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1 Introdu
tionIn this paper, we give suÆ
ient and ne
essary 
onditions in Theorems 7 and8 for the 
onservativity of linear boundary 
ontrol systems. Su
h systems aredes
ribed by di�erential equations of form8><>: _z(t) = Lz(t);Gz(t) = u(t);y(t) = Kz(t) for all t � 0: (1.1)All of the 
onditions in Theorems 7 and 8 are stated in terms of data given;namely the operators L, K, and G, together with the Hilbert spa
es they arede�ned on. We shall give �ve PDE examples to indi
ate that these results arepra
ti
ally appli
able in 
on
rete problems. However, our abstra
t settingdoes not require any of the operators in (1.1) to be a partial di�erentialoperator.What is a (s
attering) 
onservative linear system? By general linear sys-tems we mean system/operator nodes; see [13, 19℄ and the referen
es therein,in
luding the 
lassi
al works [1, 6, 7, 8, 17, 18, 20℄. We assume hen
eforththat the reader is familiar with su
h nodes; reading [13, Se
tion 2℄ gives a suf-�
ient ba
kground. A boundary 
ontrol system of form (1.1) always de�nesan operator node, see De�nition 1 and Se
tion 2 for details.Now, let S = [ A&BC&D ℄ be a system node. The (separable) Hilbert spa
esU , Y , X, X1 := D(A) and X�1 := D(A�)d are de�ned as usual for systemnodes. By A : X1 ! X, B 2 L(U ;X�1), and C 2 L(X1;Y ) denote the mainoperator, input operator, and the output operator of S, respe
tively. Assumethat the fun
tions u(�) 2 C2(R+ ;U), z(�) 2 C1(R+ ;X), y(�) 2 C1(R+ ;Y )satisfy the di�erential equation asso
iated to S:8<: _z(t) = A�1z(t) +Bu(t);y(t) = C&D h z(t)u(t) i for all t � 0; (1.2)see [13, Proposition 2.5℄ for details. We say that S is energy preserving iffor any (suÆ
iently smooth) input u(�) and any (
ompatible) initial statez(0) = z0, the unique solution of (1.2) satis�es the energy balan
e equationddtkx(t)k2X = ku(t)k2U�ky(t)k2Y , see [13, De�nition 3.1℄. That S is 
onservativemeans that both S and Sd are energy preserving. Here Sd denotes the dualsystem node of S as des
ribed in [13, Proposition 2.3℄.This notion of 
onservativity is the \right one" in the sense that is a dire
textension of the well-known �nite dimensional 
ase. Hen
e the de�nition of
onservativity refers dire
tly to Sd. Unfortunately, it is less than obvious torelate Sd to the operators appearing in (1.1) { the data of a typi
al boundary
ontrol problem. Solving these 
ompli
ations is the purpose of this paper.Following [13℄, a 
onservative system node S is said to be tory (or a Julia
olligation) if Ker B = f0g and (Ran C)? = f0g. A powerful 
hara
terisationof tory nodes is given in [13, Theorem 4.4℄. The main results of this paper {3



Theorems 3, 7 and 8 { are based on this theorem. These results are appliedto a number of PDE examples. In parti
ular, a fairly 
omplete treatment(apart from the exponential stability) of the boundary 
ontrolled (s
attering)
onservative wave equation is given.2 Ba
kgroundWe develop the required ba
kground results for boundary 
ontrol nodes andshow their equivalen
e to usual operator nodes (of boundary 
ontrol type).We review the related Cau
hy problem, too.De�nition 1. Assume that U , X and Y are separable Hilbert spa
es.(i) Assume that Z is a Hilbert spa
e, su
h that Z � X with a boundeddense in
lusion. Let L 2 L(Z;X), G 2 L(Z;X) and K 2 L(Z;Y ) beoperators su
h that the following 
onditions hold for some � 2 C + :(a) U = Ran G,(b) Ker G is dense in X,(
) (�� L)Ker G = X, and(d) Ker (�� L) \Ker G = f0g.Then the triple � = (L;G;K) is 
alled a boundary 
ontrol node. Thespa
e Z is the solution spa
e of �.(ii) If both � = (L;G;K) and � := (�L;K;G) are boundary 
ontrolnodes, then � is 
alled a doubly boundary 
ontrol node.(iii) Let S = [ A&BC&D ℄ be an operator node on spa
es U , X and Y as in [13,De�nition 2.2℄. Then S is 
alled an operator node of boundary 
ontroltype (in the sense of Salamon), if �(A) \ C + 6= ;, Ker B = f0g andBU \X = f0g.The spa
es U , X, and Y are 
alled input, state, and output spa
es of both� and S, respe
tively.Ea
h boundary 
ontrol node de�nes a Cau
hy problem through equations(1.1). The assumptions on operators L, G, and K are su
h that this Cau
hyproblem is \
orre
tly posed" in a sense related to \
orre
t posedness" foroperator nodes1 and their Cau
hy problems (1.2). However, the assumptionsof De�nition 1 alone do not imply the existen
e of a (weak, strong) solutionz(�) of either (1.1) or (1.2) { something more involving the generation of aC0-semigroup in X is required.1In PDE appli
ations, 
he
king this \
orre
t posedness " requires 
ertain a priori esti-mates involving the partial di�erential operators and Sobolev spa
es. The abstra
t fun
-tional analysis framework does not and 
annot take part in this. See how the ellipti
regularity theory is used in Subse
tion 7.4. 4



Suppose that � = (L;G;K) and S = [ A&BC&D ℄ satisfy the 
onditions ofDe�nition 1. It is des
ribed in Subse
tions 2.1 and 2.2 that su
h � and Sare in one-to-one 
orresponden
e. Moreover, the two Cau
hy problems (1.1)and (1.2) will then have the same solutions. This translation is essentiallythe same as given in [15, 16℄ in a di�erent notation (but, unfortunately, witha small mistake2). For an earlier and somewhat di�erent approa
h dealingmainly with 
ontrollability questions, see [4℄.2.1 Towards operator nodesWe shall now show that any boundary 
ontrol node � de�nes an operatornode S in the sense of [13, De�nition 2.2℄. Let us �rst make sense about themain operator A and its domain X1.Proposition 1. Let � = (L;G;K) be a boundary 
ontrol node on Hilbertspa
es U , Z, X and Y . De�ne the spa
e X1 and the linear mapping A bysetting X1 := Ker G and A := LjX1 : X1 ! X:Let � 2 C + satisfy 
onditions (
) and (d) of De�nition 1. Then(i) X1 is a 
losed subspa
e of Z, and it inherits a Hilbert spa
e normk � kX01 from Z,(ii) A 2 L(X1;X) when X1 is given the norm k�kX01. Moreover, A : D(A) �X ! X is an unbounded, 
losed, densely de�ned linear operator withD(A) = X1 and � 2 �(A), and(iii) X1 is a Hilbert spa
e under the norm kxkX1 := k(�� A)xkX , and thisnorm k � kX1 is equivalent to norm k � kX01.Proof. Claim (i) follows be
ause G 2 L(Z;U), and we atta
k 
laim (ii). For
larity, let X 01 denote the Hilbert spa
e Ker G equipped with k � kX01 . Firstly,D(A) is dense in X by 
ondition (b) of De�nition 1. To show that � 2 �(A),take any x 2 X 01. We have A 2 L(X 01;X) sin
ekAxkX = kLxkX � kLkL(Z;X) � kxkZ = kLkL(Z;X) � kxkX01 :Be
ause Z � X with a bounded in
lusion, we have kxkX � CkxkZ = CkxkX01for any x 2 X 01. Hen
e, X 01 � X with a bounded in
lusion, and it follows that� � A 2 L(X 01;X), too. By 
ondition (
) of De�nition 1, � � A : X 01 ! Xis surje
tive. By 
ondition (d), it is inje
tive, too. Hen
e, there exists abounded inverse (� � A)�1 : X ! X 01. Be
ause X 01 � X with a boundedin
lusion, in fa
t (� � A)�1 2 L(X) and � =2 �(A). In parti
ular, A is adensely de�ned operator on X, with domain D(A) = Ran (�� A)�1 = X1.2This mistake was independently dis
overed by G. Weiss and the author.5



Now the last 
laim (iii). Be
ause (� � A)�1 : X ! X 01 is a boundedbije
tion with a bounded inverse, it follows thatkxkX01k(�� A)�1kL(X;X01) � k(�� A)xkX � k�� AkL(X01;X) � kxkX01 :Hen
e, the norm k � kX1 is equivalent to the inherited norm k � kX01.From now on, we always use the norm kxkX1 := k(��A)xkX on X1. ByX�1 denote the 
ompletion of X in norm kxkX�1 := k(� � A)�1xk. RegardX as a subspa
e of X�1 with the natural in
lusion operator 
oming from the
ompletion pro
ess. As is well known in the 
ontext of rigged Hilbert spa
es,A : X1 ! X has a linear extension to an operator A�1 : X ! X�1 satisfyingA�1 2 L(X;X�1).Next we extra
t the input operator B 2 L(U ;X�1) from �. We also showthat the norm of Z is equivalent to another norm that 
an easily be expressedwith the aid of A�1 and B.Proposition 2. Let � = (L;G;K) be a boundary 
ontrol node on Hilbertspa
es U , Z, X and Y . Let X1 and A be as in Proposition 1, and let � 2 �(A)be arbitrary. Then(i) there exists a unique operator B 2 L(U ;X�1) satisfying the equationLz = (A�1jZ)z +BGz for all z 2 Z; (2.1)(ii) we have (� � A�1)�1B 2 L(U ;Z), G(� � A�1)�1B = I and Ker B =f0g,(iii) X1 \ (� � A�1)�1BU = f0g, Z = X1 _+(� � A�1)�1BU , and the normof Z is equivalent to the Hilbert spa
e normkzk2X1+(��A�1)�1BU = kxk2X1 + kuk2U where z = x + (�� A�1)�1Bu:(2.2)Proof. Be
ause G 2 L(Z;U) is surje
tive, there exists a right inverse H 2L(U ;Z) su
h that GH = I on all of Z. De�ne B := (L�A�1jZ)H. Be
auseL 2 L(Z;X) and X � X�1 with a bounded in
lusion, it follows that L 2L(Z;X�1). Be
ause Z � X with a bounded in
lusion, A�1jZ 2 L(Z;X�1)and hen
e B 2 L(U ;X�1). It is 
lear from 
onstru
tion that BGz = (L �A�1jZ)Gz for z = Hu, u 2 U . Sin
e Z = Ker G _+Ran H, equation (2.1)follows.If there were two operators B1; B2 2 L(U ;X�1) satisfying (2.1) withB = B1; B2, then their di�eren
e would satisfy (B1 � B2)u = 0 for all u 2Ran (G) = U . Thus B is uniquely de�ned and does not depend on theparti
ular 
hoi
e of the right inverse H.6



