Acta Mathematica Sinica, English Series Apr., 2007, Vol. 23, No. 4, pp. 745–748 Published online: May 15, 2006 DOI: 10.1007/s10114-005-0765-4 Http://www.ActaMath.com

A Lower Bound for the Differences of Powers of Linear Operators

J. MALINEN¹⁾ O. NEVANLINNA, V. TURUNEN Z. YUAN

Department of Mathematics, Helsinki University of Technology, P. O. Box 1100 FIN-02015 HUT, Finland

E-mail: Jarmo.Malinen@hut.fi

Abstract Let T be a bounded linear operator in a Banach space, with $\sigma(T) = \{1\}$. In 1983, Esterle–Berkani's conjecture was proposed for the decay of differences $(I - T)T^n$ as follows: Either $\liminf_{n\to\infty} (n+1) || (I - T)T^n || \ge 1/e$

 $\lim_{n \to \infty} \lim_{n \to \infty} \frac{|n| + 1}{|| + 1} || + 1$

or T = I. We prove this claim and discuss some of its consequences.

Keywords Esterle–Berkani's conjecture, Quasi-nilpotent linear operator, Differences of powers, DecayMR(2000) Subject Classification 47A30, 47D03, 47A10, 30C45

1 Introduction

Let $T \in \mathscr{L}(X)$, a bounded linear operator in a (complex) Banach space X. The following result by Esterle holds, see [1, Corollary 9.5]:

Proposition 1 Let $T \in \mathscr{L}(X)$ satisfy $\sigma(T) = \{1\}$. If $T \neq I$ then $\liminf_{n \to \infty} (n+1) \| (I-T) T^n \| \geq \frac{1}{96}$.

Berkani improved the lower bound to 1/12, and he conjectured that the best lower bound is 1/e, see [2]. That 1/e has a special role in related estimates can also be seen in the following remark by Nevanlinna, see [3, Theorem 4.5.1]:

Proposition 2 Assume that there exists $\{\lambda_j\} \subset \sigma(T)$ such that $|\lambda_j| < 1$ and $|\lambda_j| \to 1$ as $j \to \infty$. Then $\limsup_{n \to \infty} (n+1) || (I-T)T^n || \ge \frac{1}{e}$.

The constant 1/e also appears in the well-known "continuous time" case [4, Theorem 10.3.6].

In this paper, we show that Berkani's and Esterle's conjecture is right in the sense that Proposition 1 holds with 1/96 replaced by 1/e. We use a related but more careful analysis that has already been used in [1], involving the univalent functions $g_n(z) = z(1-z)^n$. Also we give another variant of Proposition 2 without restrictions on $\sigma(T)$.

All of these results were first presented in [5] (Yuan, 2002) with somewhat longer proofs. That 1/e in Proposition 1 is a valid lower bound, is also proved in [6] (Kalton, Montgomery-Smith, Oleszkiewicz, and Tomilov, 2002) by quite different means. Both of the existing approaches can be generalized to a larger class of results, but these respective classes are different (and we shall not discuss these generalizations here). An example is given in [6], indicating that the constant 1/e is the best possible. The construction is a modification of an example given in [7] (Lyubich, 2001).

2 Estimating $\liminf_{n\to\infty} (n+1) \| (I-T)T^n \|$

Denote $\mathbb{D}(R) := \{z \in \mathbb{C} : |z| < R\}$, and let $g : \mathbb{D}(R) \to \mathbb{C}$ be an analytic function satisfying g(0) = 0 and $g'(0) \neq 0$. Then there exists a maximal radius R_u , $0 < R_u \leq R$, such that g is a *univalent* (i.e. an injective analytic) function on the disk $\mathbb{D}(R_u)$. It is then easy to see that

Received June 25, 2004, Accepted September 15, 2004

¹⁾ Corresponding author

the image of $g(\mathbb{D}(R_u))$ contains an open disc, centered at origin. Let $0 < c < \infty$ be the largest radius such that $\mathbb{D}(c) \subset g(\mathbb{D}(R_u))$. Then there exists an analytic function $f: \mathbb{D}(c) \to \mathbb{D}(R_u)$ such that

$$(g \circ f)(z) := g(f(z)) = z \quad \text{for all} \quad z \in \mathbb{D}(c).$$
 (1)

