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Abstract

We show under mild assumptions that a composition of internally
well-posed, impedance passive (or conservative) boundary control systems
through Kirchho� type connections is also an internally well-posed, impe-
dance passive (resp., conservative) boundary control system. The proof is
based on results of [20]. We also present two examples of such composi-
tions involving Webster's equation and the Timoshenko beam equation.

Keywords: Boundary control, passive system, distributed parameter sys-
tem, well-posedness, composition, Cauchy problem

1 Introduction

We treat the solvability (forward in time) of dynamical boundary control sys-
tems that are composed by interconnecting a �nite number of more simple
boundary control subsystems that are already known to be solvable forward in
time. The interconnections are given in terms of algebraic equations satis�ed by
the boundary control/observation operators of the subsystems. The aggregate
formed by the subsystems and their interconnections is called a transmission
graph (see De�nition 3.1), and it can be seen as a generalisation of mathemati-
cal transmission lines and networks. We assume throughout this work that all
the subsystems are passive or conservative as described in, e.g., [8], [16], [19],
[20], [23], [24], and [25], and they are represented by equations of the form (5)
below involving strong boundary nodes. Moreover, the interconnections respect
passivity in the sense that they do not create energy. In Theorem 3.4 � the
main result of this paper � we give conditions for checking the solvability (i.e.,
internal well-posedness) and passivity of the transmission graph in terms of
simple conditions on the subsystems and interconnections.

To illuminate the purpose of this paper, let us consider the following example
from acoustic wave propagation. Given the interconnection graph in Fig. 1, the
longitudinal wave propagation on its edges (i.e., wave guides) is governed by

∂2ψ(j)

∂t2
(x, t) = c2

∂2ψ(j)

∂x2
(x, t), x ∈ [0, Lj ], and t ∈ R+. (1)
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Figure 1: The example graph

Here the index j = A, ...,D refers to the index of the edge, and the arrows in
Fig. 1 show the positive direction of the parametrisation x ∈ [0, Lj ]. To the
vertices ABD and BCD we impose Kirchho� law type coupling (boundary)
conditions (take vertex ABD for example):

∂ψ(A)

∂t (LA, t) = ∂ψ(B)

∂t (0, t) = ∂ψ(D)

∂t (LD, t),

AA
∂ψ(A)

∂x (LA, t)−AB
∂ψ(B)

∂x (0, t) +AD
∂ψ(D)

∂x (LD, t) = 0.
(2)

We remark that in acoustics applications the state ψ(j) is chosen to be a velocity
potential; then p(j) = ρ∂ψ

(j)

∂t gives the perturbation pressure and v(j) = −∂ψ(j)

∂x
gives the perturbation velocity for each edge. Thus, the �rst equation in (2) says
that the pressure is continuous, and the second equation is a �ow conservation
law (the weights Aj can be understood as the cross-sectional areas of the wave
guides).

We want to control the pressure at the vertex AC and observe the pertur-
bation �ux to the wave guides A and C. De�ning the input and output{

u(t) := ∂ψ(A)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

y(t) := −AA ∂ψ
(A)

∂x (0, t)−AC
∂ψ(C)

∂x (0, t),
(3)

respectively, then equations (1) for j = A, ...,D and (2) de�ne a dynamical sys-
tem whose solvability and energy conservation we wish to verify using Theorem
3.4 below.

We must consider �rst the solvability of the subsystems, that is, equations
(1) on the edges with boundary conditions[

∂ψ(j)

∂t (0, t)
∂ψ(j)

∂t (Lj , t)

]
=

[
u

(j)
1 (t)
u

(j)
2 (t)

]
=: u(j)(t). (4)

After reducing (1) to a �rst order equation of form ż = Lz with z =
[
ψ(j)

p(j)

]
,

de�ning operator G by (4), that is, by Gz(t) = u(j)(t), and K in a similar
manner, we obtain an internally well-posed boundary node Ξ(j) = (G,L,K)
that is impedance conservative, see De�nitions 2.2 and 2.3. As explained after
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De�nition 2.2, the initial value problem

u(t) = Gz(t),
ż(t) = Lz(t),
y(t) = Kz(t), t ∈ R+,
z(0) = z0

(5)

has a solution such that ψ(j) in equation (1) satis�es ψ(j) ∈ C1(R+, L2(0, Lj))∩
C(R+,H1(0, Lj)) for all inputs u(j) ∈ C2(R+,C2) and for all initial states
ψ(j)(0) that satisfy the boundary condition (4), too. For technical details, see
the (more general) example of Webster's equation presented in Section 5.1.

Now we have boundary nodes Ξ(j), j = A, ...,D and coupling conditions of
the form (2) for all vertices except the one that de�nes the external input and
output through (3). They form a transmission graph as de�ned in De�nition 3.1.
Since the components Ξ(j) are solvable and conservative, then by Theorem 3.4,
also the resulting composed system is solvable forward in time and conservative
in a similar way as any of its components.

Let us review the most relevant literature on compositions of (boundary
control) systems. The feedback theory for (regular) well-posed linear systems is
treated in [25: Chapter 7] and [28] whose concept of admissibility of the feedback
loops is related to the (internal) well-posedness of the composed system, but the
theory can be used only when well-posedness of the components is veri�ed by
other means.

Transport equation on graphs is studied in [5] by using semigroup techniques.
Compositions of PDEs on 1D spatial domains are treated in [27] in terms of
port-Hamiltonian framework. Compositions of more general systems are studied
in, e.g., [2] and [14] who treat systems that give raise to Dirac structures on
their state spaces (see also [4]). These contain impedance conservative, strong
boundary control systems (as characterised in De�nitions 2.2 and 2.3) as a
special case. However, our approach is based on results of [19; 20] that are
reviewed in Section 2, and we are able to treat couplings of both passive and
conservative systems at once.

Further practical examples of compositions of PDEs with 1D spatial domains
include semiconductor strips and lattice structures constructed of Timoshenko
beams. Such systems have also been studied from the spectral point of view:
asymptotic spectral properties of the Laplacian are studied in [12] and [22] when
its �graph-like� 3D spatial domain collapses to a graph with 1D edges. See also
[15] for the spectral properties of the Sturm-Liouville equation on a Y-shaped
graph.

We present two concrete examples of transmission graphs in Section 5,
namely the human vocal tract (modelled by Webster's equation on a Y-shaped
graph) and a lattice structure composed of homogeneous Timoshenko beams
(see [18] for more examples of passive boundary control systems). In the latter
example we also consider partial connections where some degrees of freedom are
not transmitted over the boundary coupling. This happens when the beams are
connected by a hinge which cannot convey moment to the direction of the axle
of the hinge.
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2 Background

In this work we treat linear boundary control systems described by operator
di�erential equations of the form (5) involving linear mappings G, L, and K:

De�nition 2.1. Let Ξ := (G,L,K) be a triple of linear mappings.

(i) Ξ is a colligation on the Hilbert spaces (U ,X ,Y) if G, L, and K have the
same domain Z = dom(Ξ) ⊂ X and values in U , X , and Y, respectively;

(ii) A colligation Ξ is strong if
[
G
L
K

]
is closed as an operator X →

[ U
X
Y

]
with

domain Z, and L is closed with dom(L) = Z.

We call L the interior operator, G the input (boundary) operator, and K the
output (boundary) operator. The space Z we call the solution space, X the
state space, and U and Y the input and output spaces, respectively. In Z we

use the graph norm of
[
G
L
K

]
in dom(Ξ).

In this paper we use the notations
[ ·
·
·

]
and

⊕
to represent orthogonal direct

sum of (sub)spaces. See also Remark 6.4 for a discussion on the terms input
and output.