In order to prove (ii), let � 2 �(A) and u 2 U be arbitrary. We start withthe identity (�� A�1jZ)Hu� (�� L)Hu = Bu 2 X�1. Now we have (atleast formally)G (�� A�1)�1 (�� A�1jZ)Hu�G (�� A�1)�1 (�� L)Hu= G (�� A�1)�1Bu:The �rst term in the left is well-de�ned for all u 2 U . By 
an
elling theresolvents and re
alling GHu = u, we get (still formally)u�G (�� A�1)�1 (�� L)Hu = G (�� A�1)�1Bu: (2.3)This time Hu 2 Z and hen
e (�� A)�1 (�� L)Hu 2 X1, no matter whatvalue � 2 �(A) attains. So the se
ond term on the left of (2.3) is well-de�ned,too, and this 
omputation veri�es that G (�� A�1)�1Bu is a well-de�nedelement of U .ButX1 = KerG by de�nition, and hen
e the identity I = G (�� A�1)�1Bfollows from (2.3). The above 
omputations show that (�� A�1)�1BU � Z.As (�� A�1)�1B 2 L(U ;X) and Z � X with a dense in
lusion, it follows(by the 
ompatibility of Bana
h spa
es Z and X) that (�� A�1)�1B 2L(U ;Z).It remains to establish 
laim (iii). Suppose x 2 X1 \ (� � A�1)�1BU ,x 6= 0. As X1 = Ker G, then Gx = 0. As x = (� � A�1)�1Bu for someu 6= 0, we have by 
laim (ii) that Gx = u 6= 0, a 
ontradi
tion.For any z 2 Z, de�ne u := Gz 2 U . Then x1 := z � (� � A�1)�1Busatis�es Gx1 = Gz � G(�� A�1)�1Bu = Gz � u = 0. Hen
e x1 2 Ker G =X1, and trivially z = x1 + (� � A�1)�1Bu. This proves that Z � X1 +(� � A�1)�1BU . The 
onverse in
lusion follows as we have already proved(�� A�1)�1BU � Z for 
laim (ii).It is 
lear that (2.2) de�nes another Hilbert spa
e norm for Z. By a shortestimation, we learn that for all z 2 Z � XkzkX � max �1; k(�� A�1)�1BkL(U ;X)� � (kx1kX1 + kukU) (2.4)where z = x1+(��A�1)�1Bu is the unique de
omposition of z 2 Z a

ordingto Z = X1 _+(�� A�1)�1BU .It follows from (2.4) that the in
lusion Z � X is bounded, when Z is giventhe norm in (2.2). It is an expli
it assumption that the in
lusion Z � X inbounded, with the original norm of Z. Hen
e, these two di�erently normedversions of Z are 
ompatible Bana
h spa
es, and their norms are a

ordinglyequivalent.Note that the spa
es X1 and (�� A�1)�1BU are orthogonal in Z, whenZ is given the norm (2.2).Proposition 3. Let � = (L;G;K) be a boundary 
ontrol node on Hilbertspa
es U , Z, X and Y . Let the spa
es X1, X�1 and operators A, A�1, B beas in Propositions 1 and 2. De�ne the ve
tor spa
eV := f[ xu ℄ 2 [XU ℄ : A�1x +Bu 2 Xg (2.5)7



and equip it with the Hilbert spa
e norm

[ xu ℄

2V := kxk2X + kuk2U + kA�1x +Buk2X : (2.6)Then(i) V � [ ZU ℄ with a bounded in
lusion,(ii) the operator C&D : V ! Y de�ned byC&D �xu� := Kx (2.7)satis�es C&D 2 L(V ;Y ), and(iii) the identity V = [ IG ℄Z holds.Proof. To prove (i), we show the following fun
tional analyti
 fa
t: if H1,H2, and H3 are Bana
h spa
es, if H2 � H3 with a bounded in
lusion, andif T 2 L(H1;H3) with Ran T � H2, then T 2 L(H1;H2). By the 
losedgraph theorem, it is enough to show that T is 
losed as a mapping from H1to H2. Suppose gj ! g in H1 and Tgj ! h in H2. Sin
e H2 � H3 with abounded in
lusion, Tgj ! h in H3, too. Be
ause T 2 L(H1;H3), it followsthat h = Tg. Hen
e T is 
losed as required.Re
alling that Z � X with a bounded in
lusion, 
laim (i) follows bysetting H1 = V , H2 = [ ZU ℄, H3 = [XU ℄, and letting T be the natural in
lusionfrom V to [XU ℄. To prove (ii), estimate for [ xu ℄ 2 V

C&D [ xu ℄

Y = k �K 0� [ xu ℄ kY � k �K 0� kL([ZU ℄;Y ) � k [ xu ℄ k[ZU ℄� kKkL(Z;Y ) � Ck [ xu ℄ kV ;where C is the norm of the in
lusion V � [ ZU ℄.To prove 
laim (iii), note that V := �[ xu ℄ 2 [ ZU ℄ �� A�1x + Bu 2 X	 by
laim (i) and let � 2 �(A). Now, as (� � A)�1 : X1 ! X is a boundedbije
tion, we have for any [ xu ℄ 2 [ ZU ℄A�1x +Bu 2 X, (�� A)�1A�1x+ (�� A�1)�1Bu 2 X1, � x + �(�� A)�1x + (�� A�1)�1Bu 2 X1, � x + (�� A�1)�1Bu 2 X1;where the last equivalen
e holds sin
e �(� � A�1)�1x 2 X1 as x 2 Z � X.Using X1 := Ker G and G(�� A�1)�1Bu = u 
ompletes the proof.Now we have all the ingredients to put up an operator node of boundary
ontrol type in the sense of De�nition 1:8



Theorem 1. Let � = (L;G;K) be a boundary 
ontrol node on Hilbert spa
esU , Z, X and Y . Let the spa
es X1, X�1, V and operators A, A�1, B,C&D be as in Propositions 1, 2 and 3. De�ne A&B := [A�1 B℄ jV . ThenS = [ A&BC&D ℄ is an operator node with D(S) = V = [ IG ℄Z. Moreover, S is of theboundary 
ontrol type in the sense that Ker B = f0g and Ran B \X = f0g.Proof. All this follows from the properties of an operator node in [13, Se
tion2℄, and Propositions 1, 2 and 3.2.2 Towards boundary 
ontrol nodesNow we shall go to the 
onverse dire
tion: we show that any operator nodeS = [ A&BC&D ℄ of boundary 
ontrol type de�nes an unique boundary 
ontrol node� = (L;G;K), see De�nition 1. In this subse
tion, the spa
es X1 = D(A),X�1 and the operators A 2 L(X1;X), A�1 2 L(X;X�1), B 2 L(U ;X�1) arede�ned as usual for the operator node S. Moreover, we de�neZ := X1 + (�� A�1)�1BU (2.8)for some � 2 �(A). The Hilbert spa
e V = D(S) is given by (2.5) and (2.6);see [13, Se
tion 2℄ for details.Proposition 4. Assume S = [ A&BC&D ℄ is an operator node on Hilbert spa
esU , X and Y , su
h that BU \X = f0g and Ker B = f0g. Then the followingholds:(i) There exists a unique linear map G 2 L(Z;U) su
h that V = [ IG ℄Z.Moreover, [ IG ℄ 2 L(Z;V ), Ran G = U , and Ker G = X1.(ii) There exists a unique linear mapping K 2 L(Z;Y ) satisfying K =C&D [ IG ℄, Kx = C&D [ xu ℄ for all [ xu ℄ 2 V , and C&D = �K 0� jV .We have Ran K = Y if and only if Ran C&D = Y .(iii) The operator L : Z ! X, de�ned byLz := (A�1jZ)z +BGz for all z 2 Z;satis�es L 2 L(Z;X), (��L)Ker G = X, and Ker (��L)\Ker G =f0g for all � 2 �(A).Proof. Let us start with 
laim (i). Be
ause BU \X = f0g and Ker B = f0g,for ea
h z 2 Z � X there exists this time a unique u 2 U su
h that A�1z +Bu 2 X. Namely, if there were two, say u1 6= u2, then B(u1�u2) 2 BU \X.Hen
e B(u1 � u2) = 0 and thus u1 = u2. Let us 
all this (well-de�ned)mapping Z 3 z 7! u 2 U by G.Su
h G is 
learly linear, and so is [ IG ℄ : Z ! [XU ℄. It follows from thede�nition of G that [ IG ℄Z � V . Conversely, if [ xu ℄ 2 V , then A�1x+Bu 2 Xand hen
e x 2 Z. Then [ IG ℄ x 2 V and u = Gx by a similar uniquenessargument as given above. It now follows that [ IG ℄Z = V and that [ IG ℄ : Z !V is a bije
tion, sin
e the operator is trivially inje
tive.9



We pro
eed to show that [ IG ℄ 2 L(Z;V ) and G 2 L(Z;U). As Z is
omplete, it is enough to show that [ IG ℄ is 
losable. Let zj ! 0 in thenorm of Z and [ IG ℄ zj ! [ z0u0 ℄ 2 V in the norm of V . As Z � X withbounded in
lusion, it follows that zj ! 0 in the norm of X. As V � [XU ℄with a bounded in
lusion (see (2.5) and (2.6)), it follows that zj ! z0 inthe norm of X. Hen
e z0 = 0. Re
alling that [ 0u0 ℄ 2 V , we must haveBu0 2 BU \X = f0g. Hen
e, [ z0u0 ℄ = [ 00 ℄ and the 
losability of [ IG ℄ follows.Note that G = �0 I� jV � [ IG ℄. Be
ause �0 I� jV 2 L(V ;U) by a simpleestimate, it follows G 2 L(Z;U).We show next that Ran G = U . Be
ause S is an operator node, thereexists a xu 2 Z su
h that [ xuu ℄ 2 V for every u 2 U . Indeed, take xu =(��A�1)�1Bu 2 Z and note that A�1xu+Bu = �(��A�1)�1Bu 2 Z � X.By what we have already proved above, su
h xu is unique and it satis�esu = Gxu.If x 2 Ker G, then [ x0 ℄ 2 V , A�1x 2 X, and thus x 2 D(A). Conversely,let x 2 D(A). Then [ x0 ℄ 2 V , and it follows that Gx = 0 be
ause V = [ IG ℄Z.Now 
laim (i) is proved.ThatK 2 L(Z;Y ) follows from C&D 2 L(V ;Y ) and 
laim (i). Moreover,Ran K = Ran C&D and Kx = C&D [ xu ℄ for all [ xu ℄ 2 V follow as [ IG ℄ : Z !V is a bije
tion.It remains to prove (iii). Let z 2 Z be arbitrary. Then [ zGz ℄ 2 V ,Lz = A�1z +BGz 2 X and thus L : Z ! X. Sin
e Z � X with a boundedin
lusion, we 
on
lude that A�1jZ 2 L(Z;X�1) and hen
e L 2 L(Z;X�1),too. Be
ause Ran L � X and X � X�1 with a bounded in
lusion, we
on
lude that L 2 L(Z;X) using the te
hnique presented in the beginningof the proof of Proposition 3.Let � 2 �(A) and x 2 Ker (�� L) \ Ker G. Clearly (�� L)Ker G = Xis equivalent to the fa
t that (� � A)X1 = X. Furthermore, x 2 X1 and0 = (��L)x = (��A)x = 0, whi
h implies x = 0. The proof is 
omplete.We have now proved the following theorem:Theorem 2. Assume S = [ A&BC&D ℄ is an operator node of boundary 
ontroltype on Hilbert spa
es U , X and Y with D(S) = V . De�ne the spa
e Z by(2.8), and let the operators L 2 L(Z;X), G 2 L(Z;U) and K 2 L(Z;Y ) beas in Proposition 4.Then � = (L;G;K) is a boundary 
ontrol node (in the sense of De�nition1) on Hilbert spa
es U , X and Y , with the solution spa
e Z.By inspe
ting the translation pro
edures of Subse
tions 2.1 and 2.2, wesee that the boundary 
ontrol nodes � = (L;G;K) and the operator nodesS = [ A&BC&D ℄ of boundary 
ontrol type are in one-to-one 
orresponden
e. Inparti
ular, the solution spa
e Z for � is same as the spa
e given by (2.8) forfor the operator node S 
orresponding to �. For general operator nodes, wehave yet another 
hara
terisation for the same spa
eZ = X1 + (�� A�1)�1BU (2.9)= fz 2 X : 9u 2 U su
h that [ xu ℄ 2 D(S)g:10



