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Jarmo Malinen: A remark on the Hille{Yoshida generator theorem ; HelsinkiUniversity of Te
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t: It is well-known (and 
an be proved in a number of ways) that adensely de�ned, 
losed operator A generates a bounded C0-semigroup if (andonly if) the Hille{Yoshida resolvent 
onditionk(sj � A)�kk � Mskj (1)holds for some positive and unbounded sequen
e fsjgj�1. We give a novel andshort \frequen
y domain"proof for the observation that the resolvent 
ondition(1), indeed, is only required for su
h sequen
es fsjgj�1. The proof is basedon studying the analyti
 fun
tion s 7! (I � A=s)�1 whose values are powerbounded operators.AMS subje
t 
lassi�
ations: 47D03, 47A10, 47A30Keywords: Semigroup generator, Hille{Yoshida theorem, Gibsons theorem
Jarmo.Malinen�hut.�

ISBN 951-22-7017-XISSN 0748-3143Espoo, 2004Helsinki University of Te
hnologyDepartment of Engineering Physi
s and Mathemati
sInstitute of Mathemati
sP.O. Box 1100, 02015 HUT, Finlandemail:math�hut.� http://www.math.hut.�/



1 Introdu
tionLet X be a Bana
h spa
e. Let A : dom (A)! X be a generator of a boundedC0-semigroup fT (t)gt�0, satisfying supt>0 kT (t)k �M <1. Su
h operatorsare pre
isely the 
losed, densely de�ned operators that satisfy the Hille {Yoshida resolvent 
onditionk(s� A)�kk � Msk for all s > 0 and k � 1: (2)A 
lassi
al referen
es to this result are, of 
ourse, [4℄ (K. Yoshida) and [2℄(E. Hille and R. S. Phillips). Both of these referen
es give the stronger versionof this result, as quoted in the abstra
t of this paper. The purpose of thispaper is to give a short \frequen
y domain", \
omplex analysis" proof for thefollowing theorem:Theorem 1. Let A be a densely de�ned (
losed) operator with s0 2 R+\�(A),and let M <1. If for s = s0 we havek (I � A=s)�k k �M for all k � 1; (3)then (0; s0℄ � �(A) and (3) holds for all s 2 (0; s0℄.Indeed, suppose that the resolvent 
ondition (2) is known only for alls 2 fsjgj�1, where limj!1 sj = +1. Then (2) holds for all s > 0 as a dire
t
onsequen
e of Theorem 1.Note that Theorem 1 has a 
avor of the Maximum Modulus Theorem.All other proofs of Theorem 1 (that we know of) are 
arried out by using\time domain" te
hniques. It is rather unusual in harmoni
 analysis to havetwo pre
ise 
hara
terizations of a same phenomenenon, one on \ea
h side" ofthe Fourier transform1. This is the main motivation for writing this paper.2 Resolvent 
ondition for power-boundedoperatorsThe dis
rete semigroups are generated by power bounded operators T . Forsu
h operators, a resolvent 
hara
terization has been published in [1℄ (A. Gib-son), and it was independently redis
overed in [3, Theorem 2.7.1℄ (O. Nevan-linna).Proposition 1. Let T 2 L(X) and C <1. Then the following are equiva-lent:(i) supj�0 kT jk � C,(ii) for all x > 1 and k � 1kT k(x� 1)k(x� T )�kk � C; (4)and1Note that the Parseval's identity is a positive example of this.3