Many dynamical systems de�ned by boundary controlled partial di�eren-
tial equations naturally adopt the form (5) associated with some colligation
(G,L,K) on properly chosen spaces (U ,X ,Y), see examples in Section 5. Equa-
tions (5) are solvable forward in time (at least) if Ξ satis�es somewhat stronger
assumptions:

De�nition 2.2. A strong colligation Ξ = (G,L,K) is a boundary node on the
Hilbert spaces (U ,X ,Y) if the following conditions are satis�ed:

(i) G is surjective and N (G) is dense in X ;

(ii) The operator L|N (G) (interpreted as an operator in X with domain N (G))
has a nonempty resolvent set.

This boundary node is internally well-posed (in the forward time direction) if,
in addition,

(iii) L|N (G) generates a C0 semigroup.

This de�nition coincides with [19: De�nition 1.1] for strong colligations. There
are, in fact, well-posed boundary nodes that are not strong (see [20: Proposi-
tion 6.3]) but we do not consider such nodes in this paper1. We remark that
also [6], [8], and [14] treat strong colligations (with di�erent names), see [20:
Theorem 5.2] and [14: Remark 4.4].

If Ξ = (G,L,K) is an internally well-posed boundary node, then (5) has a
unique solution for su�ciently smooth input functions u and initial states z0

1To avoid confusion, we shall use the term strong boundary node below.

4



compatible with u(0). More precisely, as shown in [19: Lemma 2.6], for all
z0 ∈ Z and u ∈ C2(R+;U) with Gz0 = u(0) the �rst, second, and fourth of the
equations in (5) have a unique solution z ∈ C1(R+;X ) ∩ C(R+;Z), and hence
we can de�ne y ∈ C(R+;Y) by the third equation in (5). In the rest of this
article, when we say �a smooth solution of (5) on R+� we mean a solution with
the above properties.

In a practical application, checking the solvability of (5), that is, verifying
the conditions of De�nition 2.2 may be di�cult. However, in many cases this
is not necessary because the system satis�es energy (in)equalities that can be
veri�ed using the Green�Lagrange inequality without an a priori knowledge of
the well-posedness. Such energy laws make it easier to check the solvability, see
Proposition 2.4 below. First we shall de�ne impedance passivity/conservativity.
To keep the notation simple, we assume that U = Y even though it would be
enough to assume that U and Y are a dual pair of Hilbert spaces with duality
pairing 〈·, ·〉(Y,U); see [20: De�nition 3.6] and the discussion preceding it.

De�nition 2.3. Let Ξ = (G,L,K) be a colligation on Hilbert spaces (U ,X ,Y).

(i) Ξ is impedance passive if the following conditions hold:

(a)

[
βG+K
α− L

]
is surjective for some α, β ∈ C+;

(b) For all z ∈ dom(Ξ) we have the Green�Lagrange inequality

Re
〈
z, Lz

〉
X ≤

〈
Kz,Gz

〉
U . (6)

(ii) Impedance passive Ξ is impedance conservative if (6) holds as an equality,
and (a) holds also for some α, β ∈ C−.

Impedance passivity/conservativity is de�ned in [20: De�nition 3.2] using the
external Cayley transform of scattering passivity/conservativity (see also the
discussion there). These de�nitions are equivalent by [20: Theorem 3.4]. We
further remark that [20: Theorem 3.4] also states that for an impedance passive
Ξ, condition (a) holds for all α, β ∈ C+, and for an impedance conservative Ξ,
condition (a) holds also for all α, β ∈ C−.

Suppose now that Ξ is an internally well-posed, impedance passive bound-
ary node and z a smooth solution of (5). Then (6) means plainly the energy
inequality

d

dt
‖z(t)‖2

X ≤
〈
y(t), u(t)

〉
U for all t ∈ R+

where the right hand side stands for the instantaneous power in�icting the
system, and the norm of X measures the energy stored in the state.

The following proposition utilising the energy balance laws is needed for
checking internal well-posedness and impedance passivity/conservativity.

Proposition 2.4. Let Ξ = (G,L,K) be a strong colligation on Hilbert spaces
(U ,X ,U).
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(i) Suppose that (6) holds for all z ∈ dom(Ξ), and that
[

G
α−L

]
is surjective

for some α ∈ C with Re(α) ≥ 0. Then Ξ is an internally well-posed,
impedance passive boundary node. If, in addition, (6) holds as an equality
and

[
G

α−L
]
is surjective also for some Re(α) ≤ 0, then the internally

well-posed boundary node Ξ is impedance conservative.

(ii) If Ξ is impedance passive, then it is an internally well-posed boundary node
if and only if its input operator G is surjective.

For a proof, see [20: Theorem 4.3 and Remark 4.6] for part (i) and [20: Theorem
4.7] for part (ii).

Internally well-posed boundary nodes can always be written in terms of
more general and complicated system nodes (see [19], [21], and [25]) but they
are excluded from state linear systems studied in [3]. A functional analytic
setting of boundary control systems, that is independent of the system node
setting, was formulated in [6] and signi�cant progress was made in [23] and [24].
See also [9] for a similar presentation.

3 Transmission graphs as colligations

Assume that we have colligations Ξ(j) =
(
G(j), L(j),K(j)

)
on Hilbert spaces(

U (j),X (j),Y(j)
)
with solution spaces Z(j), j = 1, ...,m, where

G(j) =


G

(j)
1
...

G
(j)
kj

 : dom(Ξ(j)) → U (j) =


U (j)

1
...

U (j)
kj

 and

K(j) =


K

(j)
1
...

K
(j)
kj

 : dom(Ξ(j)) → Y(j) =


Y(j)

1
...

Y(j)
kj

 .
That is, the Hilbert spaces U (j) and Y(j) are represented by an orthogonal direct
sum of kj subspaces each, and the corresponding input and output operators
are split accordingly. Following this splitting, we de�ne the index set

Ind :=
{
(j, i) ∈ N× N

∣∣ j = 1, ...,m; i = 1, ..., kj
}

=
N⋃
k=1

Ik ∪
M⋃
l=1

J l

where the sets I1, ..., IN and J 1, ...,JM are pairwise disjoint. The sets Ik
and J l de�ne a graph structure where inputs and outputs of nodes Ξ(j) are
coupled by algebraic equations (8) and (9) below. In order to make the couplings
possible, we require that the compatibility conditions

U (j)
i = U (p)

q and Y(j)
i = Y(p)

q (7)
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hold for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all (j, i), (p, q) ∈ J l, l =
1, ...,M . Each of the sets Ik or J l describes individual couplings of signals, and
we name the sets control and closed vertices, respectively.

De�nition 3.1. Assume that Ξ(j) are colligations with splittings as described
above. Suppose that sets I1, ..., IN and J 1, ...,JM are de�ned consistently with
this splitting so that the compatibility conditions (7) hold.

The ordered triple

Γ :=
({

Ξ(j)
}m
j=1

,
{
Ik
}N
k=1

,
{
J l
}M
l=1

)
is a transmission graph with (Kirchho�) couplings

(i) for all control and closed vertices, the continuity equations

G
(j)
i z(j) = G(p)

q z(p) for z(j) ∈ Z(j) and z(p) ∈ Z(p) (8)

hold, i.e., (8) holds for all (j, i), (p, q) ∈ Ik, k = 1, ..., N and for all
(j, i), (p, q) ∈ J l, l = 1, ...,M ; and

(ii) for closed vertices, also the �ow conservation equations∑
(j,i)∈J l

K
(j)
i z(j) = 0 for z(j) ∈ Z(j) and l = 1, ...,M (9)

hold.

