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Abstract. We show under mild assumptions that a composition of inter-
nally well-posed, impedance passive (or conservative) boundary control systems

through Kirchhoff type connections is also an internally well-posed, impedan-
ce passive (resp., conservative) boundary control system. The proof is based

on results of Malinen and Staffans [21]. We also present an example of such

composition involving Webster’s equation on a Y-shaped graph.

1. Introduction. We treat the solvability (forward in time) of dynamical bound-
ary control systems that are composed by interconnecting a finite number of more
simple boundary control subsystems that are already known to be solvable forward
in time. The interconnections are given in terms of algebraic equations involving the
boundary control/observation operators of the subsystems. The aggregate formed
by the subsystems and their interconnections is called a transmission graph (see
Definition 3.1), and it can be seen as a generalisation of mathematical transmission
lines and networks. We assume throughout this work that all the subsystems are
passive or conservative as described in, e.g., Gorbachuk and Gorbachuk [9], Livšic
[17], Malinen and Staffans [20, 21], Salamon [24, 25], and Staffans [26], and they
are represented by equations of the form (5) below involving strong boundary nodes.
Moreover, the interconnections respect passivity in the sense that they do not create
energy. In Theorem 3.3 — the main result of this paper — we give conditions for
checking the solvability (i.e., internal well-posedness) and passivity of the transmis-
sion graph in terms of simple conditions on the subsystems and interconnections.

To illuminate the purpose of this paper, let us consider the following example
from acoustic wave propagation. Given the interconnection graph in Fig. 1, the
longitudinal wave propagation on its edges (i.e., wave guides) is governed by

∂2ψ(j)

∂t2
(x, t) = c2

∂2ψ(j)

∂x2
(x, t), x ∈ [0, lj ], and t ∈ R+. (1)

Here the index j = A, ...,D refers to the index of the edge, and the arrows in
Fig. 1 show the positive direction of the parametrisation x ∈ [0, lj ]. To the vertices
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Figure 1. The example graph

ABD and BCD we impose Kirchhoff law type coupling (boundary) conditions (take
vertex ABD for example):

∂ψ(A)

∂t (lA, t) = ∂ψ(B)

∂t (0, t) = ∂ψ(D)

∂t (lD, t),

AA
∂ψ(A)

∂x (lA, t)−AB ∂ψ(B)

∂x (0, t) +AD
∂ψ(D)

∂x (lD, t) = 0.
(2)

We remark that in acoustics applications the state ψ(j) is chosen to be a velocity

potential; then p(j) = ρ∂ψ
(j)

∂t gives the perturbation pressure and v(j) = −∂ψ
(j)

∂x
gives the perturbation velocity for each edge. Thus, the first equation in (2) says
that the pressure is continuous, and the second equation is a flux conservation law
(the weights Aj can be understood as the cross-sectional areas of the wave guides).

We want to control the pressure at the vertex AC and observe the perturbation
flux to the wave guides A and C. Defining the input and output{

u(t) := ∂ψ(A)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

y(t) := −AA ∂ψ
(A)

∂x (0, t)−AC ∂ψ
(C)

∂x (0, t),
(3)

respectively, then equations (1) for j = A, ...,D and (2) define a dynamical system
whose solvability and energy conservation we wish to verify using Theorem 3.3.

We must consider first the solvability of the subsystems, that is, equations (1)
on the edges with boundary conditions[

∂ψ(j)

∂t (0, t)
∂ψ(j)

∂t (lj , t)

]
=

[
u

(j)
1 (t)

u
(j)
2 (t)

]
=: u(j)(t). (4)

After reducing (1) to a first order equation of form ż = Lz with z =
[
ψ(j)

p(j)

]
, defining

operator G by (4), that is, by Gz(t) = u(j)(t), and K in a similar manner, we
obtain an internally well-posed boundary node Ξ(j) = (G,L,K) that is impedance
conservative, see Definitions 2.2 and 2.3. As explained after Definition 2.2, the
initial value problem

u(t) = Gz(t),
ż(t) = Lz(t),
y(t) = Kz(t), t ∈ R+,
z(0) = z0

(5)

has a solution such that ψ(j) in equation (1) satisfies ψ(j) ∈ C1(R+;L2(0, lj)) ∩
C(R+;H1[0, lj ]) for all inputs u(j) ∈ C2(R+;C2) and for all initial states z0 that
satisfy the boundary condition Gz0 = u(0). For technical details, see the (more
general) example of Webster’s equation presented in Section 5.

Now we have boundary nodes Ξ(j), j = A, ...,D and coupling conditions of the
form (2) for all vertices except the one that defines the external input and output
through (3). They form a transmission graph as defined in Definition 3.1. Since
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the components Ξ(j) are solvable and conservative, then by Theorem 3.3, also the
resulting composed system is solvable forward in time and conservative in a similar
way as any of its components.

Let us review the most relevant literature on compositions of (boundary control)
systems. The feedback theory for (regular) well-posed linear systems is treated by
Staffans in [26, Chapter 7] and by Weiss in [28] whose concept of admissibility of the
feedback loops is related to the (internal) well-posedness of the composed system,
but the theory can be used only when well-posedness of the components is verified
by other means.

Transport equation on graphs is studied by Engel et al. in [7] by using semigroup
techniques. For a study on the non-linear Saint-Venant equations on a star-shaped
graph, see Gugat et al. [6]. A control algorithm for a string network is developed
by Hundhammer and Leugering in [12] using a domain decomposition method.
Further practical examples of compositions of PDEs with 1D spatial domains include
semiconductor strips and lattice structures constructed of Timoshenko beams. Such
systems have also been studied from the spectral point of view: asymptotic spectral
properties of the Laplacian are studied by Kuchment and Zeng in [13] and by
Rubinstein and Schatzman in [23] when its “graph-like” 3D spatial domain collapses
to a graph with 1D edges. See also Latushkin and Pivovarchik [16] for a study on
the spectral properties of the Sturm-Liouville equation on a Y-shaped graph.

Compositions of PDEs on 1D spatial domains are treated by Villegas in [27] and
by Zwart et al. in [30] in terms of port-Hamiltonian framework. Compositions
of more general systems are studied in, e.g., Cervera et al. in [3] and Kurula et
al. in [15] who treat systems that give raise to Dirac structures on their state
spaces (see also Derkach et al. [5]). These contain impedance conservative, strong
boundary control systems (as characterised in Definitions 2.2 and 2.3) as a special
case. However, our approach is based on results of Malinen and Staffans [20, 21]
that are reviewed in Section 2, and we are able to treat couplings of both passive
and conservative systems at once.