We denote the spectral radius of $L \in \mathscr{L}(X)$ by $\rho(L)$. If $\rho(L) = 0$, then L is called *quasi-nilpotent*. With these notations, we can prove the following proposition:

Proposition 3 Let $g : \mathbb{D}(R) \to \mathbb{C}$ be an analytic function such that g(0) = 0 and $g'(0) \neq 0$. Let the constants c and R_u be as above. Then, for all $0 < \eta < 1$,

 $\inf \{ \|g(L)\| : L \in \mathscr{L}(X), \, \rho(L) = 0, \, \|L\| \ge R_u \eta (1-\eta)^{-1} \} \ge \eta c.$

Proof The proof is carried out by showing that the set

 $\{L \in \mathscr{L}(X) : \rho(L) = 0, \, \|g(L)\| < \eta c, \, \|L\| \ge R_u \eta (1-\eta)^{-1}\}$

is empty for all $0 < \eta < 1$. This is achieved by using the Cauchy estimates for the function f defined in (1). Denote the power series representations by $f(z) = \sum_{j\geq 1} a_j z^j$ and $g(z) = \sum_{j\geq 1} b_j z^j$. Clearly $f: \mathbb{D}(c) \to \mathbb{D}(R_u)$ means that $\sup_{|z|< c} |f(z)| \leq R_u$, and then the Cauchy estimates give $|a_j|r^j \leq R_u$ for each r < c and $j \geq 1$. Letting $r \to c^-$, we get that $|a_j|c^j \leq R_u$ for all $j \geq 1$.

Let $L \in \mathscr{L}(X)$ be an arbitrary quasi-nilpotent operator. Then g(L) is quasi-nilpotent by the spectral mapping theorem, as g(0) = 0. Similarly Y := f(g(L)) is also quasi-nilpotent. Now let $0 < \eta < 1$, and assume that $||g(L)|| < \eta c$. It now follows from the above Cauchy estimates that

$$||Y|| \le \sum_{j\ge 1} |a_j| \cdot ||g(L)||^j < \sum_{j\ge 1} |a_j| c^j \cdot \eta^j \le R_u \eta (1-\eta)^{-1};$$

hence $||Y|| < R_u \eta (1 - \eta)^{-1}$.

We proceed to show that Y = L. Since Y is quasi-nilpotent, g(Y) is well-defined. By the associativity $g(Y) = g[f(g(L))] = g(f[g(L)]) = (g \circ f)(g(L)) = g(L)$ because $(g \circ f)(z) = z$ for any $z \in \mathbb{D}(c)$. As g(0) = 0, it follows that $\sigma(g(L)) = \{0\} \subset \mathbb{D}(c)$. Using the power series of g, we get

$$0 = g(Y) - g(L) = \sum_{j \ge 1} b_j Y^j - \sum_{j \ge 1} b_j L^j$$

$$= (Y - L) \left(b_1 I + \sum_{j \ge 2} b_j \left[Y^{j-1} + Y^{j-2} L + \dots + L^{j-1} \right] \right)$$

$$= (Y - L) (b_1 I + U),$$
(2)

where $b_1 = g'(0) \neq 0$ and $U := \sum_{j \geq 2} b_j \left[Y^{j-1} + Y^{j-2}L + \dots + L^{j-1} \right].$

We know that Y = f(g(L)) is quasi-nilpotent, and it is actually a function of L. We now consider function h defined in $\mathbb{D}(R_u)$ as follows:

$$h(z) := \sum_{j \ge 2} b_j \left[f(g(z))^{j-1} + f(g(z))^{j-2} z + \dots + z^{j-1} \right].$$

Then h(z) is analytic in $\mathbb{D}(R_u)$ and h(0) = 0. So h(L) is well defined and U = h(L). Since both L and Y are quasi-nilpotent, we see that U is quasi-nilpotent. Therefore $b_1I + U$ is boundedly invertible. This together with (2) implies that Y = L. Hence, for any $0 < \eta < 1$ and any quasi-nilpotent $L \in \mathscr{L}(X)$, $||g(L)|| < \eta c \Rightarrow ||L|| = ||Y|| < R_u \eta (1 - \eta)^{-1}$. This proves the claim.