For a general transmission graph, the set of control vertices is nonempty.
Control vertices are exactly those couplings where external signals are applied.
If the transfer function (see [19: Section 2]) of each Ξ(j) represents electrical
admittance, then the physical dimensions of U (j) and Y(j) are the voltage and
current, respectively. Equations (8) and (9) are the classical Kirchho� laws,
namely, the continuity of voltage and the conservation of charge.

De�nition 3.2. Let Γ be a transmission graph as in De�nition 3.1. Using the
same notation, we de�ne the colligation of the transmission graph as the triple
ΞΓ = (G,L,K) on the Hilbert spaces (U ,X ,Y) where2

X :=
m⊕
j=1

X (j), U :=
⊕

(j,i)∈Ik

k=1,...,M

U (j)
i , Y :=

⊕
(j,i)∈Ik

k=1,...,M

Y(j)
i ,

dom(ΞΓ) :=


m⊕
j=1

Z(j)

∣∣∣∣ (8) and (9) hold

 ,

2In sums of U and Y, pick one pair (j, i) ∈ Ik for each k.
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G := [Gk,j ] k=1,...,N
j=1,...,m

, L :=

 L(1)

. . .
L(m)

 , and K := [Kk,j ] k=1,...,N
j=1,...,m

where

Gk,j :=
{
G

(j)
k /|Ik|, if (j, k) ∈ Ik,

0, otherwise,
and Kk,j :=

{
K

(j)
k , if (j, k) ∈ Ik,

0, otherwise.

In order to make the preceding de�nitions more intuitive, let us return to
the example on the wave equation on the graph of Fig. 1, presented in the
introduction.

Example 3.3. We have four boundary nodes Ξ(j), j = A, ...,D whose input
and output spaces are split into two parts, see equation (4). Thus, our index
set is

Ind =
{
(j, i)

∣∣ j = A, ...,D, i = 1, 2
}
.

We have one control vertex I1 = {(A, 1), (C, 1)} and two closed vertices J 1 =
{(A, 2), (B, 1), (D, 2)} and J 2 = {(B, 2), (C, 2), (D, 1)}.

The dynamical system given by (1), (2), and (3) corresponds to the colli-

gation of the transmission graph Γ :=
({

Ξ(j)
}D
j=A

,
{
I1
}
,
{
J 1,J 2

})
. More

precisely, equations in (2) are equivalent with (8) and (9) and the input and
output operators given in De�nition 3.2 yield the input/output of equation (3).

The main result of this paper is the following:

Theorem 3.4. Assume that the transmission graph Γ is composed of internally
well-posed, impedance passive (conservative), strong boundary nodes Ξ(j) =(
G(j), L(j),K(j)

)
with the following property:

all of the operators
[
G(j)

K(j)

]
are surjective. (10)

Then the colligation of Γ is an impedance passive (resp., conservative), inter-
nally well-posed, strong boundary node.

This is proved in three steps (Lemmas 4.1, 4.2, and 4.3) presented in the fol-
lowing section. The assumption (10) can be relaxed (see Remark 6.2) but this
condition appears to hold in many applications (as in both of our examples in
Section 5).

4 Proof of Theorem 3.4

Suppose we are given a transmission graph Γ. We reconstruct this graph by
a �nite number of three di�erent kinds of steps, starting from its components
Ξ(j). In step 1, we form a partial parallel connection between two compatible
colligations to obtain a new colligation, see Fig. 2a. We remark that such parallel
connections are treated in [25: Examples 2.3.13 and 5.1.17] for system nodes.
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?
- �d

?

+ +

Figure 2: (a) The partial parallel coupling; (b) The loop coupling

In step 2, we form loops by joining two signals of a single colligation to obtain
a new colligation, see Fig. 2b. Both the control vertices and the closed vertices
are treated similarly at this stage: all the vertices are left �open� so that (8) is
satis�ed but (9) is not. After constructing the full coupling graph structure by
taking a �nite number of steps 1 and 2 in some order, the �nal step 3 is taken
to close those vertices that are not used for control/observation; then condition
(9) is satis�ed, too. The transmission graph Γ and its colligation have now been
reconstructed, and the remaining (open) vertices are exactly the control vertices
of Γ.

By this procedure, it is possible to synthesise any transmission graph. In
Lemmas 4.1, 4.2, and 4.3, we show that if we start from internally well-posed,
impedance passive/conservative strong boundary nodes, then the resulting colli-
gations after steps 1, 2, and 3 (respectively) are internally well-posed, impedance
passive/conservative, strong boundary nodes as well. This is required for iter-
ated application of these steps in order to prove Theorem 3.4. The reconstruc-
tion procedure is demonstrated in Section 4.4 by using the graph of Fig. 1.

4.1 Step 1: partial parallel coupling

Assume that we have two colligations Ξ(A) =
([

G
(A)
b

G(A)
c

]
, L(A),

[
K

(A)
b

K(A)
c

])
and

Ξ(B) =
([

G
(B)
b

G(B)
c

]
, L(B),

[
K

(B)
b

K(B)
c

])
on Hilbert spaces

([
U(A)

b

Uc

]
,X (A),

[
Y(A)

b

Yc

])
and([

U(B)
b

Uc

]
,X (B),

[
Y(B)

b

Yc

])
with solution spaces Z(A) and Z(B), respectively.

Now de�ne the composed colligation Ξ(AB) :=
(
G(AB), L(AB),K(AB)

)
on the

Hilbert spaces

X (AB) :=
[
X (A)

X (B)

]
, U (AB) :=

U (A)
b

Uc
U (B)
b

 , and Y(AB) :=

Y(A)
b

Yc
Y(B)
b


by L(AB) :=

[
L(A) 0

0 L(B)

]
,
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G(AB) :=

 G
(A)
b 0

G
(A)
c 0
0 G

(B)
b

 , and K(AB) :=

 K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

 .
The domain of the colligation is

dom(Ξ(AB)) :=
{[
z(A)

z(B)

]
∈
[
dom(Ξ(A))
dom(Ξ(B))

] ∣∣∣∣ G(A)
c z(A) = G(B)

c z(B)

}
.

Such partial parallel coupling is illustrated in Fig. 2a. We now show that
such coupling of two boundary nodes is also a boundary node and the coupling
preserves internal well-posedness and passivity/conservativity.

Lemma 4.1. Let Ξ(A), Ξ(B), and Ξ(AB) be as de�ned above. If the colliga-
tions Ξ(A) and Ξ(B) are internally well-posed, impedance passive (conservative),

strong boundary nodes such that both
[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
are surjective, then

the composed colligation Ξ(AB) is an internally well-posed, impedance passive

(resp., conservative), strong boundary node with the property that
[
G(AB)

K(AB)

]
is

surjective.

Proof. We start by showing that Ξ(AB) is a strong colligation. First, we show

that Ξ(AB) is closed. Assume that dom(Ξ(AB)) 3
[
z(A)

n

z(B)
n

]
→
[
z(A)

z(B)

]
andG

(A)
b 0

G
(A)
c 0
0 G

(B)
b

[z(A)
n

z
(B)
n

]
→

u(A)
b

uc

u
(B)
b

 , [
L(A) 0

0 L(B)

][
z
(A)
n

z
(B)
n

]
→
[
x(A)

x(B)

]
,

and

K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

[z(A)
n

z
(B)
n

]
→

y(A)
b

yc

y
(B)
b

 .
Since colligations Ξ(A) and Ξ(B) are strong, the operators L(A) and L(B) are

closed,
[
z(A)

z(B)

]
∈
[
dom(Ξ(A))

dom(Ξ(B))

]
, and also L(A)z(A) = x(A) and L(B)z(B) = x(B).