In Section 5 we present a concrete example of a transmission graph, namely the
human vocal tract with nasal cavity, modelled by Webster’s equation on a Y-shaped
graph. For more concrete examples, we refer to Malinen [19].

2. Background. In this work we treat linear boundary control systems described
by operator differential equations of the form (5) involving linear mappings G, L,
and K:

Definition 2.1. Let Ξ := (G,L,K) be a triple of linear mappings.

(i) Ξ is a colligation on the Hilbert spaces (U ,X ,Y) if G, L, and K have the
same domain Z = dom(Ξ) ⊂ X and values in U , X , and Y, respectively;

(ii) A colligation Ξ is strong if
[
G
L
K

]
is closed as an operator X →

[ U
X
Y

]
with

domain Z, and L is closed with dom(L) = Z.

We call L the interior operator, G the input (boundary) operator, and K the output
(boundary) operator. The space Z we call the solution space, X the state space, and
U and Y the input and output spaces, respectively. In Z we use the graph norm
‖z‖2Z = ‖z‖2X + ‖Gz‖2U + ‖Lz‖2X + ‖Kz‖2Y .

In this paper we use the notations
[ ·
·
·

]
and

⊕
to represent orthogonal direct sum

of (sub)spaces. See also Remark 3 for a discussion on the terms input and output.
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The definition of strongness coincides with [21, Definition 4.4]. By [21, Lemma 4.5],
Ξ is strong if and only if L is closed with dom(Ξ) and G and K are bounded with
respect to the graph norm of L on dom(Ξ). We shall later make use of this fact.

Many dynamical systems defined by boundary controlled partial differential equa-
tions naturally adopt the form (5) associated with some colligation (G,L,K) on
properly chosen spaces (U ,X ,Y), see the example in Section 5. Equations (5) are
solvable forward in time (at least) if Ξ satisfies somewhat stronger assumptions:

Definition 2.2. A strong colligation Ξ = (G,L,K) is a boundary node on the
Hilbert spaces (U ,X ,Y) if the following conditions are satisfied:

(i) G is surjective and N (G) is dense in X ;
(ii) The operator L|N (G) (interpreted as an operator in X with domain N (G))

has a nonempty resolvent set.

This boundary node is internally well-posed (in the forward time direction) if, in
addition,

(iii) L|N (G) generates a C0 semigroup.

This definition coincides with [20, Definition 1.1] for strong colligations. There are,
in fact, well-posed boundary nodes that are not strong (see [21, Proposition 6.3])
but we do not consider such nodes in this paper1. We remark that also [8], [9], and
[15] treat strong colligations (with different names), see [21, Theorem 5.2] and [15,
Remark 4.4].

Note that “boundary node” does not refer to the vertices of the underlying graph
structure. In fact, boundary nodes are related to the edges of the graph. Therefore,
we always talk about vertices when referring to the graph structure.

If Ξ = (G,L,K) is an internally well-posed boundary node, then (5) has a unique
solution for sufficiently smooth input functions u and initial states z0 compatible
with u(0). More precisely, as shown in [20, Lemma 2.6], for all z0 ∈ Z and u ∈
C2(R+;U) with Gz0 = u(0) the first, second, and fourth of the equations in (5) have
a unique solution z ∈ C1(R+;X )∩C(R+;Z), and hence we can define y ∈ C(R+;Y)
by the third equation in (5). In the rest of this article, when we say “a smooth
solution of (5) on R+” we mean a solution with the above properties.

In a practical application, checking the solvability of (5), that is, verifying the
conditions of Definition 2.2 may be difficult. However, in many cases this is not nec-
essary because the system satisfies energy (in)equalities that can be verified using
the Green–Lagrange inequality without an a priori knowledge of the well-posedness.
Such energy laws make it easier to check the solvability, see Proposition 1 below.
First we shall define impedance passivity/conservativity. To keep the notation sim-
ple, we assume that U = Y even though it would be enough to assume that U and
Y are a dual pair of Hilbert spaces with duality pairing 〈·, ·〉(Y,U); see [21, Definition

3.6] and the discussion preceding it.

Definition 2.3. Let Ξ = (G,L,K) be a colligation on Hilbert spaces (U ,X ,Y).

(i) Ξ is impedance passive if the following conditions hold:

(a)

[
βG+K
α− L

]
is surjective for some α, β ∈ C+;

(b) For all z ∈ dom(Ξ) we have the Green–Lagrange inequality

Re
〈
z, Lz

〉
X ≤

〈
Kz,Gz

〉
U . (6)

1To avoid confusion, we shall use the term strong boundary node below.
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(ii) Impedance passive Ξ is impedance conservative if (6) holds as an equality, and
(a) holds also for some α, β ∈ C−.

Impedance passivity/conservativity is defined in [21, Definition 3.2] using the exter-
nal Cayley transform of scattering passivity/conservativity (see also the discussion
there). These definitions are equivalent by [21, Theorem 3.4]. We further remark
that [21, Theorem 3.4] also states that for an impedance passive Ξ, condition (a)
holds for all α, β ∈ C+, and for an impedance conservative Ξ, condition (a) holds
also for all α, β ∈ C−.

Suppose now that Ξ is an internally well-posed, impedance passive boundary
node and z a smooth solution of (5). Then (6) means plainly the energy inequality

d

dt

(
1

2
‖z(t)‖2X

)
≤
〈
y(t), u(t)

〉
U for all t ∈ R+

where the right hand side stands for the instantaneous power entering the system,
and the norm of X measures the energy stored in the state.

The following proposition utilising the energy balance laws is needed for checking
internal well-posedness and impedance passivity/conservativity.

Proposition 1. Let Ξ = (G,L,K) be a strong colligation on Hilbert spaces (U ,X ,U).

(i) Suppose that (6) holds for all z ∈ dom(Ξ), and that
[

G
α−L

]
is surjective for

some α ∈ C with Re(α) ≥ 0. Then Ξ is an internally well-posed, impedance
passive boundary node. If, in addition, (6) holds as an equality and

[
G

α−L
]

is
surjective also for some Re(α) ≤ 0, then the internally well-posed boundary
node Ξ is impedance conservative.

(ii) If Ξ is impedance passive, then it is an internally well-posed boundary node if
and only if its input operator G is surjective.