It is a 
hara
terising property for operator nodes of boundary 
ontrol type thatwe 
an write the dire
t sum de
omposition Z = X1 _+(�� A�1)�1 instead of(2.8). Analogously, it is true only for S of boundary 
ontrol type that thespa
e V = D(S) (given by (2.5)) 
an be written as in form V = [ IG ℄Z forsome operator G 2 L(Z;U).2.3 The Cau
hy problemWe now solve the Cau
hy problem for the formal system (1.1). This is re-du
ed to the 
orresponding Cau
hy problem (1.2) system nodes, as presentedin [13, Proposition 2.5℄.Lemma 1. Assume that � = (L;G;K) is a boundary 
ontrol node, su
hthat A = LjKer G : D(A) � X ! X is a generator of a C0-semigroup.Let u 2 C2([0;1);U) and z0 2 Z be su
h that the 
ompatibility 
onditionGz0 = u(0) is satis�ed.Then the Cau
hy problem (1.1) has a unique 
lassi
al solution z(�) 2C([0;1);Z) \ C1([0;1);X), su
h that z(0) = z0 and y(�) 2 C([0;1);Y ).Proof. By S = [ A&BC&D ℄ denote the operator node that is related to � as inTheorems 1 and 2. By V and Z denote the two 
ommon Hilbert spa
es for� and S that have been des
ribed in Subse
tions 2.1 and 2.2. Sin
e A isthe generator of a C0-semigroup it follows from [13, Proposition 2.5℄ thatthere exists a unique z(�) 2 C1([0;1);X) \ C2([0;1);X�1) su
h that (1.2)holds and h z(�)u(�) i 2 C([0;1);V ). Sin
e V � [ ZU ℄ with a bounded in
lusionby Proposition 3, it follows that z(�) 2 C([0;1);Z) and u(t) = Gz(t) for allt � 0. Sin
e L = A�1jZ +BG, (1.2) implies that for all t � 0_z(t) = A�1z(t) +Bu(t) = (A�1jZ +BG) z(t) = Lz(t):Sin
e C&D and K are 
onne
ted by (2.7), we 
on
lude that z(�) solves (1.1).The uniqueness is 
he
ked by going a similar reasoning in reverse order.Theorem 1 gives a working interpretation to di�erential equation (1.1).Note that the traje
tory z(�) is 
ontinuous in Z � X, but _z(�) is 
omputed(as a limit of a di�erential quotient) in the norm of X.3 Conservativity and time-
ow inversesFor some system nodes S = [ A&BC&D ℄, equations (1.2) 
an be solved ba
kwardsin time for smooth signals, if the input and output are inter
hanged by ea
hother, too. For bounded B, C, D, and D�1, the inverse dynami
s 
an beobtained easily:( _z(t) = ��A +BD�1C��1 z(t)�BD�1y(t);u(t) = �D�1Cz(t) +D�1y(t):The general 
ase is 
overed by a formal de�nition whi
h unfortunately doesnot give mu
h help for the veri�
ation time-
ow invertibility:11



De�nition 2. Let S = [ A&BC&D ℄ be an operator node with V = D(S). We saythat S is time-
ow invertible, if there exists an operator node S = h [A&B℄ [C&D℄ iwith domain D(S ) = V  � [XY ℄ and the main operator A , su
h that(i) both �(A) \ C+ 6= ; and �(A ) \ C+ 6= ;,(ii) � 1 0C&D� : V ! V  is a bounded bije
tion, and(iii) we have on all of V  S = ��A�1 �B0 I � � 1 0C&D��1 : (3.1)When these 
onditions hold for S and S , we say that S is the time-
owinverse of S.A boundary 
ontrol node � = (L;G;K) is time-
ow invertible, if theoperator node S obtained in Theorem 1 is time-
ow invertible.For a deeper treatment of time-
ow invertibility, see [19, 21℄. WheneverS = [ A&BC&D ℄ has a time-
ow inverse, we have [ 1 0C&D ℄�1 = � 1 0[C&D℄ �. It followsfrom this that (S ) = S. To understand the underlying symmetry inthings, 
onsider the following two propositions. From now on, Sd = h [A&B℄d[C&D℄d idenotes the dual node of S, see [13, Proposition 2.3℄ for details.Proposition 5. Let S be a system node. Then S is 
onservative if and onlyif it is time-
ow invertible and Sd = S .Proof. Assume Sd = S . Then by De�nition 2 we have V d = V = [ I 0C&D ℄Vand (3.1) implies�[A&B℄d[C&D℄d� � I 0C&D� = ��A�1 �B0 I � on V: (3.2)Now [13, Lemma 3.2℄ implies that S is energy preserving. Furthermore,Sd = S , (Sd)d = (S )d and with some good faith3 (S )d = (Sd) , too.Thus (Sd)d = (Sd) and by dualizing the above argument, also Sd is energypreserving. The 
onservativity of S follows.Conversely, let S be 
onservative. Then (3.2) and its dual version give� I 0[C&D℄d� � I 0C&D� = �I 00 I� on V and� I 0C&D� � I 0[C&D℄d� = �I 00 I� on V d:Hen
e [ I 0C&D ℄ : V ! V d is a bounded bije
tion from V onto V d. Identity(3.2) implies dire
tly Sd = S , where the operator S is de�ned by (3.1)3...or by a rather long 
omputation... 12



on V d. But now S is a system node with D(S ) = V d, sin
e Sd is asystem node. In parti
ular, the main operator of S satis�es A = A�, and
ertainly �(A�)\ C + = �(A)\ C + 6= ;, where �(A) denotes the 
onjugate setof �(A). We 
on
lude that S is time-
ow invertible by De�nition 2, and itstime 
ow inverse satis�es S = Sd.Let us give another easy pie
e:Proposition 6. An energy preserving system node S is 
onservative if andonly if it is time-
ow invertible.Proof. Conservativity implies time-
ow invertibility, by Proposition 5. Forthe 
onverse dire
tion, assume that S is both energy preserving and time-
ow invertible with the operator node S given by (3.1). The time-
owinvertibility implies that [ 1 0C&D ℄V = V . Now identity (3.1) givesS � 1 0C&D� = ��A�1 �B0 I � on all of V:By [13, Lemma 3.2℄, the energy-preserving property implies [ 1 0C&D ℄V � V dand Sd � I 0C&D� = ��A�1 �B0 I � on all of V:We 
on
lude that V  � V d, S = SdjV and A = AdjX 1 . It remains toshow that V d = V .Sin
e both Ad and A generate a C0-semigroup on X, it follows thatXd1 = X 1 , A = Ad and Xd�1 = X �1. Moreover, S = SdjV implies[A&B℄ = [A��1 C�℄jV , and hen
e [A��1 C�℄ : [XY ℄ ! Xd�1 is a boundedextension of [A&B℄ . Sin
e V  is dense in [XY ℄ (see [13, equation (2.2)℄),this is the only possible bounded extension on these spa
es. We 
on
ludethat [A �1 C ℄ = [A��1 C�℄ on all of [XY ℄, and V = V  follows.We give in Theorem 3 yet another 
hara
terisation for tory systems. Themotivation for this result is the following: for boundary 
ontrol nodes � =(L;G;K) asso
iated to dynami
s (1.1), the time-
ow inverse is very easy toguess. Indeed, as will be seen in Theorem 6, it is � = (�L;K;G) wheneversu
h � satis�es the axioms (a) { (d) of De�nition 1. On the other hand,
omputing the dual system �d is quite diÆ
ult 4. The following proposition
ontains the tri
k involved.Proposition 7. Assume S = [ A&BC&D ℄ is a time-
ow invertible system node.Let A : X 1 ! X be the main operator and C the output operator of thetime-
ow inverse S . Assume that the dual 
ross-term equation holdsC&D � IB�� = 0 on Xd1 ;4Conversely, the adjoint node Sd is almost trivial to obtain for an operator node S, butthe time-
ow inverse S is given by the rather diÆ
ult formula (3.1) in De�nition 2.13



and A� = A (with equal domains). ThenA�1 + A� +BB� = 0 on Xd1 and C = B� on Xd1 :Proof. Be
ause A� = A , we have X 1 = Xd1 . Hen
e [ x0 ℄ 2 V for allx 2 Xd1 . Be
ause [ 1 0C&D ℄ : V ! V  is a bounded bije
tion (by the existen
eof the time-
ow inverse), there exists for any x 2 Xd1 a unique ve
tor [ x1u1 ℄ 2 Vsu
h that �x0� = � 1 0C&D� �x1u1� :By using the assumed dual 
ross-term equation, we see that in fa
t x1 = xand u1 = B�x. Hen
e, for any x 2 Xd1�A xC x� = S �x0� = ��A�1 �B0 I � � 1 0C&D��1 �x0�= ��A�1 �B0 I � � xB�x� = ��A�1x� BB�xB�x � :But A x = A�x by assumption, and the 
laim follows.We 
an now 
hara
terise tory systems without referring to the dual systemat all:Theorem 3. Assume that S = [ A&BC&D ℄ is a time-
ow invertible operator node.By A : X 1 ! X denote the main operator of the time-
ow inverse S .Then S is tory5 if and only if(i) Ker B = f0g,(ii) A + A��1 = �C�C on X1,(iii) C&D � IB�� = 0 on Xd1 , and(iv) We have A = A� with equal domains, i.e. X 1 = Xd1 .Proof. Conditions (i) { (iii) are ne
essary for toryness, again by [13, Theorem4.4℄. By Proposition 5, tory systems satisfy Sd = S , and (iv) follows, too.Assume that 
onditions (i) { (iv) hold. Then the dual Liapunov equationis given by Proposition 7, and S is tory by [13, Theorem 4.4℄ provided we
an show that Ker C� = f0g. Following [13, Proposition 2.4℄, de
omposethe spa
e Y orthogonally Y = � Y1Y0 � where Y1 = Ran C and Y0 = Y ?1 . Theindu
ed de
omposition of S is then given byS = � [A&B℄r[C&D℄r0 D01 � : V ! h XY1Y0 i with Sr := h [A&B℄r[C&D℄r i ;here Sr is the redu
ed operator node with output spa
e Y1, the domainssatisfy V = D(S) = D(Sr), and D01 2 L(U ;Y0) is nonzero if and only if Y0 is5I.e. a 
onservative system node with Ker B = f0g and Ker C� = f0g.14



nontrivial. Sin
e B = Br, C = [ Cr0 ℄, and C� = �C�r 0�, we 
on
lude (usingProposition 7) that A + A��1 = �C�rCr on X1, together with A�1 + A� =�BrB�r and [C&D℄r � IB�r � = 0 on Xd1 .It follows from [13, Theorem 4.4℄ that Sr is a tory node, and it is thus time-
ow invertible with S r = Sdr = h [A&B℄dr[C&D℄dr i; see Proposition 5. In parti
ular,� I 0[C&D℄r � : V ! V dr = D(Sdr ) is a bije
tion with the inverse h I 0[C&D℄dr i, and[ I 0C&D ℄ = h I 0[C&D℄r0 D01 i. Be
ause also S is time-
ow invertible, we getV = h I 0[C&D℄r0 D01 iV = " [ I 00 I ℄[ 0 D01 ℄ � I 0[C&D℄r ��1#V dr = � [ I 00 I ℄D01 [C&D℄dr�V dr (3.3)and � I 0C&D��1 = � I 0 0[C&D℄dr 0� ����V :But now we obtain S = h [A&B℄dr 0[C&D℄dr 0 i on all of V by (3.1). Be
ause bothSd and S are operator nodes, it follows that V  = h V drY0 i whi
h 
ontradi
ts(3.3) unless D01 = 0. This 
ompletes the proof.4 Constru
tion of the time-
ow inverseIn this se
tion, we show that the time-
ow invertibility of an operator nodeS = [ A&BC&D ℄ (in the sense of De�nition 2) almost follows if it is known thatS is of boundary 
ontrol type (see De�nition 1). Indeed, only one extraassumption is needed on the \time-
ow-inverted" main operator A .In this se
tion, we make it a standing assumption that S is an operatornode of boundary 
ontrol type. We further assume that S and � = (L;G;K)are related to ea
h other as in Theorems 1 and 2. In parti
ular, the operatorsL, G and K are given by Proposition 4. The spa
es Z and V = D(S) aredes
ribed (unambiguously) by (2.5), (2.9), and 
laim (iii) of Proposition 3.Our approa
h leads { step by step { to the 
onstru
tion of the time-
owinverse S in Theorem 4.Let us �rst de�ne a Bana
h spa
e V whi
h is �nally going to be thedomain of S in spe. Motivated by De�nition 2, we set plainlyV := � I 0C&D�V � �XY � : (4.1)A Bana
h spa
e norm for V  is de�ned byk [ xy ℄ kV := k [ xu ℄ kV where [ xy ℄ = [ I 0C&D ℄ [ xu ℄ : (4.2)With this 
hoi
e of norm, the operator [ I 0C&D ℄ : V ! V  be
omes an isometrywith an isometri
 inverse. 15