A somewhat analogous result to the previous proposition is [6, Theorem 4.5]. We proceed to study the functions

$$g_n(z) := (1-z)^n z \quad \text{for } n \ge 1,$$
 (3)

that also made their appearance in Esterle's original argument. We shall make use of the constants $R_u^{(n)}$ and $c^{(n)}$ defined as follows:

1) $R_u^{(n)} > 0$ is the largest radius of an open disc $\mathbb{D}(R_u^{(n)})$ such that $g_n(z)$ is univalent in $\mathbb{D}(R_u^{(n)})$;

2) $c^{(n)} > 0$ is the largest radius of an open disc $\mathbb{D}(c^{(n)})$ such that $\mathbb{D}(c^{(n)}) \subset g_n(\mathbb{D}(0, R_u^{(n)}))$.

Because $g'_n(z) = (1-z)^{n-1}(1-(n+1)z)$ and hence $g'_n(1/(n+1)) = 0$, it follows, by the elementary function theory, that $R_u^{(n)} \leq 1/(n+1)$. The next proposition shows that equality holds here.

Proposition 4 The functions $g_n(z) = (1-z)^n z$ are univalent in the disc $\mathbb{D}(1/(n+1))$ for all $n \ge 1$.

Proof Let $z = re^{i\phi} \in \mathbb{C}$, where $0 \leq r < 1/(n+1)$ and $\phi \in \mathbb{R}$. Now $g_n(z) = R(r, \phi) e^{i\Phi(r, \phi)}$, where $r_{\phi} = \sqrt{1 - 2r\cos(\phi) + r^2}$, $\Phi(r, \phi) = \phi - n \arcsin(r\sin(\phi)/r_{\phi})$ and $R(r, \phi) = r \cdot r_{\phi}^n$; note that $\arcsin: [-1, 1] \to [-\pi/2, \pi/2]$ is the inverse function of $\sin: [-\pi/2, \pi/2] \to [-1, 1]$. Mapping $\phi \mapsto \Phi(r, \phi)$ is injective on \mathbb{R} , because, by writing $t = \cos(\phi)$,

$$\frac{\partial \Phi(r,\phi)}{\partial \phi} = \left(1 - (n+2)rt + (n+1)r^2\right) \left(1 - 2rt + r^2\right)^{-1}$$

$$\geq \left(1 - (n+2)r + (n+1)r^2\right) \left(1 - 2rt + r^2\right)^{-1}$$

$$= \left(1 - r\right) \left(1 - (n+1)r\right) \left(1 - 2rt + r^2\right)^{-1} > 0,$$

where the last estimate follows as r < 1/(n+1). Notice, furthermore, that $\Phi(r, 2\pi k) = 2\pi k$ for every $k \in \mathbb{Z}$. Moreover, if ϕ is fixed then $\frac{\partial R(r,\phi)}{\partial r} = \frac{\partial \Phi(r,\phi)}{\partial \phi} \left(1 - 2rt + r^2\right)^{n/2} > 0$. Hence $r \mapsto R(r,\phi)$ is injective on [0, 1/(n+1)), and the claim follows.

In other words, we have now proved that $R_u^{(n)} = 1/(n+1)$ for all $n \ge 1$. The other sequence of constants can be determined easily.

Proposition 5 The constants $c^{(n)}$ (as introduced earlier) satisfy $c^{(n)} = \frac{1}{n+1}(1-\frac{1}{n+1})^n$, for all $n \ge 1$.

Proof Clearly, for any fixed $n, c^{(n)} = \inf_{z \in \partial \mathbb{D}(R_u^{(n)})} |g_n(z)|$. Since $|(1-z)^n z| \ge (1-R_u^{(n)})^n R_u^{(n)}$, for all z satisfying $|z| = R_u^{(n)}$, we get $c^{(n)} \ge \frac{1}{n+1}(1-\frac{1}{n+1})^n$ as $R_u^{(n)} = 1/(n+1)$ by Proposition 4. By choosing $z = R_u^{(n)}$, we see that even the equality holds.