To show that
[
z(A)

z(B)

]
∈ dom(Ξ(AB)), we need to use the strongness of Ξ(A) and

Ξ(B) which implies that G(A)
c and G(B)

c are continuous with respect to the graph
norms of L(A) and L(B), respectively, by [20: Lemma 4.5]. Hence

‖G(A)
c z(A) −G

(B)
c z(B)‖Uc ≤ ‖G(A)

c (z(A) − z
(A)
n )‖Uc + ‖G(B)

c (z(B) − z
(B)
n )‖Uc

≤MA

(
‖z(A) − z

(A)
n ‖X (A) + ‖L(A)(z(A) − z

(A)
n )‖X (A)

)
+

+MB

(
‖z(B) − z

(B)
n ‖X (B) + ‖L(B)(z(B) − z

(B)
n )‖X (B)

)
→ 0 when n→∞

where we have used the fact G(A)
c z

(A)
n = G

(B)
c z

(B)
n . This implies G(A)

c z(A) =
G

(B)
c z(B) meaning that

[
z(A)

z(B)

]
∈ dom(Ξ(AB)). By a similar computation we can

10



verifyG
(A)
b 0

G
(A)
c 0
0 G

(B)
b

[z(A)

z(B)

]
=

u(A)
b

uc

u
(B)
b

 and

K
(A)
b 0

K
(A)
c K

(B)
c

0 K
(B)
b

[z(A)

z(B)

]
=

y(A)
b

yc

y
(B)
b

 .
Closedness of L(AB) with domain dom(L(AB)) = dom(Ξ(AB)) is shown similarly.
Thus, Ξ(AB) is strong colligation. Note that in the preceding computation, we
did not need G

(A)
c z

(A)
n → uc to show

[
z(A)

z(B)

]
∈ dom(Ξ(AB)), i.e., G(A)

c z(A) =

G
(B)
c z(B).
We proceed to show that Ξ(AB) is an internally well-posed, impedance pas-

sive boundary node with the help of Proposition 2.4. Surjectivity of
[

G(AB)

α−L(AB)

]
(with domain dom(Ξ(AB))) for some α ∈ C with Reα ≥ 0 follows from the fact

that
[

G(A)

α−L(A)

]
and

[
G(B)

α−L(B)

]
are surjective for the same α. All that is left is to

show that the Green�Lagrange identity (6) holds:

Re
〈
z, L(AB)z

〉
X (AB)

= Re
〈
z(A), L(A)z(A)

〉
X (A) + Re

〈
z(B), L(B)z(B)

〉
X (B)

≤ Re
〈
K

(A)
b z(A), G

(A)
b z(A)

〉
U(A)

b

+ Re
〈
K

(A)
c z(A), G

(A)
c z(A)

〉
Uc

+

+Re
〈
K

(B)
b z(B), G

(B)
b z(B)

〉
U(B)

b

+ Re
〈
K

(B)
c z(B), G

(B)
c z(B)

〉
Uc

= Re
〈
K(AB)z,G(AB)z

〉
U(AB)

where the last equation follows from G
(A)
c z(A) = G

(B)
c z(B) and de�nitions of

G(AB) and K(AB). Surjectivity of
[
G(AB)

K(AB)

]
follows from surjectivity of

[
G(A)

K(A)

]
and

[
G(B)

K(B)

]
.

The conservativity is veri�ed by repeating the latter part of the proof with
−α in place of α and replacing the inequality in Green�Lagrange identity by
equality.

4.2 Step 2: loop coupling

Now assume that we have a colligation Ξ = (G,L,K) on the Hilbert spaces([
U1
Uc

Uc

]
,X ,

[
Y1
Yc

Yc

])
where G =

[
G1
G2
G3

]
and K =

[
K1
K2
K3

]
, i.e., the input and out-

put operators and spaces can be split into (at least) three parts. We �glue�

two of these parts together to form another colligation Ξ̂ :=
(
Ĝ, L̂, K̂

)
on the

Hilbert spaces
([ U1

Uc

]
,X ,

[ Y1
Yc

])
with dom(Ξ̂) :=

{
z ∈ dom(Ξ)

∣∣ G2z = G3z
}
,

L̂ := L|
dom(bΞ), Ĝ :=

[
G1
G2

]
, and K̂ :=

[
K1

K2+K3

]
.

The block diagram of such coupling is shown in Fig. 2b. As in step 1, we
show that if the original colligation Ξ is an internally well-posed, impedance
passive (conservative), strong boundary node, then Ξ̂ is one as well.
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Lemma 4.2. Let Ξ and Ξ̂ be as de�ned above. If the colligation Ξ is an inter-
nally well-posed, impedance passive (conservative), strong boundary node such

that [ GK ] is surjective, then also Ξ̂ is an internally well-posed, impedance pas-

sive (resp., conservative), strong boundary node with the property that
[ bGbK
]
is

surjective.

Proof. Strongness of Ξ̂ is shown as before in Lemma 4.1.
Surjectivity of

[ bG
α−bL

]
for some α ∈ C with Reα ≥ 0 is easy to see, and also

Green�Lagrange identity holds in dom(Ξ̂):

Re
〈
z, L̂z

〉 bX ≤ Re
〈
K1z,G1z

〉
U1

+ Re
〈
K2z,G2z

〉
Uc

+ Re
〈
K3z,G3z

〉
Uc

= Re
〈
K1z,G1z

〉
U1

+ Re
〈
(K2 +K3)z,G2z

〉
Uc

= Re
〈
K̂z, Ĝz

〉bU
where the second equality follows from G2z = G3z and the last from the de�ni-
tions of Ĝ and K̂. Surjectivity of

[ bGbK
]
follows from surjectivity of [ GK ].

If Ξ is conservative, then to show conservativity of Ξ̂, just repeat the proof
with −α in place of α and replace the inequality in the Green�Lagrange identity
with equality.

4.3 Step 3: closing the vertices

In this step, we single out some vertices as control/observation vertices and per-
manently �close� all others with respect to additional external signals. Note that
after steps 1 and 2, under the assumptions of Lemmas 4.1 and 4.2, the resulting
colligation is an internally well-posed boundary node, such that condition (i) of
De�nition 3.1 is satis�ed. This closing means that we require also the condition
(ii) of De�nition 3.1 to be satis�ed, and we now show that this can be done
without sacri�cing the internal well-posedness or passivity/conservativity.

So let Ξ = (G,L,K) be a colligation on the Hilbert spaces
([ U1

U2

]
,X ,

[ Y1
Y2

])
with splittingsG =

[
G1
G2

]
andK =

[
K1
K2

]
whereG2 andK2 correspond to vertices

we want to close. De�ne the new colligation by Ξ̂ :=
(
G1, L̂,K1

)
on the Hilbert

spaces (U1,X ,Y1) with dom(Ξ̂) := dom(Ξ) ∩N (K2) and L̂ := L|
dom(bΞ).

Lemma 4.3. Let Ξ and Ξ̂ be as de�ned above. If Ξ is an internally well-posed,
impedance passive (conservative), strong boundary node with the property that

[ GK ] is surjective, then also Ξ̂ is an internally well-posed, impedance passive
(resp., conservative), strong boundary node.

Proof. We carry out a partial �ow inversion and interchange the roles of G2

and K2. More precisely, we shall prove that Ξ̃ :=
(
G̃, L, K̃

)
on Hilbert spaces([ U1

Y2

]
,X ,

[ Y1
U2

])
where G̃ :=

[
G1
K2

]
, K̃ :=

[
K1
G2

]
, and dom(Ξ̃) := dom(Ξ), is

an internally well-posed, impedance passive (conservative), strong boundary

12



node. Colligation Ξ̂ is then obtained from Ξ̃ by restricting the solution space to
N (K2), and it clearly has all the properties as claimed, see De�nition 2.2 and
[20: Lemma 4.5] concerning the strongness of Ξ̂.