For a proof, see [21, Theorem 4.3 and Remark 4.6] for part (i) and [21, Theorem
4.7] for part (ii).

Internally well-posed boundary nodes can always be written in terms of more
general and complicated system nodes (see [20], [22], and [26]) but they are excluded
from state linear systems studied in [4]. A functional analytic setting of boundary
control systems, that is independent of the system node setting, was formulated by
Fattorini in [8] and significant progress was made by Salamon in [24, 25]. See also
Greiner [10] for a similar presentation.

3. Transmission graphs as colligations. Assume that we have colligations
Ξ(j) =

(
G(j), L(j),K(j)

)
on Hilbert spaces

(
U (j),X (j),Y(j)

)
with solution spaces

Z(j), j = 1, ...,m, where

G(j) =


G

(j)
1
...

G
(j)
kj

 : dom(Ξ(j))→ U (j) =


U (j)

1
...

U (j)
kj

 and

K(j) =


K

(j)
1
...

K
(j)
kj

 : dom(Ξ(j))→ Y(j) =


Y(j)

1
...

Y(j)
kj

 .
(7)
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That is, the Hilbert spaces U (j) and Y(j) are represented by an orthogonal direct
sum of kj subspaces each, and the corresponding input and output operators are
split accordingly.

In order to define the topological structure of the transmission graph, we define
control vertices I1, ..., IN (where N 6= 0) and closed vertices J 1, ...,JM as pairwise
disjoint sets of index pairs (j, i) where j refers to the subsystem Ξ(j) and i ∈
{1, ..., kj} refers to the ith component in the splitting (7). We assume that every pair
(j, i) for j = 1, ...,m; i = 1, ..., kj belongs to some vertex. This is not a restriction
since uncoupled input/output pairs can be included as singleton vertices, as in our
example in Section 5.

Each vertex defines a coupling between the subsystems in such a way that all

inputs u
(j)
i whose index pairs (j, i) belong to the same vertex are equal, and the

corresponding outputs are summed up. In addition, for closed vertices we require
that the outputs sum up to zero. For such coupling to be possible, it is required
that the compatibility conditions

U (j)
i = U (p)

q and Y(j)
i = Y(p)

q (8)

hold for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all (j, i), (p, q) ∈ J l, l = 1, ...,M .
The couplings are written in terms of input and output operators as follows:

(i) for all control and closed vertices, the continuity equations

G
(j)
i z(j) = G(p)

q z(p) for z(j) ∈ Z(j) and z(p) ∈ Z(p) (9)

hold, i.e., (9) holds for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all (j, i), (p, q) ∈
J l, l = 1, ...,M ; and

(ii) for closed vertices, also the balance equations∑
(j,i)∈J l

K
(j)
i z(j) = 0 for z(j) ∈ Z(j) and l = 1, ...,M (10)

hold.

Control vertices are exactly those couplings where external signals are applied. If
the transfer function (see [20, Section 2]) of each Ξ(j) represents electrical admit-
tance, then the physical dimensions of U (j) and Y(j) are the voltage and current,
respectively. Equations (9) and (10) are the classical Kirchhoff laws, namely, the
continuity of voltage and the conservation of charge.

Definition 3.1. Assume that Ξ(j) are colligations with splittings as described above
in (7). Suppose that sets I1, ..., IN and J 1, ...,JM are defined consistently with
this splitting so that the compatibility conditions (8) hold. The ordered triple

Γ :=

({
Ξ(j)

}m
j=1

,
{
Ik
}N
k=1

,
{
J l
}M
l=1

)
is called a transmission graph.

A transmission graph is a notion that contains the building blocks and the “as-
sembly instructions” of the composition. Together with coupling conditions (9) and
(10), it gives rise to a dynamical system as follows:

Definition 3.2. Let Γ be a transmission graph as in Definition 3.1. Using the
same notation, we define the colligation of the transmission graph as the triple



COMPOSITIONS OF PASSIVE BCS 7

ΞΓ = (G,L,K) on the Hilbert spaces (U ,X ,Y) where2

X :=

m⊕
j=1

X (j), U :=
⊕

(j,i)∈Ik

k=1,...,M

U (j)
i , Y :=

⊕
(j,i)∈Ik

k=1,...,M

Y(j)
i ,

dom(ΞΓ) :=


m⊕
j=1

Z(j)

∣∣∣∣ (9) and (10) hold

 ,

G := [Gk,j ] k=1,...,N
j=1,...,m

, L :=

 L(1)

. . .
L(m)

 , and K := [Kk,j ] k=1,...,N
j=1,...,m

where

Gk,j :=

{
G

(j)
k /|Ik|, if (j, k) ∈ Ik,

0, otherwise,
and Kk,j :=

{
K

(j)
k , if (j, k) ∈ Ik,

0, otherwise.

In order to make the preceding definitions more intuitive, let us return to the
example on the wave equation on the graph of Fig. 1, presented in the introduction.
We have four boundary nodes Ξ(j), j = A, ...,D whose input and output spaces
are split into two parts, see equation (4). In the graph, there is one control vertex
I1 = {(A, 1), (C, 1)} and two closed vertices J 1 = {(A, 2), (B, 1), (D, 2)} and J 2 =
{(B, 2), (C, 2), (D, 1)}.

The dynamical system given by (1), (2), and (3) corresponds to the colligation

of the transmission graph Γ :=
({

Ξ(j)
}D
j=A

,
{
I1
}
,
{
J 1,J 2

})
. More precisely,

equations in (2) are equivalent with (9) and (10) and the input and output operators
given in Definition 3.2 yield the input/output of equation (3).

The main result of this paper is the following:

Theorem 3.3. Assume that the transmission graph Γ is composed of internally
well-posed, impedance passive (or conservative), strong boundary nodes
Ξ(j) =

(
G(j), L(j),K(j)

)
with the following property:

all of the operators
[
G(j)

K(j)

]
are surjective. (11)

Then the colligation of Γ is an impedance passive (respectively, conservative), in-
ternally well-posed, strong boundary node.

This is proved in three steps (Lemmas 4.1, 4.2, and 4.3) presented in the following
section. The assumption (11) can be relaxed (see Remark 1) but this condition
appears to hold in many applications (as in our example in Section 5).