Not surprisingly, in the boundary 
ontrol 
ontext we have the relationsV = � IG�Z and V = � IK�Z (4.3)Hen
e G and K are expe
ted to play dual roles with respe
t to the time-
owinversion, and (4.1) 
an be repla
ed by V := [ IK ℄Z. Indeed, the latterequality in (4.3) follows from the former by using the identity� I 0C&D� �IG� = � IK� on all of Z: (4.4)It is also instru
tive to note that (under the assumptions of Proposition 4)� IG�Ker K = Ker C&D and � IG�X1 = �X1f0g� :Note that in the boundary 
ontrol 
ase BU \X = f0g, the upper 
omponentof [ xu ℄ 2 V = [ IG ℄Z determines the lower. Conversely, the lower 
omponentdetermines the upper only modulo the spa
e X1 = Ker G.The symmetry in equalities (4.3) be
omes even more pronoun
ed on
e wedis
over that the solution spa
e Z remains un
hanged under the time-
owinversion; see (2.9) for the motivation of (4.5):Proposition 8. Make the same assumptions and use the same notations asin Proposition 4. De�ne V  by (4.1). Then Z = Z whereZ := fx 2 X : 9y 2 Y su
h that [ xy ℄ 2 V g : (4.5)Proof. By the de�nition of V , we have Z � Z. Conversely, if x 2 Z, then[ xGx ℄ 2 V and [ xKx ℄ = [ I 0C&D ℄ [ xGx ℄ 2 V by (4.4). Hen
e x 2 Z .Also the spa
e V is seen to have some of its expe
ted properties:Proposition 9. Assume that S = [ A&BC&D ℄ is an operator node of boundary
ontrol type with Ran C&D = Y . De�ne Z by (2.9) and V by (4.1). Thenthe following holds:(i) For all y 2 Y there exists x 2 Z(= Z ) su
h that [ xy ℄ 2 V .(ii) The in
lusion V � [ ZY ℄ is bounded.(iii) Ker K = fx 2 X : [ x0 ℄ 2 V g.Proof. Denote V = D(S) and �x y 2 Y . Then for any x 2 Z the equality�xy� = � I 0C&D� �x1u � for �x1u � 2 Vis equivalent to x = x1 and y = C&D �xu� for �xu� 2 V:16



Be
ause Ran C&D = Y , then there exists su
h a [ xu ℄ 2 V with x 2 Z. Toprove 
laim (ii), we �rst estimate the norm of [ xy ℄ = [ I 0C&D ℄ [ xu ℄:k [ xy ℄ k[XY ℄ � (kxkX + kykY ) � �kxkX + kC&DkL(V ;Y )k [ xu ℄ kV �� max �1; kC&DkL(V ;Y )� � (kxkX + kxkX + kukU + kA�1x +BukX)� 2max �1; kC&DkL(V ;Y )� � (kxkX + kukU + kA�1x +BukX)� 6max �1; kC&DkL(V ;Y )� � k [ xu ℄ kV :Now, the boundedness of the in
lusion V � [XY ℄ follows from (4.2). Byde�nition, we have V � [ ZY ℄. As in the beginning of the proof of Proposition3, we see that also the in
lusion V  � [ ZY ℄ is bounded and (ii) follows.To verify the last 
laim (iii), re
all that V = [ 1 0C&D ℄V and V = [ IG ℄Z.We have x 2 X with [ x0 ℄ 2 V if and only if [ x0 ℄ = [ 1 0C&D ℄ [ zGz ℄ for some z 2 Zif and only if for some z 2 Zx = z and 0 = C&D �IG� z = Kzif and only if x 2 Ker K.To get ahead, we must assume that Ker K is dense6 in X.Proposition 10. Assume that S = [ A&BC&D ℄ is an operator node of boundary
ontrol type with Ran C&D = Y . De�ne V  by (4.1), and assume thatKer K is dense in X. Then V is dense in [XY ℄.Proof. Let [ xy ℄ 2 [XY ℄ be arbitrary. As Ran C&D = Y , there exists [ zv ℄ 2V = D(S) su
h that y = C&D [ zv ℄. Be
ause Ker K is dense in X, there isa sequen
e fxjgj�0 � Ker K su
h that xj ! x � z 2 X in the norm of X.Now, C&D � z + xjv +Gxj� = C&D �zv�+ C&D �IG�xj = y +Kxj = y:Using this givesV  3 � I 0C&D� � z + xjv +Gxj� = �z + xjy �! �xy�in the norm of [XY ℄ sin
e z + xj ! x in the norm of X.Under the assumptions of Proposition 10, the linear mappingS := ��A�1 �B0 I � � 1 0C&D��1 : V  � �XY �! �XU � (4.6)is densely de�ned. We next establish that S is an operator node, so asto verify that S is time-
ow invertible in the sense of De�nition 2. For thispurpose, we need to de�ne some new obje
ts:6If S was already known to be time-
ow invertible, this would be a ne
essary 
onditionfor S to be of boundary 
ontrol type; see (4.3) together with Proposition 8. So, we donot regret making this assumption at all. 17



De�nition 3. Assume that S = [ A&BC&D ℄ is an operator node of boundary
ontrol type with Ran C&D = Y , and let the boundary 
ontrol node � =(L;G;K) be given by Theorem 2. Assume that Ker K is dense in X.(i) The mapping A : Ker K ! X is de�ned by A := �LjKer K.(ii) The mapping C : Ker K ! Y is de�ned by C := GjKer K.De�nition 4. Make the same assumptions and use the same notations asin De�nition 3. Assume, in addition, that �(A ) \ C + 6= ; with D(A ) =Ker K.(i) Denote by X �1 the 
ompletion7 of X in norm kxkXd�1 := k(��A )�1xkfor � 2 �(A ) \ C + .(ii) De�ne B : Y ! X �1 by setting for all x 2 ZB Kx := �Lx� A �1x; (4.7)where A �1 2 L(X;X �1) is the Yosida extension of A .The linear mapping B in part (ii) of De�nition 4 is well-de�ned. Notethat Lx 2 X � X �1 in (4.7) be
ause L 2 L(Z;X) by Proposition 4. Hen
ethe right hand side of (4.7) de�nes a unique element ofX �1. The B mappingis also uniquely de�ned: if y = Kx1 = Kx2, then x1� x2 2 Ker K; but both�L and A �1 are extensions of A de�ned on Ker K. The operator B isde�ned on all of Y , sin
e Ran K = Ran C&D = Y by Proposition 4.Proposition 11. Assume that S = [ A&BC&D ℄ is an operator node of boundary
ontrol type with Ran C&D = Y . De�ne V by (4.1) and the operators A ,B by De�nition 3. Assume that Ker K is dense in X and �(A )\C + 6= ;.Then the following holds:(i) B 2 L(Y ;X �1) and Ker B = f0g.(ii) The spa
e V satis�esV = �[ xy ℄ 2 [XY ℄ : A �1x+B y 2 X	 (4.8)and the norm (4.2) for V is equivalent tok [ xy ℄ k2V := kxk2X + kyk2Y + kA �1x+B yk2X : (4.9)(iii) The operator [A&B℄ := �A �1 B � jV is 
losed from [XY ℄ to X,with domain D([A&B℄ ) = V  .7See the dis
ussion following Proposition 1.18



Proof. We show that B yj ! 0 in X �1 for all sequen
es yj ! 0 in Y . AsK 2 L(Z;Y ) and Ran K = Y by 
laim (ii) Proposition 4, there exists asequen
e fxjgj�0 � Z 	 Ker K (orthogonality taken in the sense of (2.2))and yj = Kxj. Be
ause Kj (Z 	 Ker K) has a bounded inverse Y ! Z 	Ker K, it follows that xj ! 0 in Z and in the weaker norm of X, too. AsA �1 2 L(X;X �1), it follows that A �1xj ! 0 in X �1. As L 2 L(Z;X),it follows that Lxj ! 0 in X and hen
e in X �1, too. By equation (4.7),B Kxj = B yj ! 0 in X �1.We prove next that Ker B = f0g. Assume that B y = 0 for somey = Kx, x 2 Z. Then A �1x = �Lx 2 X by (4.7). It follows that x 2D(A ) = Ker K and y = Kx = 0. Thus 
laim (i) holds.Claim (ii) is treated next. Let [ xy ℄ 2 V  be arbitrary, and note that x 2 Zand y = Kx by (4.3). Rewriting (4.7) we get A �1x + B y = �Lx 2 X,sin
e L 2 L(Z;X). To prove the 
onverse in
lusion in (4.8), assume that[ xy ℄ 2 [XY ℄ satis�es A �1x + B y 2 X. As Ran K = Y by Proposition 4, wehave y = Kz for some z 2 Z. NowX 3 A �1x +B y = �A �1 +B K� z + A �1(x� z) (4.10)= �Lz + A �1(x� z);where we have used (4.7) again. Be
ause �Lz 2 X, equation (4.10) impliesA �1(x � z) 2 X, and thus x � z 2 D(A ) = Ker K. We 
on
lude thaty = Kz = Kx and so [ xy ℄ = [ xKx ℄ 2 [ IK ℄Z = V follows.It is 
lear that V  with norm (4.9) is a Bana
h spa
e, and V  � [XY ℄with a bounded (even dense) in
lusion. Re
all that V  with norm (4.2) is aBana
h spa
e, and also then the in
lusion V  � [XY ℄ is bounded, by 
laim(ii) of Proposition 9. Hen
e, these two di�erently normed versions of V are 
ompatible Bana
h spa
es (in the sense of interpolation theory) and theirnorms are a

ordingly equivalent.To prove 
laim (iii), note that �A �1 B � 2 L([XY ℄ ;X �1) by 
laim (i)and the fa
t that A �1 2 L(X;X �1). Now, [A&B℄ is 
losed, as it is therestri
tion of bounded �A �1 B � to its natural domain V , when the rangeis restri
ted to a subset of X.Now 
omes the main result of this se
tion;Theorem 4. Assume that S = [ A&BC&D ℄ is an operator node of boundary 
ontroltype with Ran C&D = Y , and let the boundary 
ontrol node � = (L;G;K)be given by Theorem 2. De�ne V  := [ IK ℄Z and S by (4.6). Assume that�LjKer K is a densely de�ned operator on X, with �(�LjKer K)\ C + 6= ;.De�ne the operators A , B , and C by De�nition 3. Then the follow-ing holds:(i) S : D(S ) � [XY ℄! [XU ℄ is an operator node with D(S ) = V .The main operator of S is A with domain D(A ) = Ker K. The op-erator B is the input operator of S , and the 
ombined feedthrough/output19



