Malinen et al., 2006,
Proposition 1.4) and finite-dimensionality, we thus have
A + A∗ = −C∗C, C = −DB∗ and D∗D = I. Using

A+A∗ = −C∗C gives the identity B∗(s̄−A∗)−1C∗C(s−
A)−1B = B∗(s̄ − A∗)−1B + B∗(s − A)−1 for any s ∈ iR.

Using C = −DB∗ gives Ĝ(s)∗Ĝ(s) = D∗D = 1, and thus

Ĝ is inner. Now Theorem 1 follows from Theorem 12.
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