4. Proof of Theorem 3.3. Suppose we are given a transmission graph Γ. We
reconstruct this graph by a finite number of three different kinds of steps, starting
from its components Ξ(j). In step 1, we form a partial parallel connection between
two compatible colligations to obtain a new colligation, see Fig. 2a. We remark that
such parallel connections are treated in [26, Examples 2.3.13 and 5.1.17] for system
nodes. In step 2, we form loops by joining two signals of a single colligation to obtain
a new colligation, see Fig. 2b. Both the control vertices and the closed vertices are
treated similarly at this stage: all the vertices are left “open” so that (9) is satisfied
but (10) is not. After constructing the full coupling graph structure by taking a

2In sums of U and Y, pick one pair (j, i) ∈ Ik for each k.
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? ? ? ?

(a)

u
(A)
b uc u

(B)
b

y
(A)
b yc y

(B)
b

? ?

- �d
?

A B
++

?

u1 u2 = u3

y1 y2 + y3

(b)

? ?

?
- �d
?

++

Figure 2. (a) The partial parallel coupling; (b) The loop coupling

finite number of steps 1 and 2 in some order, the final step 3 is taken to close those
vertices that are not used for control/observation; then condition (10) is satisfied
as well. The transmission graph Γ and its colligation have now been reconstructed,
and the remaining (open) vertices are exactly the control vertices of Γ.

By this procedure, it is possible to synthesise any transmission graph. In Lemmas
4.1, 4.2, and 4.3, we show that if we start from internally well-posed, impedance pas-
sive/conservative strong boundary nodes, then the resulting colligations after steps
1, 2, and 3 (respectively) are internally well-posed, impedance passive/conservative,
strong boundary nodes as well. This is required for iterated application of these
steps in order to prove Theorem 3.3. The reconstruction procedure is demonstrated
in Section 4.4 by using the graph of Fig. 1.

4.1. Step 1: Partial parallel coupling. Assume that we have two colligations

Ξ(A) =

([
G

(A)
b

G(A)
c

]
, L(A),

[
K

(A)
b

K(A)
c

])
and Ξ(B) =

([
G

(B)
b

G(B)
c

]
, L(B),

[
K

(B)
b

K(B)
c

])
on Hilbert

spaces
([
U(A)

b

Uc

]
,X (A),

[
Y(A)

b

Yc

])
and

([
U(B)

b

Uc

]
,X (B),

[
Y(B)

b

Yc

])
with solution spaces

Z(A) and Z(B), respectively.
Now define the composed colligation Ξ(AB) :=

(
G(AB), L(AB),K(AB)

)
on the

Hilbert spaces

X (AB) :=

[
X (A)

X (B)

]
, U (AB) :=

U (A)
b

Uc
U (B)
b

 , and Y(AB) :=

Y(A)
b

Yc
Y(B)
b


by L(AB) :=

[
L(A) 0

0 L(B)

]
,

G(AB) :=

 G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

 , and K(AB) :=

 K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

 .
The domain of the colligation is

dom(Ξ(AB)) :=

{[
z(A)

z(B)

]
∈
[
dom(Ξ(A))
dom(Ξ(B))

] ∣∣∣∣ G(A)
c z(A) = G(B)

c z(B)

}
.

Such partial parallel coupling is illustrated in Fig. 2a. We now show that such
coupling of two boundary nodes is also a boundary node and the coupling preserves
internal well-posedness and passivity/conservativity.
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Lemma 4.1. Let Ξ(A), Ξ(B), and Ξ(AB) be as defined above. If the colligations Ξ(A)

and Ξ(B) are internally well-posed, impedance passive (conservative), strong bound-

ary nodes such that both
[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
are surjective, then the composed col-

ligation Ξ(AB) is an internally well-posed, impedance passive (resp., conservative),

strong boundary node with the property that
[
G(AB)

K(AB)

]
is surjective.

Proof. We start by showing that Ξ(AB) is a strong colligation. First, we show that

Ξ(AB) is closed. Assume that dom(Ξ(AB)) 3
[
z(A)
n

z(B)
n

]
→
[
z(A)

z(B)

]
and

G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

[z(A)
n

z
(B)
n

]
→

u(A)
b

uc

u
(B)
b

 , [
L(A) 0

0 L(B)

][
z

(A)
n

z
(B)
n

]
→
[
x(A)

x(B)

]
,

and

K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

[z(A)
n

z
(B)
n

]
→

y(A)
b

yc

y
(B)
b

 .
Since colligations Ξ(A) and Ξ(B) are strong, the operators L(A) and L(B) are

closed,
[
z(A)

z(B)

]
∈
[

dom(Ξ(A))

dom(Ξ(B))

]
, and also L(A)z(A) = x(A) and L(B)z(B) = x(B). To

show that
[
z(A)

z(B)

]
∈ dom(Ξ(AB)), we need to use the strongness of Ξ(A) and Ξ(B)

which means that G
(A)
c and G

(B)
c are continuous with respect to the graph norms

of L(A) and L(B), respectively (see the comment after Definition 2.1). Hence

‖G(A)
c z(A) −G(B)

c z(B)‖Uc ≤ ‖G
(A)
c (z(A) − z(A)

n )‖Uc + ‖G(B)
c (z(B) − z(B)

n )‖Uc
≤MA

(
‖z(A) − z(A)

n ‖X (A) + ‖L(A)(z(A) − z(A)
n )‖X (A)

)
+

+MB

(
‖z(B) − z(B)

n ‖X (B) + ‖L(B)(z(B) − z(B)
n )‖X (B)

)
→ 0 when n→∞

where we have used the fact G
(A)
c z

(A)
n = G

(B)
c z

(B)
n . This implies G

(A)
c z(A) =

G
(B)
c z(B) meaning that

[
z(A)

z(B)

]
∈ dom(Ξ(AB)). By a similar computation we can

verify G
(A)
b 0

G
(A)
c 0

0 G
(B)
b

[z(A)

z(B)

]
=

u(A)
b

uc

u
(B)
b

 and

K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

[z(A)

z(B)

]
=

y(A)
b

yc

y
(B)
b

 .
Closedness of L(AB) with domain dom(L(AB)) = dom(Ξ(AB)) is shown similarly.
Thus, Ξ(AB) is strong colligation. Note that in the preceding computation, we did

not need G
(A)
c z

(A)
n → uc to show

[
z(A)

z(B)

]
∈ dom(Ξ(AB)), i.e., G

(A)
c z(A) = G

(B)
c z(B).