operator [C&D℄ of S satis�es[C&D℄ �xy� = Gx for all �xy� 2 V  : (4.11)(ii) The operator node S is time-
ow invertible, and its time-
ow inverseequals S .Proof. The operator B lies in L(Y ;X �1) by 
laim (i) of Proposition 11.The operator [A&B℄ := �A �1 B � jV is 
losed and densely de�ned withD([A&B℄ ) = V  by Propositions 10 and 11. De�ne [C&D℄ : V  ! U by(4.11), and note that it is well de�ned by Proposition 9. Let us now estimatek[C&D℄ [ xy ℄ kU � kGkL(Z;U)k [ xy ℄ k[ZY ℄ � kGkL(Z;U) � Ck [ xy ℄ kV ;sin
e the in
lusion V  � [ ZY ℄ is bounded by 
onstant C, see Proposition 9.We 
on
lude that S 0 := h [A&B℄ [C&D℄ i is an operator node with D(S 0) = V .We pro
eed to show that S = S 0. For all [ xKx ℄ 2 [ IK ℄Z = V (in otherwords, for all x 2 Z) we have�[A&B℄ [C&D℄ � � xKx� = ��A �1 +B K�xGx � = �� (A�1 +BG)xGx �= ��A�1 �B0 I � � xGx� = ��A�1 �B0 I � � 1 0C&D��1 � xKx� ;where the se
ond equality follows from (4.7). By De�nition 2, S = h [A&B℄ [C&D℄ i,and the proof is 
omplete.Corollary 1. Make the same assumptions as in Theorem 4. Then thetime-
ow inverse S is an operator node of boundary 
ontrol type satisfyingRan [C&D℄ = U .Proof. Re
all that Ker B = f0g by 
laim (i) of Proposition 11. It followsdire
tly from (4.11) that Ran [C&D℄ = U , as Ran G = U by 
laim (i) ofProposition 4.If ~z 2 B Y \X, ~z 6= 0, then ~z = B ~y for some ~y 6= 0. Suppose [ xy ℄ 2 V  .Then we have both A �1x+B y 2 X and A �1x+B (y+ ~y) 2 X, implyingthat both [ xy ℄ 2 V  and [ xy+~y ℄ 2 V . It now follows that the spa
e V  
annot be of graph form [ IK ℄Z for any linear mapping K : Z ! U . This
ontradi
tion proves that B Y \X = f0g.
20



5 Duals of 
onservative boundary 
ontrolsystemsIn 
ontrast to the previous se
tion, the operators A , �aB , and C areno longer de�ned a priori by De�nition 3. Instead, now they denote themain, input, and output operators of the time-
ow inverse S = h [A&B℄ [C&D℄ iof S; existen
e of S is assumed a priori. The next proposition is a partial
onverse result to Theorem 4, and it will be needed in the proof of Theorem5 and Lemma 2.Proposition 12. Assume that S = [ A&BC&D ℄ is a time-
ow invertible operatornode of boundary 
ontrol type, with Ran C&D = Y . Let the asso
iatedboundary 
ontrol node � = (L;G;K) be given by Theorem 2. Denote by A the main operator and by C the output operator of time-
ow inverse S .Then D(A ) = Ker K, A = �LjKer K, and C = GjKer K.Proof. By the standard theory of operator nodes, we have D(S ) = V and D(A ) = fx 2 X : [ x0 ℄ 2 V g where V is de�ned by (4.8). By thetime-
ow invertibility of S, we have [ I 0C&D ℄V = V  , and the operator [ I 0C&D ℄is a bounded bije
tion from V := D(S) onto V  . Re
alling the reasoningleading to (4.3), we have V = [ IG ℄Z and V  = [ IK ℄Z. Now [ x0 ℄ 2 V if andonly if x 2 Z and Kx = 0 if and only if x 2 Ker K. Hen
e D(A ) = Ker K.To 
omplete the proof, we 
ompute by using (3.1)�A xC x� = S �x0� = ��A�1 �B0 I � � 1 0C&D��1 �x0� (5.1)= ��A�1 �B0 I � � xGx� = ��LxGx �for any x 2 D(A ), where we have on
e again used the fa
t that [ x0 ℄ =[ xKx ℄ 2 V  implying [ I 0C&D ℄�1 [ xKx ℄ = [ xGx ℄ 2 V .Dual systems of tory boundary 
ontrol systems are boundary 
ontrol sys-tems themselves:Theorem 5. Assume that S = [ A&BC&D ℄ is a tory operator node of boundary
ontrol type, with Ran C&D = Y . Let the asso
iated boundary 
ontrol node� = (L;G;K) be given by Theorem 2. By Sd denote the dual node of S,with main operator A� 2 L(Xd1 ;X). Then the dual system Sd is of boundary
ontrol type, and its solution spa
e satis�es Zd = Z.Proof. By Proposition 5, S is time-
ow invertible, S = Sd, A = A�, andD(A ) = Xd1 ; here A� is a generator of a C0-semigroup of 
ontra
tions onX. By Proposition 12, we have D(A ) = Ker K and �LjKer K = A .Be
ause now �LjKer K = A�, we 
on
lude that Ker K = Xd1 is dense in Xand �(�LjKer K)\C + 6= ;. Now the 
laim follows from Corollary 1 be
auseall of the assumptions of Theorem 4 are satis�ed.21



6 Time-
ow invertibility and 
onservativityof boundary 
ontrol nodesWe are now ready to apply all the previous results to 
onservative boundary
ontrol systems. First 
omes an adaptation of Theorem 3 to the boundary
ontrol 
ontext.Lemma 2. Assume S = [ A&BC&D ℄ is an operator node of boundary 
ontroltype with Ran C&D = Y , and let the asso
iated boundary 
ontrol node � =(L;G;K) be given by Theorem 2. Then S is tory if and only if(i) the primal Liapunov equation A+ A��1 = �C�C holds on X1,(ii) we have Gx = B�x for all x 2 Xd1 := D(A�), and(iii) the identity �LjKer K = A� holds (with equal domains).Proof. We start from the more interesting \suÆ
ien
y" part. It is 
lear that
ondition (i) of Theorem 3 always holds for boundary 
ontrol systems. Con-ditions (ii) and (iv) of Theorem 3 are same as 
ondition (i) and (iii) of thislemma. By 
ondition (iii), we have Xd1 = Ker K � Z. By 
ondition (ii) wehave [ IB� ℄ x = [ IG ℄ x � [ IG ℄Z = V for all x 2 Xd1 , and hen
e C&D [ IB� ℄ x 2 Yis well de�ned; see 
laim (iii) of Proposition 3. Now, by the de�nition of op-erator K (see 
laim (ii) of Proposition 4), we obtain C&D [ IB� ℄x = Kx = 0for all x 2 Xd1 . This is 
ondition (iii) of Theorem 3, namely the dual 
ross-term equation. Time-
ow invertibility of S follows from 
ondition (iii) andTheorem 4 sin
e �LjKer K = A� and �(A) \ C + 6= ;.To prove the \ne
essity" part, assume that S is tory. Su
h S is time-
owinvertible by Proposition 5, S = Sd, and all the 
onditions of Theorem 3hold; in
luding 
onditions (i) and (iii) of this lemma hold, too.By [13, Theorem 4.4℄, the dual Liapunov equation holds in the form�A�1 B� � IB��x = �A�x 2 X for all x 2 Xd1 = Ker K;and hen
e [ IB� ℄ Ker K � V = D(S). But be
ause S satis�es the 
onditionsProposition 4, we have V = [ IG ℄Z. Now the in
lusion [ IB� ℄ Ker K � [ IG ℄Zimplies 
ondition (ii) of this lemma.We have a
tually proved above that 
ondition (ii) of Lemma 2 
an berepla
ed by the in
lusion [ IB� ℄ Ker K � V .It is now time to turn attention to boundary 
ontrol nodes � = (L;G;K).We show �rst that doubly boundary 
ontrol nodes 
an, indeed, be time-
owinverted as expe
tedly.Theorem 6. Let � = (L;G;K) be a doubly boundary 
ontrol node, andassume that S = [ A&BC&D ℄ is the asso
iated operator node given by Theorem 1.Then S is time-
ow invertible, Ran C&D = Y , and the time-
ow inverseS is of boundary 
ontrol type. Moreover, S is the operator node asso
iatedto � := (�L;K;G) in the sense of Theorem 222



In other words, it is right to 
all � the time-
ow inverse of �.Proof. Be
ause � = (�L;K;G) is a boundary 
ontrol node, Ker K is densein X and Y = Ran K. Sin
e � is a boundary 
ontrol node, it follows nowthat Ran C&D = Y , see Proposition 4. Applying Proposition 1 to � showsthat �(�LjKer K) \ C + 6= ;. Thus S is time-
ow invertible by Theorem 4.By Corollary 1, S is of boundary 
ontrol type, and so it 
orrespondsto some boundary 
ontrol node �0 := (L0; G0; K 0). Clearly �0 has a 
ommonsolution spa
e Z with S and S , see Proposition 8. Moreover, V = D(S )satis�es (4.3), and hen
e G0 = K. By using the symmetry (S ) = S, alsoG = K 0 follows.Denoting by A , A �1 the main operator of S and its Yosida extension,we have A �1jZ + B K = �L on all of Z; see Theorem 4 and equation(4.7). Applying 
laim (iii) of Proposition 4 to S , we 
on
lude that L0 =A �1jZ +B K. Hen
e L0 = �L, and the proof is 
omplete.Now 
ome the main results of this paper.Theorem 7. Let � = (L;G;K) be a doubly boundary 
ontrol node, andassume that S = [ A&BC&D ℄ is the asso
iated operator node given in Theorem 1.Then S is 
onservative (hen
e, tory) if and only if(i) 2Re hx; LxiX = �kKxk2Y for all x 2 Ker G,(ii) hz; LxiX + hLz; xiX = hGz;GxiU for all z 2 Z and x 2 Ker K.Proof. Sin
e � is is a doubly boundary 
ontrol node, the time-
ow inverseS exists by Theorem 6, and it is of boundary 
ontrol type. For the usualspa
es and operators involving S and S , we have the identities X1 = Ker G,A = LjKer G, C = KjKer G, X 1 = Ker K, A = �LjKer K, and C =GjKer K. Then (i) is same as 2Re hx;AxiX = �kCxk2Y for all x 2 X1, whi
his (by polarisation) equivalent to 
ondition (i) of Lemma 2. Condition (ii) ofLemma 2 holds if and only if�hz; A�xiX + hLz; xiX = hGz;GxiU for all z 2 Z and x 2 D(A�); (6.1)sin
e Ran G = U and BGz = �A�1z + Lz. This together with 
ondition(iii) of Lemma 2 imply 
ondition (ii).Be
ause X1 is dense in X, 
ondition (iii) of Lemma 2 holds if and only ifX 1 = D(A�) and hz; A xiX = hz; A�xiX for all z 2 X1; x 2 D(A�) if andonly ifhz; LxiX + hLz; xiX = 0 for all z 2 Ker G and x 2 Ker K: (6.2)Clearly (ii) implies (6.2), and hen
e it implies 
ondition (iii) of Lemma 2,too. Finally note that (ii) together with 
ondition (iii) of Lemma 2 imply(6.1) and thus 
ondition (ii) of Lemma 2.23