It is trivial that Ξ̃ is a strong colligation. One way to see the interchange-
ability of G2 and K2 is directly by De�nition 2.3 with β = 1:[

G̃+ K̃
α− L

]
=
[ [

G1
K2

]
+
[
K1
G2

]
α− L

]
=
[ [

G1
G2

]
+
[
K1
K2

]
α− L

]
=
[
G+K
α− L

]
.

The surjectivity of this operator follows from impedance passivity of Ξ. Similarly
for the conservative system we also need the operator

[
G̃− K̃
α− L

]
=

 I 0 0
0 −I 0
0 0 I

[G−K
α− L

]

to be surjective which holds by the conservativity of Ξ, see De�nition 2.3 with
β = −1. The Green�Lagrange (in)equality is also trivial, and it follows that Ξ̃
is an impedance passive (conservative), strong colligation.

Finally, by Proposition 2.4, the surjectivity of
[
G1
K2

]
implies that Ξ̃ is an

internally well-posed boundary node.

4.4 Example on constructing the composition

Let us once more return to the example of the introduction. We reconstruct the
interconnection graph in four phases which are illustrated in Fig. 3. We start
with four boundary nodes labelled with A, B, C, and D. The input and output
operators and spaces of each system are split into two parts, i.e., kj = 2. The
vertices are labelled with 1 and 2 and the arrows in Fig. 3 point from 1 to 2.

-

-

-

-

s s s s
s s s s

A B

C D
1: 2:

-

-

-

-

s s s
s s s

A B

C D

-
6

-

-

s s s
ss

A B

D
C

3: 4: �
���

�
��

@
@@R

6

�
��	

@
@
@s

s
s

A

C

D B

Figure 3: Composing a transmission graph
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• Phase 1

We start with colligations Ξ(j) =
([

G
(j)
1

G
(j)
2

]
, L(j),

[
K

(j)
1

K
(j)
2

])
on the Hilbert spaces([

U(j)
1

U(j)
2

]
,X (j),

[
Y(j)

1

Y(j)
2

])
, j = A,B,C,D.

• Phase 2

The system A is connected to B, and C to D, by a partial parallel coupling so
that we obtain two colligations Ξ(AB) and Ξ(CD) with

G(AB) =

 G
(A)
1 0

G
(A)
2 0
0 G

(B)
2

 , K(AB) =

 K
(A)
1 0

K
(A)
2 K

(B)
1

0 K
(B)
2

 ,
and dom(Ξ(AB)) =

{[
z(A)

z(B)

]
∈
[
dom(Ξ(A))

dom(Ξ(B))

] ∣∣∣∣ G(A)
2 z(A) = G

(B)
1 z(B)

}
and similarly G(CD), K(CD), and dom(Ξ(CD)).

Note that these colligations are induced by transmission graphs; for example
the colligation of Γ(AB) :=

({
Ξ(A),Ξ(B)

}
, {{(A, 1)}, {(A, 2), (B, 1)}, {(B, 2)}} , ∅

)
is exactly Ξ(AB).

• Phase 3

Now Ξ(AB) is connected to Ξ(CD) by a partial parallel coupling. The part
of the operator G(AB) which is not involved in the connection is G(AB)

b =[
G

(A)
1 0
0 G

(B)
2

]
and the part that is, is G(AB)

c =
[
G

(A)
2 0

]
. Correspondingly

K
(AB)
b =

[
K

(A)
1 0
0 K

(B)
2

]
and K(AB)

c =
[
K

(A)
2 K

(B)
1

]
. The system Ξ(CD) is

connected by its free vertex {(D, 2)} to the common vertex {(A, 2), (B, 1)} of

Ξ(AB) so the CD-splitting is done di�erently, namelyG(CD)
b =

[
G

(C)
1 0
0 G

(D)
1

]
,

G
(CD)
c =

[
0 G

(D)
2

]
, K(CD)

b =

[
K

(C)
1 0

K
(C)
2 K

(D)
1

]
, and K(CD)

c =
[
0 K

(D)
2

]
.

Thus, as described in Section 4.1, we obtain a system with

G =


G

(A)
1 0 0 0
0 G

(B)
2 0 0

G
(A)
2 0 0 0
0 0 G

(C)
1 0

0 0 0 G
(D)
1

 , K =


K

(A)
1 0 0 0
0 K

(B)
2 0 0

K
(A)
2 K

(B)
1 0 K

(D)
2

0 0 K
(C)
1 0

0 0 K
(C)
2 K

(D)
1

 ,
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and dom(Ξ) =
{
z(j) ∈ dom(Ξ(j)), j = A,B,C,D

∣∣∣∣
G

(A)
2 z(A) = G

(B)
1 z(B) = G

(D)
2 z(D), G

(C)
2 z(C) = G

(D)
1 z(D)

}
.

Again, the colligation Ξ is induced by a transmission graph
Γ :=

({
Ξ(j)

}D
j=A

, {Il}5
l=1, ∅

)
where I1 = {(A, 1)}, I2 = {(A, 2), (B, 1), (D, 2)},

I3 = {(B, 2)}, I4 = {(C, 1)}, and I5 = {(C, 2), (D, 1)}.

• Phase 4

In the last phase, the vertex {(B, 2)} is connected to {(C, 2), (D, 1)}, and
{(A, 1)} to {(C, 1)}, by a loop coupling. The parts of input and output that are
not involved in the connection areG1 = [G(A)

2 0 0 0] andK1 = [K(A)
2 K

(B)
1 0K(D)

2 ].

The operators that are involved areG2 =
[
G

(A)
1 0 0 0

0 G
(B)
2 0 0

]
,K2 =

[
K

(A)
1 0 0 0

0 K
(B)
2 0 0

]
,

G3 =
[

0 0 G
(C)
1 0

0 0 0 G
(D)
1

]
, and K3 =

[
0 0 K

(C)
1 0

0 0 K
(C)
2 K

(D)
1

]
. As described in Section 4.2,

the new input and output operators are G =
[
G1
G2

]
and K =

[
K1

K2+K3

]
. To

dom(Ξ) we impose the additional condition G2z2 = G3z3. In terms of the
original blocks, this means G(A)

1 z(A) = G
(C)
1 z(C) and G(B)

2 z(B) = G
(D)
1 z(D).

In block operators G and K, before closing any vertices, each column cor-
responds to one system (an edge of the graph) and each row corresponds to a
coupling (a vertex of the graph). Thus, in phase 2, the block operators G(AB),
K(AB), G(CD), and K(CD) have three rows and two columns. In phase 3, G
and K have �ve rows and four columns. And �nally, when connecting vertex
{(B, 2)} to {(C, 2), (D, 1)} and {(A, 1)} to {(C, 1)}, two rows are lost.

5 Examples

5.1 Vocal tract: Webster's equation with dissipation

The human vocal tract can be considered as a Y-shaped graph whose three free
vertices are at the vocal folds, mouth, and nose. The closed vertex with three
outgoing edges is located at the velum. Wave propagation in such domain can
be computed by Webster's equation up to frequencies of about 4 kHz where the
e�ect of the transversal resonances become signi�cant, see [10: Section 5 and
Fig. 1]. As explained in [17], the solution of 1D Webster's equation approxi-
mates the solution of the corresponding 3D wave equation in a tubular domain,
averaged over the cross-sections of the tube. Hence, Webster's equation cannot
capture transversal dynamics of the wave propagation.