We proceed to show that Ξ(AB) is an internally well-posed, impedance passive

boundary node with the help of Proposition 1. Surjectivity of
[

G(AB)

α−L(AB)

]
(with

domain dom(Ξ(AB))) for some α ∈ C with Reα ≥ 0 follows from the fact that[
G(A)

α−L(A)

]
and

[
G(B)

α−L(B)

]
are surjective for the same α. All that is left is to show
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that the Green–Lagrange identity (6) holds:

Re
〈
z, L(AB)z

〉
X (AB) = Re

(〈
z(A), L(A)z(A)

〉
X (A) +

〈
z(B), L(B)z(B)

〉
X (B)

)
≤ Re

(〈
K

(A)
b z(A), G

(A)
b z(A)

〉
U(A)

b

+
〈
K

(A)
c z(A), G

(A)
c z(A)

〉
Uc

+

+
〈
K

(B)
b z(B), G

(B)
b z(B)

〉
U(B)

b

+
〈
K

(B)
c z(B), G

(B)
c z(B)

〉
Uc

)
= Re

〈
K(AB)z,G(AB)z

〉
U(AB)

where the last equation follows from G
(A)
c z(A) = G

(B)
c z(B) and definitions of G(AB)

and K(AB). Surjectivity of
[
G(AB)

K(AB)

]
follows from surjectivity of

[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
.

The conservativity is verified by repeating the latter part of the proof with −α in
place of α and replacing the inequality in Green–Lagrange identity by equality.

4.2. Step 2: Loop coupling. Now assume that we have a colligation Ξ = (G,L,K)

on the Hilbert spaces

([
U1
Uc
Uc

]
,X ,

[
Y1

Yc

Yc

])
where G =

[
G1

G2

G3

]
and K =

[
K1

K2

K3

]
, i.e., the

input and output operators and spaces can be split into (at least) three parts. We

“glue” two of these parts together to form another colligation Ξ̂ :=
(
Ĝ, L̂, K̂

)
on

the Hilbert spaces
([ U1
Uc

]
,X ,

[ Y1

Yc

])
with dom(Ξ̂) :=

{
z ∈ dom(Ξ)

∣∣ G2z = G3z
}

,

L̂ := L|dom(Ξ̂), Ĝ :=
[
G1

G2

]
, and K̂ :=

[
K1

K2+K3

]
.

The block diagram of such coupling is shown in Fig. 2b. As in step 1, we show
that if the original colligation Ξ is an internally well-posed, impedance passive

(conservative), strong boundary node, then Ξ̂ is one as well.

Lemma 4.2. Let Ξ and Ξ̂ be as defined above. If the colligation Ξ is an inter-
nally well-posed, impedance passive (conservative), strong boundary node such that

[ GK ] is surjective, then also Ξ̂ is an internally well-posed, impedance passive (resp.,

conservative), strong boundary node with the property that
[
Ĝ
K̂

]
is surjective.

Proof. Strongness of Ξ̂ is shown as before in Lemma 4.1.

Surjectivity of
[

Ĝ
α−L̂

]
for some α ∈ C with Reα ≥ 0 is easy to see, and also

Green–Lagrange identity holds in dom(Ξ̂):

Re
〈
z, L̂z

〉
X̂ ≤ Re

〈
K1z,G1z

〉
U1

+ Re
〈
K2z,G2z

〉
Uc

+ Re
〈
K3z,G3z

〉
Uc

= Re
〈
K1z,G1z

〉
U1

+ Re
〈
(K2 +K3)z,G2z

〉
Uc

= Re
〈
K̂z, Ĝz

〉
Û

where the second equality follows from G2z = G3z and the last from the definitions

of Ĝ and K̂. Surjectivity of
[
Ĝ
K̂

]
follows from surjectivity of [ GK ].

If Ξ is conservative, then to show conservativity of Ξ̂, just repeat the proof with
−α in place of α and replace the inequality in the Green–Lagrange identity with
equality.

4.3. Step 3: Closing the vertices. In this step, we single out some vertices
as control/observation vertices and permanently “close” all others with respect to
additional external signals. Note that after steps 1 and 2, under the assumptions of
Lemmas 4.1 and 4.2, the resulting colligation is an internally well-posed boundary
node, such that (9) is satisfied. This closing means that we require also (10) to be
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satisfied, and we now show that this can be done without sacrificing the internal
well-posedness or passivity/conservativity.

So let Ξ = (G,L,K) be a colligation on the Hilbert spaces
([ U1
U2

]
,X ,

[ Y1

Y2

])
with

splittings G =
[
G1

G2

]
and K =

[
K1

K2

]
where G2 and K2 correspond to vertices we

want to close. Define the new colligation by Ξ̂ :=
(
G1, L̂,K1

)
on the Hilbert spaces

(U1,X ,Y1) with dom(Ξ̂) := dom(Ξ) ∩N (K2) and L̂ := L|dom(Ξ̂).

Lemma 4.3. Let Ξ and Ξ̂ be as defined above. If Ξ is an internally well-posed,
impedance passive (conservative), strong boundary node with the property that [ GK ]

is surjective, then also Ξ̂ is an internally well-posed, impedance passive (resp., con-
servative), strong boundary node.

Proof. We carry out a partial flow inversion and interchange the roles of G2 and

K2. More precisely, we shall prove that Ξ̃ :=
(
G̃, L, K̃

)
on Hilbert spaces([ U1

Y2

]
,X ,

[ Y1

U2

])
where G̃ :=

[
G1

K2

]
, K̃ :=

[
K1

G2

]
, and dom(Ξ̃) := dom(Ξ), is an inter-

nally well-posed, impedance passive (conservative), strong boundary node. Colliga-

tion Ξ̂ is then obtained from Ξ̃ by restricting the solution space to N (K2), and it
clearly has all the properties as claimed, see Definition 2.2 and the comment after

Definition 2.1 concerning the strongness of Ξ̂.

It is trivial that Ξ̃ is a strong colligation. One way to see the interchangeability
of G2 and K2 is directly by Definition 2.3 with β = 1:[

G̃+ K̃
α− L

]
=

[ [
G1

K2

]
+
[
K1

G2

]
α− L

]
=

[ [
G1

G2

]
+
[
K1

K2

]
α− L

]
=

[
G+K
α− L

]
.