Note that 
ondition (ii) of Theorem 7 implies 2Re hx;�LxiX = �kGxk2Ufor all x 2 Ker G, whi
h is equivalent to the (primal) Liapunov equation ofthe time-
ow inverse S .There is another variant of Theorem 7 whose formulation is more sym-metri
 but slightly weaker.Theorem 8. Let � = (L;G;K) be a doubly boundary 
ontrol node, andassume that S = [ A&BC&D ℄ is the asso
iated operator node given in Theorem1. Then S is 
onservative (hen
e, tory) if and only if the Green{Lagrangeidentity 2Re hz0; Lz0iX = kGz0k2U � kKz0k2Y (6.3)holds for all z0 2 Z.Proof. By polarisation identity, (6.3) implies for all z1; z2 2 Z the identityhz1; Lz2iX + hLz1; z2iX = hGz1; Gz2iU � hKz1; Kz2iU . It is trivial that boththe 
onditions (i) and (ii) of Theorem 7 follow from this.Conversely, assume that S is 
onservative. Let z0 2 Z be arbitrary andu 2 C2([0;1);U) su
h that Gz0 = u(0). By Lemma 1, there exists a solutionz(�) 2 C([0;1);Z) \ C1([0;1);X) of (1.1) that satis�es z(0) = z0 andddtkz(t)k2X = ku(t)k2U � ky(t)k2Y . Di�erentiating and using (1.1) giveshz(t); Lz(t)iX + hLz(t); z(t)iX = hGz(t); Gz(t)iU � hKz(t); Kz(t)iYfor all t > 0. Sin
e all the operators L, G and K are bounded from spa
e Zand z(�) 2 C([0;1);Z), we may take the limit as t! 0+. Now (6.3) followsbe
ause z0 2 Z was arbitrary.7 Five examplesWe review the �ve easiest, well-known PDE examples of 
onservative bound-ary 
ontrol systems, and 
he
k how our te
hniques work for them.7.1 Delay lineWe 
onsider the delay line system S on state spa
e X = L2(0; 1). The Lax-Phillips group of the system is the unitary right (forward) shift on L2(R), andhen
e S is a 
onservative system with a nilpotent semigroup. The system Sis given in PDE form as follows:8><>: zt(t; �) = �z�(t; �) for all t � 0 and � 2 (0; 1);z(t; 0) = u(t) and z(t; 1) = y(t) for all t � 0;u(0; �) = u0(�) for all � 2 (0; 1);The system theory of su
h equations has been treated e.g. in [2℄, [11℄ in amore general setting. The input (output) end of the delay line is at � = 0(� = 1, respe
tively). Hen
e L = � dd� , Gz = z(0) and Kz = z(1), and the24



solution spa
e is Z = H1(0; 1). It is easy to 
he
k that � := (L;G;K) is adoubly boundary 
ontrol node.Let us 
he
k that � satis�es the 
onditions of Theorem 7. Verifying (i)amounts to 
omputing the integral2Re 1Z0 x(�) (�x0(�)) d� = � 1Z0 dd� jx(�)j2 d� = �jx(1)j2sin
e x(0) = 0 in Ker G. To prove (ii), integrate partially1Z0 z(�) (�x0(�)) d� + 1Z0 z0(�) (�x(�)) d�= �z(1)x(1) + z(0)x(0) = z(0)x(0)sin
e now x(1) = 0 in Ker K.7.2 Vibrating stringConsider the system S des
ribed by the wave equation on interval [0; 1℄ withendpoint 
ontrol and observation:8>>>>>><>>>>>>:
ztt(t; �) = z��(t; �) for � 2 (0; 1) and t � 0;�zt(t; 1)� z�(t; 1) = p2u(t) for t � 0;p2 y(t) = �zt(t; 1) + z�(t; 1) for t � 0;z(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.1)Equations (7.1) 
an be 
ast into form of (1.1) by using the ruleztt = z�� =̂ ddt �zw� = � 0 �1� d2d�2 0 � �zw� :Hen
eforth let L := h 0 �1� d2d�2 0 i : Z ! X, together withZ := �H1f0g(0; 1) \H2(0; 1)��H1f0g(0; 1); X := H1f0g(0; 1)� L2(0; 1)where H1f0g(0; 1) := �z 2 H1f0g(0; 1) : z(0) = 0	 :It follows dire
tly that Z = fz 2 X : Lz 2 Xg and X = LZ. The Hilbertspa
es X and Z are equipped with their dire
t sum inner produ
ts for nowbut another norm for X will be given in Proposition 7.2. Then Z � X witha bounded in
lusion and L 2 L(Z;X).The (restri
tion of the distribution) derivative of z 2 H1(0; 1) is denotedby z0 2 L2(0; 1)8. The operators G : Z ! C and K : Z ! C are de�ned byG [ z0w0 ℄ := 1p2 (w0(1)� z00(1)) and K [ z0w0 ℄ := 1p2 (w0(1) + z00(1)) :8But the time derivative is always denoted by subindex t.25



Clearly Ker G = f[ z0w0 ℄ 2 Z : w0(1) = z00(1)g. Sin
e point evaluations (alsoon the boundary point 1) are 
ontinuous in H1(0; 1), it follows that G;K 2L(Z; C ). By approximating the 
omponents of z0 2 X by C2-fun
tions, itfollows that Ker G is dense in X.It is easy to see that Ker L = �� 
�0 � : 
 2 C 	 where �(�) = � for � 2(0; 1). We show next that the 
onditions (
) and (d) of De�nition 1 holdfor � = 0. Trivially Ker L \ Ker G = f0g. Also LKer G = X, as for anyx 2 X there exists [ z0w0 ℄ 2 Z so that L � z0+
�w0 � = x for all 
 2 C . Choosing
 = w0(1)� z00(1), we see that � z0+
�w0 � 2 Ker G. We have now:Proposition 13. Let the operators L, G, K and spa
es Z, X be de�ned asearlier in this subse
tion.(i) The triple � = (L;G;K) is a boundary 
ontrol node in the sense ofDe�nition 1. The domain spa
e V = [ IG ℄Z for the asso
iated operatornode is given byV = �� z0w01p2(w0(1)�z00(1)) � : z0 2 H1f0g(0; 1) \H2(0; 1) and w0 2 H1f0g(0; 1)� :(ii) For any u 2 C2([0;1)) and [ z0 w0 u(0) ℄T 2 V , there exists a unique
lassi
al solutionz(�) 2 C([0;1);H2(0; 1))\C1([0;1);H1f0g(0; 1))\C2([0;1);L2(0;1))of (7.1) satisfying the initial 
onditions z(0) = z0 and zt(0) = w0.The requirement [ z0 w0 u(0) ℄T 2 V is known as a 
ompatibility 
onditionin PDE literature.Proof. Only (ii) has not been proved yet. If we show that LjKer G is adissipative operator (whi
h will be omitted now, as it follows from Proposition13 anyway), then there exists a unique solutionh z(�)�zt(�) i 2 C([0;1);Z) \ C1([0;1);X)for (1.1) by Lemma 1. Then z(�) solves (7.1) (in the sense of distributions),and it has the other required properties, too.Let us treat the energy balan
e questions next. From equations (7.1) wesee that zt(t; 1) = 1p2 (u(t) + y(t)) and z�(t; 1) = 1p2 (u(t)� y(t)). By partialintegration, we get (at least formally) for solutions of (7.1)ddt 1Z0 jz�(t; �)j2 d� = 2Re zt(t; 1)z�(t; 1)� ddt 1Z0 jzt(t; �)j2 d�:26



Thus ddtE(z; t) = ju(t)j2 � jy(t)j2 where the energy fun
tional is de�ned byE(z; t) := 1Z0 �jz�(t; �)j2 + jzt(t; �)j2� d� = kz0(t)k2L2(0;1) + kzt(t)k2L2(0;1):This energy fun
tional is asso
iated to a norm on the state spa
e X, whi
hmakes S an energy preserving system:Proposition 14. The expressionk [ z0w0 ℄ k2X := kz00k2L2(0;1) + kw0k2L2(0;1) (7.2)de�nes a Hilbert spa
e norm for X su
h that E(z; t) = k h z(t)zt(t) i k2X for all allsolutions z(�) of (7.1) satisfying the 
onditions of Proposition 13.Proof. Equation (7.2) de�nes 
learly a norm on X, and we havek [ z0w0 ℄ k2X < kz0k2L2(0;1) + k [ z0w0 ℄ k2X = k [ z0w0 ℄ k2H1f0g(0;1)�L2(0;1):The elementary form of the Poin
ar�e inequality kz0kL2(0;1) � kz00kL2(0;1) iseasy to show for z0 2 H1f0g(0; 1), and it implies the 
onverse inequalityk [ z0w0 ℄ k2H1f0g(0;1)�L2(0;1) � 2k [ z0w0 ℄ k2X : The rest is 
lear from Proposition 13.Proposition 15. Let the operators L, G, K and spa
es Z, X be de�nedas earlier in this subse
tion. Use the energy norm (7.2) for X. Then � =(L;G;K) des
ribes a 
onservative system, asso
iated to wave equation (7.1).Proof. It is a matter of 
hanging a few signs in the earlier 
omputations ofthis subse
tion to verify that � = (�L;K;G) is a boundary 
ontrol node.For an arbitrary [ z0w0 ℄ 2 Ker G, integrate partially to obtain� 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re 
[ z0w0 ℄ ; � w0z000 ��X= hz000 ; w0iL2(0;1) + hz00; w00iL2(0;1) + hw0; z000 iL2(0;1) + hw00; z00iL2(0;1)= 2Re �z00(1)w0(1)� z00(0)w0(0)� = 2jw0(1)j2 = jK [ z0w0 ℄ j2;where the se
ond to last equality follows from w0(0) = 0 (sin
e [ z0w0 ℄ 2 Z),and w0(1) = z00(1) (sin
e [ z0w0 ℄ 2 Ker G). Hen
e 
ondition (i) of Theorem 7follows.To establish 
ondition (ii), let [ z1w1 ℄ 2 Z and [ z2w2 ℄ 2 Ker K. Then w1(0) =w2(0) = 0, z02(1) = �w2(1), and G [ z2w2 ℄ = p2w2(1). By partial integrationand using the boundary 
onditions, we geth[ z1w1 ℄ ; L [ z2w2 ℄iX + hL [ z1w1 ℄ ; [ z2w2 ℄iX= �hz01; w02iL2(0;1) � hz001 ; w2iL2(0;1) � hw01; z02iL2(0;1) � hw001 ; z2iL2(0;1)= z01(1)w2(1) + w1(1)z02(1) = �z01(1)� w1(1)�w2(1) = G [ z1w1 ℄G [ z2w2 ℄ :This 
ompletes the proof. 27