The generalised Webster's equation is derived in [17], and it is given by

ψtt(x, t) +
2πθW (x)c(x)2

A(x)
ψt(x, t)−

c(x)2

A(x)
∂

∂x

(
A(x)

∂ψ

∂x
(x, t)

)
= 0. (11)

15



The solution ψ is Webster's velocity potential that approximates the wave equa-
tion velocity potential when averaged over a transversal cross-section at distance
x ∈ [0, l] from the tube end. Thus, ψx = −v and ρψt = p where v is the pertur-
bation velocity, ρ is the density, and p is the perturbation pressure. The function
A(x) = πR(x)2 in (11) is the cross-sectional area of the tube, R(·) being the
radius of the cross-section. De�ne the curvature ratio by η(x) = R(x)κ(x)
where κ(·) is the curvature of the tube centreline. Note that it is assumed
that η(x) < 1 meaning that the tube does not fold onto itself. The surface
area factor W (x) = R(x)

√
R′(x)2 + (η(x)− 1)2 and the corrected sound veloc-

ity c(x) = c√
1+ 1

4η(x)
2
in (11) depend on the curvature. The coe�cient θ ≥ 0

regulates the dissipation at the tube walls.
Equation (11) contains a distributed dissipation term due to a dissipative

boundary condition at the tube walls3 and inhomogeneous sound velocity, which
occurs when the tube is curved. The classical Webster's equation (that is,
without curvature or dissipation) is obtained by setting θ = 0 and κ(x) = 0.
We say that the boundary control of (11) is of impedance type, when the control
signals are chosen as ρψt(0, t) and ρψt(l, t) and observation signals as ψx(0, t)
and −ψx(l, t). Note that the velocity potential given by (11) alone is not unique
since ψ + C for arbitrary C gives the same pressure and velocity �elds as ψ.
This a�ects to the choice of the state and solution spaces later.

As explained above, the model for the vocal tract is divided into three parts.
In each of these parts we have a velocity potential ψ(j) : (0, lj) × C → C, j =
A,B,C that satis�es (11) with respective functions Aj ∈ C1[0, l] such that
Aj(x) > ε > 0 and cj such that ∞ > cj(x) > ε > 0 and c−2

j (x) ∈ L2(0, l). The
potentials are connected through Kirchho� conditions{

∂ψ(A)

∂t (0, t) = ∂ψ(B)

∂t (0, t) = ∂ψ(C)

∂t (0, t),

AA(0)∂ψ
(A)

∂x (0, t) +AB(0)∂ψ
(B)

∂x (0, t) +AC(0)∂ψ
(C)

∂t (0, t) = 0.
(12)

The system is controlled by the �ow u through the vocal folds, and there is an
acoustic resistance at the mouth and nose openings:

∂ψ(A)

∂x (lA, t) = u(t) at vocal folds,

∂ψ(B)

∂t (lB , t) + θBc
∂ψ(B)

∂x (lB , t) = 0 at mouth, and

∂ψ(C)

∂t (lC , t) + θCc
∂ψ(C)

∂x (lC , t) = 0 at nose

(13)

where θB and θC are the dimensionless normalised acoustic resistances.
We proceed to formulate this model as a boundary control system. First, we

write Webster's equation as a �rst order system by choosing the state vector as
z =

[
ψ
ψt

]
. The state and solution spaces are

X (j) := h1[0, lj ]× L2(0, lj) and Z(j) := h2[0, lj ]×H1[0, lj ]

3The classical Webster's equation is derived using Neumann boundary conditions at the
walls of the tube.
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respectively, where h1[0, lj ] = H1[0, lj ]
/
∼ and h2[0, lj ] = H2[0, lj ]

/
∼ where the

equivalence relation x ∼ y holds if x−y is constant Lebesgue almost everywhere
in (0, lj). We equip h1[0, lj ] with the norm ‖z‖h1[0,lj ] :=

∣∣∣∣ ∂z
∂x

∣∣∣∣
L2(0,lj)

, and the
state spaces with inner products

〈
z, y
〉
X (j) :=

ρ

2

(∫ lj

0

∂z1
∂x

∂y1
∂x

Aj(x)dx+
∫ lj

0

z2(x)y2(x)
Aj(x)dx
cj(x)2

)
.

The norms induced by
〈
·, ·
〉
X (j) correspond to the physical energy. In the solu-

tion spaces we use norms

‖z‖2
Z(j) := ‖z1‖2

h1[0,lj ]
+
∣∣∣∣∣∣∣∣∂2z1
∂x2

(x)
∣∣∣∣∣∣∣∣2
L2(0,lj)

+ ‖z2‖2
H1[0,lj ]

.

The input and output spaces are U (j) = Y(j) = C2 with the Euclidian norm.
The interior operators are de�ned by

L(j) := W (j) +D(j) : Z(j) → X (j)

where

W (j) :=

[
0 1

cj(x)
2

Aj(x)
∂
∂x

(
Aj(x) ∂∂x

)
0

]
and D(j) :=

[
0 0
0 − 2πθWj(x)cj(x)

2

Aj(x)

]
;

the dissipative partD(j) acts as a bounded perturbation (in X (j)) to the classical
Webster-related part W (j). The input and output operators are de�ned by

G(j)z(j) :=

[
ρz

(j)
2 (0, t)

ρz
(j)
2 (lj , t)

]
and K(j)z(j) :=

[
Aj(0)∂z

(A)
1
∂x (0, t)

−Aj(lj)∂z
(j)
1
∂x (lj , t)

]
.

The pressure controlled, velocity observed Webster's equation can �nally be
written in the form 

u(j)(t) = G(j)z(j)(t),
ż(j)(t) = L(j)z(j)(t),
y(j)(t) = K(j)z(j)(t), t ∈ R+,

and it remains to show that each Ξ(j) = (G(j), L(j),K(j)) satis�es the conditions
of De�nitions 2.2 and 2.3.

Theorem 5.1. Each colligation Ξ(j) = (G(j), L(j),K(j)) on spaces
(
C2,X (j),C2

)
de�ned above is an impedance passive (even conservative if θ = 0), internally
well-posed, strong boundary node.

Proof. Here we drop the index j, and begin by showing the claim in the special
impedance conservative case Ξ̂ = (G,W,K) on

(
C2,X ,C2

)
.
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It is easy to see that Ξ̂ is a strong colligation, and that G is surjective.
Thus, to show surjectivity of

[
G

α−W
]
it is su�cient to show (α−W )|N (G) to be

bijective.
Fix

[
f
g

]
∈ X (in the following we treat

[
f
g

]
as a representative from the

equivalence class) and α 6= 0. We wish to �nd [ z1z2 ] ∈ N (G), s.t.[
α −1

− c(x)2

A(x)
∂
∂x

(
A(x) ∂∂x

)
α

] [
z1
z2

]
=
[
f
g

]
. (14)

The �rst row implies αz1 − z2 = f (in H1[0, l]). The condition [ z1z2 ] ∈ N (G) is
equivalent to z2(0) = z2(l) = 0 so that z1(0) = f(0)

α and z1(l) = f(l)
α . Multiply-

ing the �rst row in (14) with α and adding it to the second row gives

α2z1(x)−
c(x)2

A(x)
∂

∂x

(
A(x)

∂z1
∂x

(x)
)

= αf(x) + g(x)
(
∈ L2(0, l)

)
.

This equation with the aforementioned boundary conditions has a unique vari-
ational solution z1 ∈ H2[0, l] that satis�es

[ z1
αz1−f

]
∈ N (G). If we solve (14)

for a di�erent representative of the same equivalence class, that is, with right
hand side

[
f+C
g

]
where C ∈ C, then we get for (14) the respective solution[

z1+C/α
α(z1+C/α)−f−C

]
=
[
z1+C/α
αz1−f

]
which is in the same equivalence class with[ z1

αz1−f
]
. Hence, equation (14) has a unique solution in Z for all

[
f
g

]
∈ X .