The surjectivity of this operator follows from impedance passivity of Ξ. Similarly
for the conservative system we also need the operator[

G̃− K̃
α− L

]
=

 I 0 0
0 −I 0
0 0 I

[G−K
α− L

]
to be surjective which holds by the conservativity of Ξ, see Definition 2.3 with

β = −1. The Green–Lagrange (in)equality trivially holds, and it follows that Ξ̃ is
an impedance passive (conservative), strong colligation.

Finally, by Proposition 1, the surjectivity of
[
G1

K2

]
implies that Ξ̃ is an internally

well-posed boundary node.

Remark 1. Assumption (11) is actually stronger than what was needed in The-
orem 3.3. Indeed, it was only used in the last lines of the proof of Lemma 4.3.
However, the minimal sufficient conditions are impossible to formulate in terms of
the control/observation operators of the subsystems. Instead, we would have to
consider the whole composed system. The requirement is that the control operator
of the composed system has to remain surjective despite the couplings in the closed
vertices.

Remark 2. The partial parallel coupling could be constructed by first forming a
cross product of systems Ξ(A) and Ξ(B), see [26, Example 2.3.10]. It is easy to see
that the cross product preserves all the desired properties of the colligations. The
partial parallel coupling can then be formed by applying a loop coupling to the
product system. This means that Lemma 4.1 actually follows from Lemma 4.2.
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Remark 3. Using the words input and output for Gz and Kz is somewhat mislead-
ing. In fact, since our coupling equations (9) and (10) include conditions involving
both Gz and Kz, we have to assume that also the flow-inverted system is solvable;
that is, solvable if G and K are interchanged. For many systems this is not a serious
restriction and, in fact, the whole concept of abstract boundary spaces (introduced
in [9]) is based on the existence of such interchangeable pair of possible boundary
conditions. See also Derkach et al. [5] for a study of compositions of systems using
such abstract boundary spaces and Kurula [14] for an introduction of state/signal
systems that are based on equal treatment of inputs and outputs.

4.4. Example on constructing the composition. Let us once more return to
the example of the introduction. We reconstruct the interconnection graph in four
phases which are illustrated in Fig. 3. We start with four boundary nodes labelled
with A, B, C, and D. The input and output operators and spaces of each system
are split into two parts, i.e., kj = 2. The vertices are labelled with 1 and 2 and the
arrows in Fig. 3 point from 1 to 2.

• Phase 1. We start with colligations Ξ(j) =

([
G

(j)
1

G
(j)
2

]
, L(j),

[
K

(j)
1

K
(j)
2

])
on the Hilbert

spaces

([
U(j)

1

U(j)
2

]
,X (j),

[
Y(j)

1

Y(j)
2

])
, j = A,B,C,D.

• Phase 2. The system A is connected to B, and C to D, by a partial parallel
coupling so that we obtain two colligations Ξ(AB) and Ξ(CD) with

G(AB) =

 G
(A)
1 0

G
(A)
2 0

0 G
(B)
2

 , K(AB) =

 K
(A)
1 0

K
(A)
2 K

(B)
1

0 K
(B)
2

 ,
and dom(Ξ(AB)) =

{[
z(A)

z(B)

]
∈
[

dom(Ξ(A))

dom(Ξ(B))

] ∣∣∣∣ G(A)
2 z(A) = G

(B)
1 z(B)

}
and similarly G(CD), K(CD), and dom(Ξ(CD)).

Note that these colligations are induced by transmission graphs; for example
the colligation of Γ(AB) :=

({
Ξ(A),Ξ(B)

}
, {{(A, 1)}, {(A, 2), (B, 1)}, {(B, 2)}} , ∅

)
is exactly Ξ(AB).

-

-

-

-

s s s s
s s s s

A B
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Figure 3. Composing a transmission graph
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• Phase 3. Now Ξ(AB) is connected to Ξ(CD) by a partial parallel coupling. The

part of the operator G(AB) which is not involved in the connection is G
(AB)
b =[

G
(A)
1 0

0 G
(B)
2

]
and the part that is, is G

(AB)
c =

[
G

(A)
2 0

]
. Correspondingly

K
(AB)
b =

[
K

(A)
1 0

0 K
(B)
2

]
and K

(AB)
c =

[
K

(A)
2 K

(B)
1

]
. The system Ξ(CD) is

connected by its free vertex {(D, 2)} to the common vertex {(A, 2), (B, 1)} of Ξ(AB)

so the CD-splitting is done differently, namely G
(CD)
b =

[
G

(C)
1 0

0 G
(D)
1

]
, G

(CD)
c =

[
0 G

(D)
2

]
, K

(CD)
b =

[
K

(C)
1 0

K
(C)
2 K

(D)
1

]
, and K

(CD)
c =

[
0 K

(D)
2

]
.

Thus, as described in Section 4.1, we obtain a system with

G =


G

(A)
1 0 0 0

0 G
(B)
2 0 0

G
(A)
2 0 0 0

0 0 G
(C)
1 0

0 0 0 G
(D)
1

 , K =


K

(A)
1 0 0 0

0 K
(B)
2 0 0

K
(A)
2 K

(B)
1 0 K

(D)
2

0 0 K
(C)
1 0

0 0 K
(C)
2 K

(D)
1

 ,

and dom(Ξ) =

{
z(j) ∈ dom(Ξ(j)), j = A,B,C,D

∣∣∣∣
G

(A)
2 z(A) = G

(B)
1 z(B) = G

(D)
2 z(D), G

(C)
2 z(C) = G

(D)
1 z(D)

}
.

Again, the colligation Ξ is induced by a transmission graph

Γ :=
({

Ξ(j)
}D
j=A

, {Il}5l=1, ∅
)

where I1 = {(A, 1)}, I2 = {(A, 2), (B, 1), (D, 2)},
I3 = {(B, 2)}, I4 = {(C, 1)}, and I5 = {(C, 2), (D, 1)}.

• Phase 4. In the last phase, the vertex {(B, 2)} is connected to {(C, 2), (D, 1)},
and {(A, 1)} to {(C, 1)}, by a loop coupling. The parts of input and output that are

not involved in the connection are G1 = [G
(A)
2 0 0 0] and K1 = [K

(A)
2 K

(B)
1 0 K

(D)
2 ].