7.3 Telegraph equationA slight generalisation of the vibrating string is given by the telegraph equa-tion for parameter k 2 R:8>>>>>><>>>>>>:
ztt(t; �) = k2z(t; �)� z��(t; �) for � 2 (0; 1) and t � 0;�zt(t; 1)� z�(t; 1) = p2u(t) for t � 0;p2 y(t) = �zt(t; 1) + z�(t; 1) for t � 0;z(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.3)The analysis of this example is analogous to that in Subse
tion 7.2, andonly some di�eren
es are indi
ated. The operator L is this time given byL := h 0 �1k2� d2d�2 0 i. The spa
es Z and X, together with the operators G andK are same as for the vibrating string. With these de�nitions, the triple� = (L;G;K) appears to be a doubly boundary 
ontrol node. If the energynorm is de�ned byk [ z0w0 ℄ k2X := kz00k2L2(0;1) + k2kz0k2L2(0;1) + kw0k2L2(0;1);node � is seen to des
ribe a 
onservative system, by almost same 
omputa-tions as in the proof of Proposition 15.7.4 Re
e
ting mirrorThis example is very mu
h like the vibrating string, and for that reason wedis
uss in detail only the new aspe
ts that emerge. We shall review the more
ompli
ated stru
ture of Sobolev spa
es and the ellipti
 regularity theory. Amore general version has been treated in terms of \thin air" systems in [24,Se
tion 7℄; a 
onstru
tion that bears some resemblan
e to feedba
k te
hniquesappearing in [23℄. Our approa
h resembles the te
hniques of [9℄.Suppose 
 � Rn , n � 2, is an open bounded set with C2-boundary �
.We assume that �
 is the union of two sets �0 and �1 with �0 \ �1 = ; 9.System S is des
ribed by the exterior problem8>>>>>><>>>>>>:
ztt(t; �) = �z(t; �) for � 2 
 and t � 0;�zt(t; �)� �z�� (t; �) = p2 u(t; �) for � 2 �1 and t � 0;p2 y(t; �) = �zt(t; �) + �z�� (t; �) for � 2 �1 and t � 0;z(t; �) = 0 for � 2 �0 and t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 
: (7.4)We obtain equations of form (1.1) by using the ruleztt = �z =̂ ddt �zw� = � 0 �1�� 0 � �zw� :9The sets �1 and �0 are allowed to have zero distan
e in [24℄. This is possible be
ausestronger ba
kground results from [14℄ are used there.28



In analogy with the vibrating string, let L := � 0 �1�� 0 � : Z ! X withZ := Z0 �H1�0(
) and X := H1�0(
)� L2(
)where Z0 := �z 2 H1�0(
) \H3=2(
) : �z 2 L2(
)	 :The norm for Z0 is given bykz0k2Z0 := kz0k2H1(
) + kz0k2H3=2(
) + k�z0k2L2(
):For spa
e X, we use the energy normk [ z0w0 ℄ k2X := kjrz0jk2L2(
) + kw0k2L2(
): (7.5)As is well known, it follows from Poin
ar�e inequality kz0kL2(
) � Kkjrz0jkL2(
)for z0 2 H1�0(
) that this norm is equivalent to the dire
t sum norm of X,see e.g. [9, p. 168℄. Thus Z � X with a bounded in
lusion and L 2 L(Z;X).Let us review the properties of Sobolev spa
es and the tra
e mappings.The spa
es Hs(
) := W 22 (
) for s = 1; 3=2; 2, and the boundary spa
esH1=2(�
), H1=2(�0), and H1=2(�1) are de�ned as usual, see [5, De�nition1.3.2.1℄. Note that (by extending fun
tions by zero on the other 
omponent)L2(�
) = L2(�0) � L2(�1). Be
ause �0 \ �1 = ;, we have (by lo
ality)H1=2(�
) = H1=2(�0)�H1=2(�1), too. By [5, Theorem 1.5.1.3℄ the (Diri
hlet)tra
e operator 
 mapsH1(
) 3 g 
7! gj�
 2 H1=2(�
) � L2(�
);and thus 
 2 L(H1(
);L2(�
)). Now, let � be the orthogonal proje
tionof L2(�
) onto L2(�1); the latter regarded as a subspa
e of L2(�
) in anatural way. With a slight misuse of notation, we write �g = gj�1 and(I � �)g = gj�0. Sin
e now (I � �)
 2 L(H1(
);L2(�
)), the spa
eH1�0(
) := Ker (I � �)
 = �g 2 H1(
) : gj�0 = 0	is a 
losed subspa
e of H1(
). So 
0 := �
jH1�0(
) 2 L(H1�0(
);L2(�1)) andwe abbreviate 
0g = gj�1.In the same manner, Z0 is a 
losed subspa
e of H3=2(
) sin
e Z0 �H1(
) � H3=2(
) with 
ontinuous in
lusions. By [5, Theorem 1.5.1.2℄,the (Neumann) tra
e operator 
 ��� 2 L(H3=2(
);L2(�
)) for 
 has a C2-boundary. Now 
1 := �
 ��� jZ0 2 L(Z0;L2(�1)); and we write 
1g = �g�� j�1.De�ning U = Y := L2(�1), we get G 2 L(Z;U) and K 2 L(Z;Y ) whereG [ z0w0 ℄ := 1p2 ���z0�� j�1 + w0j�1� and K [ z0w0 ℄ := 1p2 ��z0�� j�1 + w0j�1� :We shall require some fa
ts from the ellipti
 regularity theory. Following[23, p. 444℄, we denote the Neumann mapping ~N byh = ~Ng , 8><>: �h = 0 in 
;hj�0 = 0 in �0;�h�� j�1 = g in �1; (7.6)
29



where h 2 H1�0(
) is the unique variational solution. By the ellipti
 regularitytheory, ~N 2 L(L2(�1);H3=2(
)) \ L(H1=2(�1);H2(
)). Moreover, if z0 2H1�0(
) is the unique variational solution of�h = f 2 L2(
); hj�0 = 0; �z0�� j�1 = 0;then h 2 H2(
), see [9, Se
tion 4℄. Hen
e, the unique variational solution of�h = f 2 L2(
); hj�0 = 0; �h�� j�1 = gbelongs to H3=2(
) (H2(
)) if g 2 L2(�1) (H1=2(�1), respe
tively).It is worth mentioning that the spa
e Z0 is given in another equivalentform [24, Se
tion 7℄:Proposition 16. Under the standing assumptions on �1 and �2, the spa
eZ0 satis�esZ0 = fz0 2 H1�0(
) : �z0 2 L2(
) and �z0�� j�1 2 L2(�1)g:Proof. If z0 2 H3=2(
), then �z0�� j�1 2 L2(�1) by [5, Theorem 1.5.1.2℄. Con-versely, if z0 2 H1(
) is the variational solution of�z0 = f 2 L2(
); z0j�0 = 0; �z0�� j�1 = g 2 L2(�1);then z0 2 H3=2(
) by what has been said above about ellipti
 regularity.There is another 
onsequen
e of ellipti
 regularity that depends on theassumption that �0 \ �1 = ;:Proposition 17. Under the standing assumptions on �1 and �2, we haveKer G = �[ z0w0 ℄ 2 �H1�0(
) \H2(
)��H1�0(
) : �z0�� j�1 = w0j�1� :Proof. If [ z0w0 ℄ 2 Ker G, then w0 2 H1(
) and hen
e w0j�1 2 H1=2(�1). Butthen z0 is the variational solution of�z0 = f 2 L2(
); z0j�0 = 0; �z0�� j�1 = w0j�1 2 H1=2(�1);and so z0 2 H2(
) by ellipti
 regularity.Note that Z0 � H2(
) never holds be
ause this would 
ontradi
t the fa
tthat 
1Z0 = L2(�1), as given in the proof of the following:Proposition 18. Let the operators L, G, K and spa
es Z, X be de�ned asabove. Then � = (L;G;K) is a doubly boundary 
ontrol node.30



Proof. Sin
e ~N 2 L(L2(�1);H3=2(
)), we have ~NL2(�1) � Z0. Furthermore,for any g 2 L2(�1) we have 
1 ~Ng = g. Thus 
1Z0 = L2(�1), and 
ondition(a) of De�nition 1 is satis�ed. It is not diÆ
ult to see, using Proposition17, that Ker G is dense in X = H1�0(
) � L2(
): let � > 0, [ z0w0 ℄ 2 Xand 
hoose [ ~z~w ℄ 2 �H1�0(
) \ C1(
)� � H1�0(
) with k [ z0w0 ℄ � [ ~z~w ℄ kX < �.It is possible to 
onstru
t ŵ 2 H1�0(
) satisfying kŵkL2(
) < � and ŵj�1 =~wj�1 � �~z�� j�1; indeed, su
h ŵ 
ould be made to vanish in almost all of 
ex
ept for points very 
lose to �1 by using a suitable smooth\molli�er". Now� ~z0~w0 � := [ ~z~w ℄� [ 0̂w ℄ 2 Ker G and k [ z0w0 ℄� � ~z0~w0 � kX < 2�.Now, let [ z1w1 ℄ 2 X be arbitrary. By Proposition 17, [ z1w1 ℄ = L [ z0w0 ℄ =� �w0��z0 � for [ z0w0 ℄ 2 Ker G if and only if w0 = �z1 and the variational solutionz0 2 H1�0(
) of the problem�z0 = �w1; z0j�0 = 0; �z0�� j�1 = �z1j�1;satis�es z0 2 H2(
). Sin
e w1 2 L2(
) and z1j�1 2 H1=2(�1), this followsfrom the same ellipti
 regularity result as Proposition 17.Finally, [ z0w0 ℄ 2 Ker L \ Ker G if and only if w0 = 0 together with z0 2H2(
), �z0 = 0, z0j�0 = 0 and �z0�� j�1 = w0j�1 = 0 if and only if w0 = 0 andz0 = ~N0 = 0 in (7.6). Conditions of De�nition 1 are satis�ed with � = 0, andthus � = (L;G;K) is a boundary 
ontrol node. That also � = (�L;K;G)is su
h a node, is proved by a similar argument.Lemma 3. Let the operators L, G, K and spa
es Z, X be de�ned as earlierin this subse
tion. Use the energy norm (7.5) for X.(i) The boundary 
ontrol node � = (L;G;K) asso
iated to wave equation(7.4) des
ribes a (tory) 
onservative system S = [ A&BC&D ℄ through Theo-rem 1.(ii) The transfer fun
tion G(�) of S is inner from both sides and ana-lyti
 in an open set 
ontaining C + . The semigroups of S and thedual system Sd are strongly stable in the redu
ing subspa
e X
nu :=�Ker (Cd)� \Ker C�?, where C (Cd) denotes the observability map of S(Sd, respe
tively).(iii) Assume, in addition, that 
 is 
onne
ted. Then S is exa
tly 
ontrollableand observable in in�nite time, and the semigroups of S and Sd arestrongly (asymptoti
ally) stable.Proof. For an arbitrary [ z0w0 ℄ 2 Ker G, the Green's formula [5, Lemma 1.5.3.8℄31



implies � 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re h[ z0w0 ℄ ; [ w0�z0 ℄iX= 2Re 0�h�z0; w0iL2(
) + Z
 rz0 � rw0 d
1A= 2Re 0� Z�0[�1 �z0�� w0 d!1A = 2kw0j�1k2L2(�1)be
ause �z0�� j�1 = w0j�1. Clearly K [ z0w0 ℄ = p2w0j�1 for all [ z0w0 ℄ 2 Ker G, and
ondition (i) of Theorem 7 holds. Similarly,h[ z0w0 ℄ ; L [ x0y0 ℄iX + hL [ z0w0 ℄ ; [ x0y0 ℄iX = � Z�1 �z0�� y0 d! � Z�1 w0�x0�� d! (7.7)for any [ z0w0 ℄ 2 Z and [ x0y0 ℄ 2 Ker K. On the other hand,hG [ z0w0 ℄ ; G [ x0y0 ℄iL2(�1) (7.8)= � 1p2 ��z0�� j�1; G [ x0y0 ℄�L2(�1) + 1p2 hw0j�1; G [ x0y0 ℄iL2(�1) :Sin
e G [ x0y0 ℄ = p2y0j�1 = �p2�x0�� j�1 for any [ x0y0 ℄ 2 Ker K, 
ondition (ii) ofTheorem 7 follows from (7.7) and (7.8).Let us prove 
laim (ii) by using the theory of 
onservative systems andthe 
lassi
al Sz.-Nagy { Foia�s model for 
ontra
tions. By Xu � X denotethe largest redu
ing subspa
e of the semigroup S(t) of S (generated by A =LjKer G), su
h that S(t)jXu is a unitary group. By a 
ontinuous time ana-logue of [12, Proposition A.2℄, we have X?u = �Ker (Cd)� \Ker C�? = X
nu.By redu
ing the unobservable and un
ontrollable subspa
e Xu away from thestate spa
e X of S, we obtain another simple 
onservative system S 0 whosetransfer transfer fun
tion is same G(�) as that of S. The 
.n.u. semigroup ofS 0 is S(t)jX
nu with generator A
nu = Lj (Ker G \X
nu).Be
ause the in
lusion Ker G � X is 
ompa
t, the resolvent of the gen-erator A is 
ompa
t with �(A) = �p(A). Be
ause the same holds for A
nu,the interse
tion �(A
nu) \ iR 
an have only �i1 as limit points. It followsthen that G(�)�G(�) = I for almost all � 2 iR by [13, Lemma 3.2(v)℄ or[21, Corollary 7.3℄. Sin
e all this holds also for the dual system Sd = S bysymmetry, we 
on
lude that the H1-fun
tion G(�) is inner from both sides.Sin
e S 0 is a tory system, the Sz.-Nagy { Foia�s 
hara
teristi
 fun
tion ofA
nu satis�es �(�) = V1G(�)V2 where V1 and V2 identify unitarily the inputand output spa
es U and Y with the defe
t spa
es of A
nu. Then �(�) is innerfrom both sides, and the Sz.-Nagy { Foia�s operator model [22, formula (a)on p. 279℄ for S(t)jX
nu redu
es to the more simple Hankel range form [22,formula (a') on p. 279℄. From this it follows easily that S(t)jX
nu is strongly32