Now we are prepared to prove our main result. The required improvement of Proposition 1 follows by taking L = I - T in the following theorem:

Theorem 1 Let $L \in \mathscr{L}(X)$, $L \neq 0$, be quasi-nilpotent. Then $\liminf_{n \to \infty} (n+1) || (I-L)^n L || \geq \frac{1}{e}$.

Proof Define the functions g_n and the constants $R_u^{(n)}$, $c^{(n)}$ as earlier. Let $0 < \eta < 1$ be arbitrary. Since by Proposition 4, $R_u^{(n)}\eta(1-\eta)^{-1} = \frac{1}{n+1}\cdot\eta(1-\eta)^{-1} \to 0$ as $n \to \infty$, there exists $N(\eta) < \infty$, such that, for all $n \ge N(\eta)$, we have $||L|| \ge R_u^{(n)}\eta(1-\eta)^{-1}$. By Proposition 3 (with $g = g_n$) and Proposition 5, we have, for all $n \ge N(\eta)$,

$$||(I-L)^n L|| \ge \eta c^{(n)} = \eta \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^{n+1}$$

Since $\lim_{n\to\infty} (1-\frac{1}{n+1})^{n+1} = 1/e$, we get, by letting $n \to \infty$, $\liminf_{n\to\infty} (n+1) || (I-L)^n L || \ge \eta/e$. Because $0 < \eta < 1$ is arbitrary, the claim follows by letting $\eta \to 1$.

3 Estimating $\limsup_{n\to\infty} (n+1) \| (I-T)T^n \|$

Theorem 2 For any $T \in \mathscr{L}(X)$, either

- (i) $\limsup_{n \to \infty} (n+1) \| (I-T)T^n \| \ge 1/e; \text{ or,}$
- (ii) $\limsup_{n \to \infty} (n+1) || (I-T)T^n || = 0$ holds.

Proof If $\limsup_{n\to\infty} (n+1) \| (I-T)T^n \| = \infty$ or T = I, then the claim holds. It remains to consider the case when $\sup_{n>0} (n+1) \| (I-T)T^n \| < \infty$ and $T \neq I$. By [3, Theorem 4.2.2],

 $\sigma(T) \subset \mathbb{D}(1) \cup \{1\}.$

If $1 \notin \sigma(T)$, then $||T^n|| \leq Mr^n$ for some $0 \leq r < 1$, and (ii) follows. If 1 is an accumulation point of $\sigma(T)$, then (i) holds, by Proposition 2. If 1 is an isolated point, then either $\sigma(T) = \{1\}$ or there is a positive distance between 1 and $\sigma(T) \setminus \{1\}$. If $\sigma(T) = \{1\}$, then (i) holds by Theorem 1.

To complete the proof, we can assume dist $(1, \sigma(T) \setminus \{1\}) > 0$. There exist closed, nonintersecting curves Γ_1 and Γ_2 with the following properties: Γ_1 lies strictly inside the open unit disc $\mathbb{D}(1)$ and it surrounds the set $\sigma(T) \setminus \{1\}$; Γ_2 surrounds point 1. Define the bounded spectral projections P_1 and P_2 , together with the corresponding closed subspaces $P_1 := \frac{1}{2\pi i} \int_{\Gamma_1} (\lambda - T)^{-1} d\lambda$, $P_2 := \frac{1}{2\pi i} \int_{\Gamma_2} (\lambda - T)^{-1} d\lambda$, $X_1 := P_1 X$ and $X_2 := P_2 X$. Both X_1 and X_2 are invariant for T, $X_1 \cap X_2 = \{0\}$ and $X = X_1 + X_2$. They inherit their