The operators that are involved are G2 =

[
G

(A)
1 0 0 0

0 G
(B)
2 0 0

]
, K2 =

[
K

(A)
1 0 0 0

0 K
(B)
2 0 0

]
,

G3 =

[
0 0 G

(C)
1 0

0 0 0 G
(D)
1

]
, and K3 =

[
0 0 K

(C)
1 0

0 0 K
(C)
2 K

(D)
1

]
. As described in Section 4.2, the

new input and output operators are G =
[
G1

G2

]
and K =

[
K1

K2+K3

]
. To dom(Ξ) we

impose the additional condition G2z2 = G3z3. In terms of the original blocks, this

means G
(A)
1 z(A) = G

(C)
1 z(C) and G

(B)
2 z(B) = G

(D)
1 z(D).

In block operators G and K, before closing any vertices, each column corresponds
to one system (an edge of the graph) and each row corresponds to a coupling (a
vertex of the graph). Thus, in phase 2, the block operators G(AB), K(AB), G(CD),
and K(CD) have three rows and two columns. In phase 3, G and K have five rows
and four columns. And finally, when connecting vertex {(B, 2)} to {(C, 2), (D, 1)}
and {(A, 1)} to {(C, 1)}, two rows are lost.
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Mouth

Nose

Pharynx
�
�

Vocal folds

Figure 4. The human vocal tract and nasal cavity

5. Webster’s equation with dissipation on a graph. An MR-image of the
human vocal tract is shown in Fig. 4. The vocal tract can be considered as a
Y-shaped graph whose three free vertices are at the vocal folds, mouth, and nose
(in Fig. 4, the nasal cavity is only partially visible). The closed vertex with three
outgoing edges is located in the pharynx. Wave propagation in such domain can be
computed by Webster’s equation up to frequencies of about 4 kHz where the effect
of the transversal resonances becomes significant, see [11, Section 5 and Fig. 1].

The generalised Webster’s equation is derived in [18], and it is given by

ψtt(x, t) +
2πθS(x)c(x)2

A(x)
ψt(x, t)−

c(x)2

A(x)

∂

∂x

(
A(x)

∂ψ

∂x
(x, t)

)
= 0. (12)

The solution ψ is Webster’s velocity potential that approximates the wave equation
velocity potential when averaged over a transversal cross-section at distance x ∈ [0, l]
from the tube end. Functions A(·), S(·), and c(·) are the cross-sectional area of the
tube, the surface area factor, and the corrected sound velocity, respectively. The
coefficient θ ≥ 0 regulates the dissipation at the tube walls. The classical Webster’s
equation is obtained by setting θ = 0 and c(·) = c.

As explained above, the model for the vocal tract is divided into three parts. In
each of these parts we have velocity potentials ψ(j) : [0, lj ]× R+ → C, j = A,B,C
that satisfy (12) with respective functions Aj ∈ C1[0, lj ] such that Aj(x) > ε > 0,
Sj ∈ L2(0, lj) such that Sj(x) ≥ 0, and cj such that ∞ > cj(x) > ε > 0 and

c−2
j (x) ∈ L2(0, lj). The potentials are connected through Kirchhoff conditions{

∂ψ(A)

∂t (0, t) = ∂ψ(B)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

AA(0)∂ψ
(A)

∂x (0, t) +AB(0)∂ψ
(B)

∂x (0, t) +AC(0)∂ψ
(C)

∂t (0, t) = 0.
(13)

The system is controlled by the flow u through the vocal folds, and there is an
acoustic resistance at the mouth and nose openings:

∂ψ(A)

∂x (lA, t) = u(t) at vocal folds,

∂ψ(B)

∂t (lB , t) + θBcB(lB)∂ψ
(B)

∂x (lB , t) = 0 at mouth, and

∂ψ(C)

∂t (lC , t) + θCcC(lC)∂ψ
(C)

∂x (lC , t) = 0 at nose

(14)

where θB and θC are the dimensionless normalised acoustic resistances.
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We proceed to formulate this model as a transmission graph. First, we write

Webster’s equation as a first order system by choosing the state vector as z =
[
ψ
ψt

]
.

The state and solution spaces are

X (j) := h1[0, lj ]× L2(0, lj) and Z(j) := h2[0, lj ]×H1[0, lj ]

respectively, where h1[0, lj ] = H1[0, lj ]
/
∼ and h2[0, lj ] = H2[0, lj ]

/
∼ where the

equivalence relation z ∼ v holds if z− v is constant Lebesgue almost everywhere in
(0, lj). We equip h1[0, lj ] with the norm ‖ψ‖h1[0,lj ] :=

∣∣∣∣∂ψ
∂x

∣∣∣∣
L2(0,lj)

, and the state

spaces with inner products〈
z, v
〉
X (j) := ρ

(∫ lj

0

∂z1

∂x
(x)

∂v1

∂x
(x) Aj(x)dx+

∫ lj

0

z2(x)v2(x)
Aj(x)

cj(x)2
dx

)
where ρ is the fluid density. The induced X (j)-norm corresponds to the physical
energy — the first term gives the kinetic energy of the fluid and the second term
gives the potential energy (recall that acoustic pressure is obtained from the velocity
potential through p(x, t) = ρψt(x, t)). In the solution spaces we use norms

‖z‖2Z(j) := ‖z1‖2h1[0,lj ] +

∣∣∣∣∣∣∣∣∂2z1

∂x2

∣∣∣∣∣∣∣∣2
L2(0,lj)

+ ‖z2‖2H1[0,lj ].

The input and output spaces are U (j) = Y(j) = C2 with the Euclidian norm. The
interior operators are defined by

L(j) := W (j) +D(j) : Z(j) → X (j)

where

W (j) :=

[
0 1

cj(x)2

Aj(x)
∂
∂x

(
Aj(x) ∂

∂x

)
0

]
and D(j) :=

[
0 0

0 − 2πθSj(x)cj(x)2

Aj(x)

]
;

the dissipative part D(j) acts as a bounded perturbation (in X (j)) to the classical
Webster-related part W (j). The input and output operators are defined by

G(j)z(j) :=

[
ρz

(j)
2 (0, t)

ρz
(j)
2 (lj , t)

]
and K(j)z(j) :=

[
−Aj(0)

∂z
(A)
1

∂x (0, t)

Aj(lj)
∂z

(j)
1

∂x (lj , t)

]
.

The pressure controlled, velocity observed Webster’s equation can finally be written
in the form 

u(j)(t) = G(j)z(j)(t),
ż(j)(t) = L(j)z(j)(t),
y(j)(t) = K(j)z(j)(t), t ∈ R+,

and it remains to show that each Ξ(j) = (G(j), L(j),K(j)) satisfies the conditions of
Definitions 2.2 and 2.3.