(iii) there exists a (monotone in
reasing) sequen
e fxjgj�1 � (1;1)\�(T ),su
h that xj ! 1 and the estimates (4) hold for x = xj for all j � 1and k � 1.Proof. Assume (i). Then for all x > 1, we have, by the nonnegativity of alls
alar terms in sumskT k(x� 1)k(x� T )�kk = �1� 1x�k kT k�I � Tx��k k= �1� 1x�k kT kXj�0 �k + j � 1j ��Tx�jk� �1� 1x�k supj�0 kT jkXj�0 �k + j � 1j ��1x�j= C �1� 1x�k �1� 1x��k = C:So the resolvent 
ondition in 
laim (ii) follows. The impli
ation (ii)) (iii) istrivial. The �nal impli
ation (iii) ) (i) just by taking the limit as xj ! 1in the resolvent 
ondition.There is a slight generalization of this results, and we give it here eventhough it will not be needed in the proof of Theorem 1.Corollary 1. Let � 2 [0; 1) and T 2 L(X). Then the powers of T� :=�+(1��)T are bounded by 
onstant C if and only if there exists a (monotonein
reasing) sequen
e fyjgj�1 � (1;1) \ �(T ), su
h that yj ! 1 and theestimates kT k� (yj � 1)k(yj � T )�kk � C (5)hold for all k � 1.Moreover, an operator V 2 L(X) is power bounded by 
onstant C ifand only if there exists � 2 [0; 1) and a (monotone in
reasing) sequen
efyjgj�1 � (1;1) \ �(V�), su
h that yj !1 and the estimateskV k(yj � 1)k (yj � V�)�k k � C (6)hold for all k � 1, where V� := (V � �) = (1� �).Proof. For all � 6= 1 and x 2 (1;1) \ �(T�) we have(x� 1)(x� T�)�1 = (x� 1)(x� �� (1� �)T )�1= x� 11� � �x� �1� � � T��1 = (y � 1)(y � T )�1;where y = y(x) := (x��)(1��)�1 or, equivalently, x = x(y) = �+(1��)y.4



Assume that T� is power-bounded by C. Then by impli
ation (i) ) (ii)of Proposition 1, we have for all x > 1 (and hen
e, be
ause � 2 [0; 1), for ally > 1) kT k�(y � 1)k(y � T )�kk = kT k�(x� 1)k(x� T�)�kk � Cwhere k � 1 is arbitrary. This estimate holds in parti
ular for any sequen
efyjgj�1 
onverging to1, and the one dire
tion of the �rst equivalen
e is nowproved.Conversely, assume that estimate (5) holds for all k � 1 and somesequen
e fyjgj�1, having the stated properties. De�ne another sequen
efxjgj�1, by setting xj := � + (1 � �)yj. Be
ause � < 1, this new sequen
esatis�es the same 
onditions that have been imposed on fyjgj�1. Now, forall j � 1, we have the estimateskT k�(xj � 1)k(xj � T�)�kk = kT k�(yj � 1)k(yj � T )�kk � Cwhere k � 1 is arbitrary. Now impli
ation (iii) ) (i) of Proposition 1 givesthe power-boundedness of T�.Let us pro
eed to prove the se
ond equivalen
e. Fix � 2 [0; 1) arbitrarily.De�ne T := (V � �)=(1� �). Then T� = V and the power-boundedness ofV is seen to be equivalent to the resolvent 
ondition (6), by the �rst part ofthis 
orollary.3 Proof of Theorem 1Now begins the real fun, and we give the promised proof of Theorem 1.De�ne for all s 2 �(A) the operator-valued fun
tion T (s) := (I � A=s)�1.By the assumption of Theorem 1, supk>1 kT (s0)kk =: M < 1. ApplyingProposition 1 shows that for all x > 1 and integers k > 1kT (s0)k (x� 1)k (x� T (s0))�k k �M ; (7)in parti
ular su
h x 2 �(T (s0)). But now for all x > 1T (s0) (x� 1) (x� T (s0))�1 = (x� 1)�I � As0��1 x� �I � As0��1!�1= (x� 1)�x�I � As0�� I��1 = �I � A(1� 1=x)s0��1 :Denoting s = (1 � 1=x)s0 we see from (7) that k (I � A=s)�k k � M for allsu
h s. Be
ause x > 1 was arbitrary, this estimate holds for all s 2 (0; s0),thus proving Theorem 1. 5
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