The Green�Lagrange identity (6) for Ξ̂ as an equality can be shown by partial
integration. The claim is now proved for Ξ̂ by Proposition 2.4.

Since D : X → X is bounded, also L|N (G) = (W + D)|N (G) generates a
C0-semigroup by [1: Corollary 3.5.6]. Because W (x) ≥ 0 and θ > 0, it follows〈

z,Dz
〉
X = −πθρ

∫ l

0

W (x)z2(x)2 dx ≤ 0

which means that Green�Lagrange identity for Ξ holds as an inequality. Be-
cause bounded perturbations of closed operators are closed, nodes Ξ and Ξ̂ are
simultaneously strong.

The boundary conditions (12) at velum correspond to conditions (8) and

(9). Thus, after noting that operators
[
G(j)

K(j)

]
are surjective (try polynomial

functions in Z), Theorem 3.4 yields:

Theorem 5.2. De�ne a colligation Ξ = (G,L,K) on spaces
(
C2,X ,C2

)
where

G

 z(A)

z(B)

z(C)

 :=

 ρz
(A)
2 (lA, t)

ρz
(B)
2 (lB , t)

ρz
(C)
2 (lC , t)

 , L :=

 L(A) 0 0
0 L(B) 0
0 0 L(C)

 ,

and K

 z(A)

z(B)

z(C)

 :=

 −AA(lA)∂z
(A)
1
∂x (lA, t)

−AB(lB)∂z
(B)
1
∂x (lB , t)

−AC(lC)∂z
(C)
1
∂x (lC , t)

 , with
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dom(Ξ) :=


 z(A)

z(B)

z(C)

 ∈
 Z(A)

Z(B)

Z(C)

 ∣∣∣∣ z(A)
1 (0, t) = z

(B)
2 (0, t) = z

(C)
2 (0, t),

AA(0)∂z
(A)
1
∂x (0, t) +AB(0)∂z

(B)
1
∂x (0, t) +AC(0)∂z

(C)
1
∂x (0, t) = 0

}
.

Then Ξ is an impedance passive, internally well-posed, strong boundary node.
The node Ξ is conservative if and only if θ = 0.

Here also the vertices corresponding to the mouth and nose are also chosen to
be control vertices which does not correspond to boundary conditions (13). It
can be shown that an impedance passive internally well-posed system remains
as one with such resistive termination but we do not do it here.

5.2 Homogeneous Timoshenko beam

In this example we consider the Timoshenko beam (see, e.g., [26: Section 9.6])
with six degrees of freedom. Assume we have a beam of length l with a unit vec-
tor q1 ∈ R3 showing its orientation, and vectors q2 and q3 such that {q1, q2, q3}
forms a right-handed orthonormal system. Denote the unitary change of basis
matrix by Q := [q1|q2|q3] ∈ R3×3. De�ne the functions wj to be the displace-
ments of the points of the beam in the direction of qj . The rotations of the
beam cross-sections with respect to axis q1 is given by φ1, with respect4 to axis
−q2 by function φ3, and with respect to axis q3 by function φ2.

The longitudinal vibrations (that is, in the direction of q1) and the rotational
vibrations with respect to axis q1 are governed by equations

ρA
∂2w1

∂t2
= AE

∂2w1

∂x2
and ρIr

∂2φ1

∂t2
= gJtor

∂2φ1

∂x2

where ρ is the density of the material, A is the cross-sectional area of the beam,
and E is the elastic modulus. In the second equation Ir is the inertial moment
of the cross-section with respect to q1-axis, gJtor is torsional rigidity (and g
itself is the shear modulus and it is usually denoted by G). The dynamics of
the other four degrees of freedom � corresponding to transversal vibrations �
is governed by the homogeneous Timoshenko beam equations (without external
load)  ρA

∂2wj

∂t2 = κjAg
(
∂2wj

∂x2 − ∂φj

∂x

)
,

ρIj
∂2φj

∂t2 = EIj
∂2φj

∂x2 + κjAg
(
∂wj

∂x − φj

)
, j = 2, 3

where κj is a shape coe�cient and Ij is the inertial moment of the cross-section
with respect to axis q3 for j = 2 and q2 for j = 3. The displacements and the

4Messing up with the minus-signs will not only destroy your Green�Lagrange identity, but
may result in unexpected catastrophic consequences, see [11].
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orientations of the endpoints are given in global coordinates by

Q

w1(x)
w2(x)
w3(x)

 and Q

 φ1(x)
−φ3(x)
φ2(x)

 , x = 0, l. (15)

The force and moment in�icted to an endpoint of a beam are

±Q

 AE ∂w1
∂x

κ2Ag
(
∂w2
∂x − φ2

)
κ3Ag

(
∂w3
∂x − φ3

)
 and ±Q

 gJtor ∂φ1
∂x

EI3
∂φ3
∂x

−EI2 ∂φ2
∂x

 , x = 0, l

where the sign is − if x = 0 and + when x = l. (Note that ∂
∂x is outer normal

at x = l and inner normal at x = 0).
Now we write the beam equations in the form of a boundary control system.

First the equations are transformed into a �rst order system by choosing the
state vector as z = [w1, φ1, w2, φ2, w3, φ3, ẇ1, φ̇1, ẇ2, φ̇2, ẇ3, φ̇3]T . The solution
space is de�ned as Z =

(
h2[0, l]×H2[0, l]

)3 × (H1[0, l]
)6

and the state space

as X =
(
h1[0, l]×H1[0, l]

)3 × (L2(0, l)
)6
. The inner product in X is de�ned by〈

z1, z2
〉
X :=

〈
z1, z2

〉
1

+
〈
z1, z2

〉
2

+
〈
z1, z2

〉
3
where〈

z1, z2
〉
1

:= 1
2AE

∫ l
0
∂w1,1
∂x

∂w2,1
∂x dx+ 1

2gJtor
∫ l
0
∂φ1,1
∂x

∂φ2,1
∂x dx

+ 1
2Aρ

∫ l
0
ẇ1,1ẇ2,1 dx+ 1

2Irρ
∫ l
0
φ̇1,1φ̇2,1 dx

and 〈
z1, z2

〉
2/3

:= 1
2κ2/3Ag

∫ l
0

(
∂w1,2/3

∂x − φ1,2/3

)(
∂w2,2/3

∂x − φ2,2/3

)
dx

+ 1
2EI2/3

∫ l
0

∂φ1,2/3

∂x

∂φ2,2/3

∂x dx

+ 1
2ρA

∫ l
0
ẇ1,2/3ẇ2,2/3 dx+ 1

2ρI2/3
∫ l
0
φ̇1,2/3φ̇2,2/3 dx.

The norm induced by
〈
·, ·
〉
X is the physical energy norm. In the space Z we

use the norm

‖z‖2
Z :=

3∑
j=1

(∥∥∥∥∂z(2j−1)

∂x

∥∥∥∥2

L2(0,l)

+
∥∥∥∥∂2z(2j−1)

∂x2

∥∥∥∥2

L2(0,l)

+ ‖z(2j)‖2
H2[0,l]

)
+

12∑
j=7

‖zj‖2
H1[0,l].