Theorem 5.1. Each colligation Ξ(j) = (G(j), L(j),K(j)) on spaces
(
C2,X (j),C2

)
defined above is an impedance passive (even conservative if θ = 0), internally well-
posed, strong boundary node.

Proof. Here we drop the index j, and begin by showing the claim in the special

impedance conservative case Ξ̂ = (G,W,K) on
(
C2,X ,C2

)
.

It is easy to see that Ξ̂ is a strong colligation, and that G is surjective. Thus, to
show surjectivity of

[
G

α−W
]

it is sufficient to show (α−W )|N (G) to be bijective.
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Fix
[
f
g

]
∈ X (in the following we treat

[
f
g

]
as a representative from the equiva-

lence class) and α 6= 0. We wish to find [ z1z2 ] ∈ N (G), s.t.[
α −1

− c(x)2

A(x)
∂
∂x

(
A(x) ∂

∂x

)
α

] [
z1

z2

]
=

[
f
g

]
. (15)

The first row implies αz1 − z2 = f (in H1[0, l]). The condition [ z1z2 ] ∈ N (G) is

equivalent to z2(0) = z2(l) = 0 so that z1(0) = f(0)
α and z1(l) = f(l)

α . Multiplying
the first row in (15) with α and adding it to the second row gives

α2z1(x)− c(x)2

A(x)

∂

∂x

(
A(x)

∂z1

∂x
(x)

)
= αf(x) + g(x)

(
∈ L2(0, l)

)
.

This equation with the aforementioned boundary conditions has a unique variational
solution z1 ∈ H2[0, l] that satisfies

[ z1
αz1−f

]
∈ N (G). If we solve (15) for a different

representative of the same equivalence class, that is, with right hand side
[
f+C
g

]
where C ∈ C, then we get for (15) the respective solution

[
z1+C/α

α(z1+C/α)−f−C

]
=[

z1+C/α
αz1−f

]
which is in the same equivalence class with

[ z1
αz1−f

]
. Hence, equation

(15) has a unique solution in Z for all
[
f
g

]
∈ X . The Green–Lagrange identity (6)

for Ξ̂ as an equality can be shown by partial integration. The claim is now proved

for Ξ̂ by Proposition 1.
Since D : X → X is bounded, also L|N (G) = (W + D)|N (G) generates a C0-

semigroup by [2, Corollary 3.5.6]. Because S(x) ≥ 0 and θ ≥ 0, it follows〈
z,Dz

〉
X = −2πθρ

∫ l

0

S(x)z2(x)2 dx ≤ 0

which means that Green–Lagrange identity for Ξ holds as an inequality. Because

bounded perturbations of closed operators are closed, nodes Ξ and Ξ̂ are simulta-
neously strong.

The boundary conditions (13) in the pharynx correspond to conditions (9) and

(10). Thus, after noting that operators
[
G(j)

K(j)

]
are surjective (try polynomial func-

tions in Z), Theorems 3.3 and 5.1 yield:

Theorem 5.2. Define the transmission graph Γ with three control vertices and one
closed vertex by

Γ =
({

Ξ(A),Ξ(B),Ξ(C)
}
, {{(A, 2)}, {(B, 2)}, {(C, 2)}} , {{(A, 1), (B, 1), (C, 1)}}

)
.

The colligation induced by Γ is Ξ = (G,L,K) on spaces
(
C3,X ,C3

)
where

G

 z(A)

z(B)

z(C)

 :=

 ρz
(A)
2 (lA, t)

ρz
(B)
2 (lB , t)

ρz
(C)
2 (lC , t)

 , L :=

 L(A) 0 0
0 L(B) 0
0 0 L(C)

 , and

K

 z(A)

z(B)

z(C)

 :=

 AA(lA)
∂z

(A)
1

∂x (lA, t)

AB(lB)
∂z

(B)
1

∂x (lB , t)

AC(lC)
∂z

(C)
1

∂x (lC , t)

 , with X := X (A) ⊕X (B) ⊕X (C) and
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dom(Ξ) :=


 z(A)

z(B)

z(C)

 ∈
 Z(A)

Z(B)

Z(C)

 ∣∣∣∣ z(A)
1 (0, t) = z

(B)
2 (0, t) = z

(C)
2 (0, t),

AA(0)
∂z

(A)
1

∂x (0, t) +AB(0)
∂z

(B)
1

∂x (0, t) +AC(0)
∂z

(C)
1

∂x (0, t) = 0

}
.

Then Ξ is an impedance passive, internally well-posed, strong boundary node. The
node Ξ is conservative if and only if θ = 0.

Here also the vertices corresponding to the mouth and nose are also chosen to be
control vertices which does not correspond to boundary conditions (14). It can be
shown that an impedance passive internally well-posed system remains as one with
such resistive termination but we do not do it here.

6. Remarks and conclusions. Many kinds of passive boundary control systems
can be interconnected with each other so that the composed system is also a pas-
sive and internally well-posed boundary control system. The presented Kirchhoff
couplings are natural when connecting impedance passive systems. We remark that
it is also possible to form partial couplings using the presented techniques. This
is needed, e.g., when beams are connected to each other by a hinge that does not
transmit all the degrees of freedom between the subsystems. This can be done by
splitting the input and output spaces using orthogonal projections and then treating
these as independent inputs and outputs.

However, if the junctions themselves have (finite-dimensional) dynamics then
these methods are not (directly) applicable — consider, for example, a hinge junc-
tion between two beams with a spring or a damper. In such case the resulting system
is not necessarily of boundary control form, and instead, these systems should be
treated in the more general system node setting. See the work of Weiss and Zhao
[29] for this kind of ideas.

All results in this paper require the colligations to be strong in the sense of
Definition 2.1. As mentioned before, there are internally well-posed boundary nodes
(in the sense of [21, Definition 2.2]) that are even impedance conservative and satisfy
U = Y but are not strong. One such example is given in [21, Proposition 6.3] in
terms of the boundary controlled wave equation on Ω ⊂ Rn with smooth boundary
∂Ω. However, the same PDE with the same boundary control can be written as
a strong node at the cost of U 6= Y; these spaces are still a dual pair. Note that
Theorem 3.3 can be applied also in this case even though the smoothness assumption
on ∂Ω seriously restricts the possible couplings of this kind of systems.

Acknowledgments. We thank the anonymous reviewer for pointing out the pos-
sible simplification of the proof of our main theorem (see Remark 2).
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