stable10 on X
nu, �(A
nu) \ iR = ; by the 
ompa
t resolvent, and thus G(�)is analyti
 outside �(A
nu) � C � .It remains to prove 
laim (iii). Suppose we had shown that dimXu = 0.Then the semigroups of S and Sd are strongly stable, and that S itself isa simple 
onservative system. As G(�) is inner from both sides, its Hankeloperator has 
losed range, and the 
anoni
al (simple 
onservative) Hankelrange realization of G(�) is exa
tly 
ontrollable in in�nite time. The sameholds for S by the well-known state spa
e isomorphism theorem for simple
onservative systems, see e.g. [19, Chapter 11℄. By 
onsidering the dualsystem Sd, the exa
t observability of S in in�nite time follows.We pro
eed to show that �p(A) \ iR = ; whi
h 
learly implies dimXu =0. We already know that 0 =2 �(A) from the proof of Proposition 18. If(ir � L) [ z0w0 ℄ = 0 for r 2 R n f0g, then w0 = �irz0 2 H2(
), (r2 +�)z0 = 0,z0j�0 = 0, �z0�� j�1 = �irz0j�1. But then Green's formula implies� r2kz0kL2(
) = h�z0; z0iL2(
) = �kjrz0jkL2(
) + Z�0[�1 �z0�� z0 d!= �kjrz0jk2L2(
) + irkz0k2L2(�1):We 
on
lude that z0 solves the Helmholtz equation(r2 +�)z0 = 0 on 
; z0j�
 = 0; �z0�� j�1 = 0; (7.9)
ompare this with [23, proof of Lemma 2.1(iii)℄. Conversely, any solutionz0 2 H2(
) of (7.9) satis�es (ir � L) [ z0�irz0 ℄ = 0. Note that any solution of�z0 = �r2z0, z0j�
 = 0 in H1(
) satis�es z0 2 \s>0Hs(
) � C10 (
) as 
anbe seen by using the ellipti
 regularity result iteratively, see e.g. [10℄.To 
omplete the proof, we shall show that (7.9) implies11 z0 = 0. Extendthe set 
 to a larger open set 
0 by \glueing" an additional set 
00 (with anonempty interior) to the �1-part of �
. This extension 
an be 
arried outso that 
0 is 
onne
ted, it has a C2-boundary, �
0 = �0 \ �01, �0 \ �01 = ;,and �01 � �1 [ �
00. Suppose that z0 2 H10 (
) \ H2(
) satis�es (7.9), andde�ne the extended fun
tionsu(�) := (z0(�) for � 2 
;0 for � 2 
0 n
; uj(�) := (�z0��j (�) for � 2 
;0 for � 2 
0 n 
;and g(�) := (�z0(�) for � 2 
;0 for � 2 
0 n 
10By the Sz.-Nagy { Foia�s operator model [22, formula (a) on p. 279℄, S(t)jX
nu is seento be weakly stable. This together with the 
ompa
t resolvent property implies the strongstability; the argument appearing in [23℄.11Note that this impli
ation does not hold, if 
 has a 
omponent 
0 su
h that �
0\�1 =;. Indeed, the spe
trum of the \Diri
hlet Lapla
ian" on a bounded 
onne
ted set 
0 isalways nonempty, see e.g. [3℄. 33



where � = (�1; �2; : : : ; �n). Then for any test fun
tion � 2 D(
0) we haveZ
0 �uj d
 = Z
 ��z0��j d
 = � Z
 ����j z0 d
 = � Z
0 ����j u d
where the middle equality holds by [5, Theorem 1.5.3.1℄ be
ause z0j�
 = 0.It follows that ea
h partial (distributional) derivative of u satis�es �u��j = uj.Sin
e u; uj 2 L2(
0), we 
on
lude that u 2 H1(
0). Be
ause �01 � �1 [ �
00,we get uj�
0 = 0 and �u�� j�01 = 0, too.Sin
e z0 2 H2(
), we have g 2 L2(
). Again, for any � 2 D(
0) we getZ
0 �g d
 = Z
 ��z0 d
 = Z�0[�1 ��z0�� d! � Z
 r� � rz0 d
= � Z�
 ���� z0 d! + Z
 �� � z0 d
 = Z
0 �� � u d
where both boundary terms vanish sin
e �j�0 = 0, �z0�� j�1 = 0, and z0j�
 = 0.We 
on
lude that �u = g 2 L2(
0) in the sense of distributions.Sin
e u 2 H1(
0) and �u 2 L2(
0), the (generalised) Green's formula [5,Theorem 1.5.3.11℄ 
an be used as follows: for any � 2 D(
0)Z
0 ��u d
 = Z�0[�01 ��u�� d! � Z
0 r� � ru d
 = � Z
 r� � rz0 d
= � Z�0[�1 ��z0�� d! + Z
 ��z0 d
 = �r2 Z
 �z0 d
 = �r2 Z
0 �u d
:Indeed, the se
ond equality follows from the fa
ts that �j�0 = 0, �u�� j�01 = 0,and that ru(�) = 0 vanishes in the interior of 
0 n 
; the se
ond to the lastequality holds sin
e �j�0 = 0 and z0 solves (7.9). We have now proved thatu 2 H10 (
0) is a (distributional) solution for the extended domain Helmholtzproblem (r2 +�)u = 0; uj�
0 = 0; �u�� j�01 = 0:As noted earlier after (7.9), it follows that u 2 C10 (
0). By using e.g. [3,Theorem 3.5℄ lo
ally, we see that u is real analyti
 in 
0. By 
onstru
tion, uvanishes in the nonempty interior of the set 
00 � 
0. Sin
e 
0 is 
onne
ted,u vanishes in all of 
0. Hen
e (7.9) has only the trivial solution in H10 (
) forall r 2 R, and the proof is 
omplete.The exponential stability of the system S in Lemma 3 has been provedin [9, 23℄ under an additional geometri
 
ondition on 
.34



7.5 Kir
hho� beamWe next 
onsider the system S asso
iated to the Kir
hho� beam on interval[0; 1℄. The beam is 
lamped at the end � = 0, and we apply endpoint 
ontroland observation at the other end � = 1. The system is des
ribed by thefollowing PDE:8>>>>>>><>>>>>>>:
ztt(t; �) = �z����(t; �) for � 2 (0; 1) and t � 0;h z�t(t;1)+z��(t;1)zt(t;1)�z���(t;1) i = p2 h u1(t)u2(t) i for t � 0;p2 h y1(t)y2(t) i = h z�t(t;1)�z��(t;1)zt(t;1)+z��� (t;1) i for t � 0;z(t; 0) = z�(t; 0) = 0 for t � 0; andz(0; �) = z0(�); zt(0; �) = w0(�) for � 2 (0; 1): (7.10)Again, we obtain equations of form (1.1) by using the ruleztt = �z���� =̂ ddt �zw� = � 0 1� d4d�4 0� �zw� :Consequently, we de�ne L := h 0 1� d4d�4 0 i : Z ! X together withZ := �H2f0g(0; 1) \H4(0; 1)��H2f0g(0; 1) and X := H2f0g(0; 1)� L2(0; 1);where H2f0g(0; 1) := nz 2 H1f0g(0; 1) \H2(0; 1) : z0(0) = 0o. The input andoutput operators are 
learly given byG [ z0w0 ℄ := 1p2 h w00(1)+z000 (1)w0(1)�z0000 (1) i and K [ z0w0 ℄ := 1p2 h w00(1)�z000 (1)w0(1)+z0000 (1) i :We leave it for an interested reader to 
arry out the similar arguments as inSubse
tion 7.2 for the wave equation, to verify that � := (L;G;K), indeed,is a doubly boundary 
ontrol node. For spa
e X, we shall from now use thefollowing norm k [ z0w0 ℄ k2X := kz000k2L2(0;1) + kw0k2L2(0;1): (7.11)Analogously to Proposition 14, this norm is equivalent to the natural 
arte-sian produ
t norm of X.Proposition 19. Let the operators L, G, K and spa
es Z, X be de�ned asas earlier in this subse
tion. Use the Hilbert spa
e norm (7.11) for X. Then� = (L;G;K) is a 
onservative system, asso
iated to the beam equation(7.10).Proof. As we said, showing that � is a doubly boundary 
ontrol node will beleft as an exer
ise to an interesting reader. Let [ z0w0 ℄ 2 Ker G; i.e. w0(0) =w00(0) = 0, w00(1) = �z000 (1) and w0(1) = z0000 (1). Then� 2Re h[ z0w0 ℄ ; L [ z0w0 ℄iX = 2Re D[ z0w0 ℄ ; h�w0z00000 iEX= hz00000 ; w0iL2(0;1) � hz000 ; w000iL2(0;1) + hw0; z00000 iL2(0;1) � hw000 ; z000 iL2(0;1)= 2Re �z0000 (1)w0(1)� z000 (1)w00(1)� = 2 �jw0(1)j2 + jz000(1)j2�= jK [ z0w0 ℄ j2; 35



where the last equality follows sin
e [ z0w0 ℄ 2 Ker G. So 
ondition (i) ofTheorem 7 is satis�ed.Now, let [ z1w1 ℄ 2 Z and [ z2w2 ℄ 2 Ker K. Then z1(0) = z01(0) = w1(0) =w01(0) = 0, z2(0) = z02(0) = w2(0) = w02(0) = 0, w02(1) = z002 (1), and w2(1) =�z0002 (1). Using these gives by partial integrationh[ z1w1 ℄ ; L [ z2w2 ℄iX + hL [ z1w1 ℄ ; [ z2w2 ℄iX= �hz00001 ; w2iL2(0;1) + hz001 ; w002iL2(0;1) � hw1; z00002 iL2(0;1) + hw001 ; z002 iL2(0;1)= �z0001 (1)w2(1) + z001 (1)w02(1)� w1(1)z0002 (1) + w01(1)z002 (1)= �w01(1) + z001 (1)�w02(1) + �w1(1)� z0001 (1)�w2(1)= hG [ z1w1 ℄ ; G [ z2w2 ℄iC 2 ;sin
e G [ z2w2 ℄ = p2 h w02(1)w2(1) i for [ z2w2 ℄ 2 Ker K. Hen
e 
ondition (ii) of Theorem7 follows, and the proof is 
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