Both X_1 and X_2 are invariant for T, $X_1 \cap X_2 = \{0\}$ and $X = X_1 + X_2$. They inherit their norms from X, and X itself is isometrically isomorphic to the exterior direct sum $\stackrel{X_1}{\underset{X_2}{\times}}$, equipped with the norm $\|[x_1 \quad x_2]^T\|_{X_1 \times X_2} := \|x_1 + x_2\|$ for all $x_1 \in X_1, x_2 \in X_2$. Define the bounded operators L and M by $L := T|X_1 \in \mathscr{L}(X_1)$ and $M := T|X_2 \in \mathscr{L}(X_2)$. Then T is isometrically equivalent to the block matrix $\begin{bmatrix} L & 0 \\ 0 & M \end{bmatrix} : \stackrel{X_1}{\underset{X_2}{\times}} \to \stackrel{X_2}{\underset{X_2}{\times}}$, and $(I - T)T^n$ is represented (apart from an isometric isomorphism) by $\begin{bmatrix} (I_{X_1} - L)L^n & 0 \\ 0 & (I_{X_2} - M)M^n \end{bmatrix}$. By the triangle inequality

$$\|(I-T)T^{n}\| = \left\| \begin{bmatrix} {}^{(I_{X_{1}}-L)L^{n}} & 0 \\ {}^{(I_{X_{2}}-M)M^{n}} \end{bmatrix} \right\|_{\mathscr{L}(X_{1}\times X_{2})}$$

$$\geq \left\| \begin{bmatrix} 0 & 0 \\ 0 & (I_{X_{2}}-M)M^{n} \end{bmatrix} \right\|_{\mathscr{L}(X_{1}\times X_{2})} - \left\| \begin{bmatrix} {}^{(I_{X_{1}}-L)L^{n}} & 0 \\ 0 & 0 \end{bmatrix} \right\|_{\mathscr{L}(X_{1}\times X_{2})}$$

$$= \| (I_{X_{2}}-M)M^{n} \|_{\mathscr{L}(X_{2})} - \| (I_{X_{1}}-L)L^{n} \|_{\mathscr{L}(X_{1})}.$$

$$(4)$$

The spectra of L and M satisfy $\sigma(L) = \sigma(T) \setminus \{1\} \subset \mathbb{D}(1)$ and $\sigma(M) = \{1\}$. It follows again immediately that $\lim_{n\to\infty} (n+1) || (I_{X_1} - L)L^n ||_{\mathscr{L}(X_1)} = 0$. By Theorem 1, $\limsup_{n\to\infty} (n+1) || (I_{X_2} - M)M^n ||_{\mathscr{L}(X_2)} \ge 1/e$. Therefore (4) implies

$$\limsup_{n \to \infty} (n+1) \|T^n(T-1)\| \ge \limsup_{n \to \infty} (n+1) \|(I_{X_2} - M)M^n\|_{\mathscr{L}(X_2)} \ge 1/e,$$

and the proof is completed.

The lower bound 1/e in Theorem 2 can be reached, see [3, Example 4.5.2].

References

- [1] Esterle, J.: Quasimultipliers, representations of H^{∞} , and the closed ideal problem for commutative Banach algebras, In Radical Banach algebras and automatic continuity (Long Beach, Calif., 1981), volume 975 of Lecture Notes in Mathematics, 66–162, Springer-Verlag, 1983
- Berkani, M.: Inégalités et propriétés spectrales dans les algébres de Banach, Thèse de 3éme cycle, University of Bordeaux I, 1983
- [3] Nevanlinna, O.: Convergence of Iterations for Linear Equations, Lectures in Mathematics ETH, Birkhäuser-Verlag, Zürich, 1993
- [4] Hille, E., Phillips, R. S.: Functional analysis and semi-groups, American Mathematical Society, 1957
- [5] Yuan, Z.: On the resolvent and Tauberian conditions for bounded linear operators, Licentiate's Thesis, Helsinki University Of Technology, 2002
- [6] Kalton, N., Montgomery-Smith, S., Oleszkiewicz, K., Tomilov, Y.: Power-bounded operators and related norm estimates. J. London Math. Soc. (2), 70(2), 463–478 (2004)
- [7] Lyubich, Yu.: The single-point spectrum operators satisfying Ritt's resolvent condition. Studia Mathematica, 145, 135–142, (2001)