Thus, the interior operator takes the form

L =
[

0 I
T 0

]
: Z → X

where the block size is 6× 6 and

T =



E
ρ
∂2

∂x2 0 0 0 0 0
0 gJtor

ρIr

∂2

∂x2 0 0 0 0
0 0 κ2g

ρ
∂2

∂x2 −κ2g
ρ

∂
∂x 0 0

0 0 κ2Ag
ρI2

∂
∂x

(
E
ρ
∂2

∂x2 − κ2Ag
ρI2

)
0 0

0 0 0 0 κ3g
ρ

∂2

∂x2 −κ3g
ρ

∂
∂x

0 0 0 0 κ3Ag
ρI3

∂
∂x

(
E
ρ
∂2

∂x2 − κ3Ag
ρI3

)


.
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When the beams are connected together into graph structures, it is natural
to impose the following boundary conditions: (i) the connections are rigid in
the sense that displacements and orientations of the connected beams, given by
(15), coincide at the vertices, and (ii) the sums of all the forces and moments
in�icted to each vertex vanish5. Thus, we de�ne G =

[
G1
G2

]
: Z → U = C12 and

K =
[
K1
K2

]
: Z → Y = C12 where

G1z :=
[
Q[ẇ1(0), ẇ2(0), ẇ2(0)]T

Q[φ̇1(0),−φ̇3(0), φ̇2(0)]T

]
and

K1z := −

 Q
[
AE ∂w1

∂x (0), κ2Ag
(
∂w2
∂x (0)− φ2(0)

)
, κ3Ag

(
∂w3
∂x (0)− φ3(0)

)]T
Q
[
gJtor

∂φ1
∂x (0), EI3 ∂φ3

∂x (0), −EI2 ∂φ2
∂x (0)

]T
 .

The operators G2 and K2 are de�ned similarly, but at the other end we eval-
uate at x = l and K2 is without the minus-sign in front. The aforementioned
boundary conditions take the form (8) and (9) when we connect many beams
into one vertex.

The following theorem states that the BCS formulated above satis�es the
assumptions in Lemmas 4.1, 4.2, and 4.3.

Theorem 5.3. The colligation Ξ = (G,L,K) on
(
C12,X ,C12

)
de�ned above

is an impedance conservative, internally well-posed, strong boundary node with
the property that [ GK ] is surjective.

This together with Theorem 3.4 enables composing Timoshenko beams into
lattice structures that de�ne solvable and conservative dynamical equations.

Proof. It is easy to see that L (that consists on di�erential operators on Sobolev
spaces) is closed on X with domain Z, and G and K are continuous operators
from Z to C12. Thus, Ξ is a strong colligation. Again, [ GK ] is trivially surjective.
Surjectivity of (±1 − L)|N (G) is shown similarly as in Theorem 5.1. Green�
Lagrange identity (6) as an equality follows by partial integration, completing
the proof by Proposition 2.4.

Remark 5.4. The aforementioned boundary conditions correspond to a rigid
(welded) junction. Of course, there are other reasonable ways to connect beams,
e.g., by hinges as shown in Fig. 4a. Then, all degrees of freedom are not trans-
mitted over the junction. Such connection can be composed using the steps
presented above in the context of Theorem 3.4. More precisely, this is done by
splitting the input and output signals to parts corresponding to those degrees of
freedom that are transmitted and to those that are not at the vertex of interest:
that is, we split an input signal u to parts u1 = Pu and u2 = (I −P )u and cor-
respondingly y1 = Py and y2 = (I − P )y where P is an orthogonal projection.

5These are not the only possible reasonable boundary conditions; see Remarks 5.4 and 5.5.
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Figure 4: (a) A hinge junction; (b) Splitting of an input/output pair

This is illustrated in Fig. 4b. The input/output space is split accordingly to an
orthogonal decomposition U = U1

⊕
U2 where U1 = PU and U2 = (I − P )U .

These parts are then treated as independent inputs and outputs.
In the case of the hinge junction of Fig. 4a the details are as follows. Assume

that the input operators are split into parts corresponding to displacement and

orientation G(j) =
[
G

(j)
d

G(j)
o

]
and output operators into parts corresponding to

force and moment K(j) =
[
K

(j)
f

K(j)
m

]
where j = A,B,C. For simplicity we only

consider the parts of these operators corresponding to the ends that are to be
connected by the hinge. Denote by h the unit vector parallel to the axle of the
hinge. Now the connection is formed as follows by using the basic operations of
Section 4:

• Connect systems Ξ(A) and Ξ(B) by step 1 (see Section 4.1) in order to
produce a beam modelled by Ξ(AB) that has external variables for a con-
nection in the middle.

• Split the orientation-parts of the inputs and the moment-parts of the out-

puts of systems Ξ(AB) and Ξ(C) by the projection P =
[
I 0
0 I − hhT

]
.

• Connect Ξ(AB) and Ξ(C) by step 1 so that

dom(Ξ(ABC)) =
{[

z(AB)

z(C)

]
∈
[
dom(Ξ(AB))

dom(Ξ(C))

] ∣∣∣∣ PG(AB)z(AB) = PG(C)z(C)

}
.

Remark 5.5. There are situations where the junctions themselves may have a
(dissipative) dynamics of their own. Consider, for example, a hinge with a spring
or a damper where the dynamics is governed by �nite-dimensional linear system.
Such system can never be of boundary control form and therefore Theorem 3.4
is not directly applicable.
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6 Remarks and conclusions

Remark 6.1. Recall that a transfer function G(·) of any impedance passive sys-
tem node (with U = Y = C) is positive-real; i.e., Re(G(s)) ≥ 0 for all s ∈ C+.
For boundary nodes this follows from the Green�Lagrange inequality (6), im-
plying 〈G(s)u, u〉U ≥ 2Re(s)‖(s−A−1)−1Bu‖2 for all u ∈ U and s ∈ ρ(A)where
G(s) = K(s − A−1)−1B, A−1, and B are as given in [19: Theorem 2.3].
Conversely, any positive-real analytic function is the transfer function of some
impedance passive (even conservative) system node.

Theorem 3.4 can be seen as a state-space variant of the Nyquist's stability
criterion for boundary control systems. For positive-real G(·), the closed loop
transfer function Gk(s) := G(s)

1+kG(s) is analytic in C+ for proportional negative
feedback k > 0, and it is even positive-real by a simple calculation that leads
to the proof of Nyquist's stability criterion. In particular, the feedback loop is
admissible in the sense that Gk(·) is the transfer function of some impedance
passive system node. It takes, indeed, some energy that passive systems cannot
a�ord to introduce closed loop objects that are not internally well-posed.

Remark 6.2. Assumption (10) is actually stronger than what was needed in
Theorem 3.4. Indeed, it was only used in the last lines of the proof of Lemma 4.3.
However, the minimal su�cient conditions are impossible to formulate in terms
of the control/observation operators of the subsystems. Instead, we would have
to consider the whole composed system. The requirement is that the control
operator of the composed system has to remain surjective despite the couplings
in the closed vertices.

Remark 6.3. All results in this paper require the colligations to be strong in
the sense of De�nition 2.1. As mentioned before, there are internally well-posed
boundary nodes (in the sense of [20: De�nition 2.2]) that are even impedance
conservative and satisfy U = Y but are not strong. One such example is given
in terms of the boundary controlled wave equation on Ω ⊂ Rn with smooth
boundary ∂Ω, see [20: Proposition 6.3]. However, the same PDE with the
same boundary control can be written as a strong node at the cost of U 6= Y;
these spaces are still a dual pair. Note that Theorem 3.4 can be applied also in
this case even though the smoothness assumption on ∂Ω seriously restricts the
possible couplings of this kind of systems.

Remark 6.4. Using the words input and output for Gz and Kz is somewhat
misleading. In fact, since our coupling equations (8) and (9) include conditions
for both Gz and Kz, we have to assume that also the �ow-inverted system is
solvable, that is, if G and K are interchanged. For many systems this is not
a serious restriction and, in fact, the whole concept of abstract boundary value
spaces (introduced in [8]) is based on the existence of such interchangeable pair
of possible boundary values. See also [4] for a study of compositions of systems
using such abstract boundary spaces and [13] for an introduction of state/signal
systems that are based on equal treatment of inputs and outputs.
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