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1 IntrodutionLet T 2 L(X); a bounded linear operator on a (omplex) Banah spae X.It was R. K. Ritt who �rst studied the Ritt resolvent onditionk(�� T )�1k � Cj�� 1j (1)for j�j > 1. R. K. Ritt himself proved that if T satis�es (1) for j�j > 1, thenlimn!1 kT n=nk = 0, see [13℄. Clearly (1) implies that �(T ) � D [ 1, but infat even �(T ) � KÆ \ (D [ f1g) for some Æ > 0, whereKÆ := f� = 1 + rei� : r > 0 and j�j < �2 + Æg; (2)see O. Nevanlinna [10, Theorem 4.5.4℄ and Yu. Lyubih [6℄.The following result was given by Y. Katznelson and L. Tzafriri in 1986:for power bounded operators T in the sense that supn�1 kT nk <1, we have�(T ) � D [ f1g if and only if limn!1 k(I � T )T nk = 0, see [5℄. Related tothis, J. Zem�anek asked in 1992 whether (1) implies limn!1 k(I � T )T nk = 0,too. This was answered in positive by O. Nevanlinna, and he also noted thatif (1) hold in the larger set KÆ[D  for some Æ > 0, then T is power bounded,see [10, Theorem 4.5.4℄, [11℄ and [16℄.It was then observed independently in 1998 by B. Nagy and J. Zem�anek[9℄, O. Nevanlinna, and Yu. Lyubih [6℄ that if (1) holds for all j�j > 1, then(1), indeed, holds for all � 2 KÆ [ D  for some Æ > 0 (with another possiblylarger onstant ~C in plae for C). Hene, if T satis�es (1) for all j�j > 1, thenT is power bounded. The upper bound supn�1 kT nk � (eC2)=2 was givenby N. Borovykh, D. Drissi and M. N. Spijker, see [1℄. A tighter estimatesupn�1 kT nk � C2 was shown by O. El-Fallah and T. Ransford in [2℄.Muh of these developments ulminate in the following fundamental re-sult onneting power boundedness, the Ritt resolvent ondition and thetauberian ondition (3):Proposition 1. The following are equivalent:(i) T satis�es (1) for all j�j > 1,(ii) �(T ) � D [ f1g and T satis�es (1) for all � 2 KÆ for some Æ > 0, and(iii) T is power bounded, and it satis�es the tauberian onditionsupn�1 (n + 1)k(I � T )T nk � M (3)for some M <1.Indeed, the equivalene (i), (ii) has already been disussed above. That(ii)) (iii) is given in [10, Theorem 4.5.4℄, and we shall ompute an estimateforM in (3) in Theorem 4. That (iii) implies (i) was reported in [11, Theorem3



2.1℄. The proof relies on the theory of analyti semigroups, and it followslosely [12, Theorem 5.2℄1.We further note that J. Esterle has pointed out in [3℄ thatlim infn!1 (n+ 1)k(I � T )T nk � 196for a power-bounded T satisfying �(T ) = f1g; see also [8℄ (and referenestherein) for the determination of the optimal lower bound 1=e instead of1=96. Hene the stronger version limn!1(n+1)(I�T )T n = 0 of the tauberianondition (3) annot generally hold for T satisfying (1) for all j�j > 1.We shall show in this paper that the onditions of Proposition 1 an beombined in a di�erent way. Indeed, we shall prove the following tauberiantheorem and disuss some of its onsequenes:Theorem 1. If T 2 L(X) satis�es the the Ritt ondition (1) for all � > 1and tauberian ondition (3), then T is power bounded.We also estimate supn�1 k(n+ 1)(I � T )T nk for operators satisfying (1)for all j�j > 1. Most of the results of this paper (in partiular, the mainresult Theorem 2) were proved in 2002 in [15℄.2 Equivalent onditionsunder the tauberian onditionLet us remind the results of the lassial tauberian theorem in the salarase. Let fang be a omplex sequene and sn = a0 + a1 + :::+ an for n � 0.A. Tauber proved in 1897 that if(i) limn!1(n+ 1)an = 0, and(ii) limr!1� f(r) = s, where f(r) =P10 anrn for 0 < r < 1,then limn!1 sn = s. It was J. E. Littlewood who later in 1910 showed thatthe tauberian ondition (i) an in fat be replaed by the weaker tauberianondition supn njanj < 1. As it is mentioned in [14, Chapter 9℄, the proofwith this modi�ation beomes onsiderable harder.If we take an = (I � T )T n, we see that the weaker tauberian ondition isexatly (3). Now the orresponding partial sums are simply sn = I � T n+1.In this paper, we are not interested in the limit behaviour of fsng, but onlyin the boundedness of this sequene under the weaker tauberian ondition(3). This will save us from the extra ompliations that would be requiredif we had to take advantage of Littlewood's variant of the lassial tauberiantheorem instead.1However, the restritive assumption 0 2 �(A) must be �rst removed from [12, Theorem5.2℄ by a more areful analysis. 4



Theorem 2. Assume that T 2 L(X) satis�es tauberian ondition (3), andk(�� 1)(�� T )�1k � C (4)for all � > 1. Then T is power bounded with the estimateskT nk � 2 + CkTk+ 2M andlim supn!1 kT nk � 2 + CkTk+ (1 + 1=e)M:Proof. De�ne sn := n�1Xj=0(I � T )T j = 1� T n;f(r) := 1Xj=0(I � T )T jrj = (I � T )(1� rT )�1; andfn(r) := n�1Xj=0(I � T )T jrj:Then for all r 2 (0; 1) and n � 0, we haveksnk � ksn � fn(r)k+ kfn(r)� f(r)k+ kf(r)k: (5)Condition (4) implies sup0�r<1 kf(r)k � 1 + CkTk, and the last term of theright hand side is bounded by C1 := 1+CkTk. For the seond term, we havekfn(r)� f(r)k = kXj�n(I � T )T jrjk �Xj�n Mj + 1rj= Mn+ 1Xj�n n + 1j + 1 rj � Mn + 1rn(1� r)�1by (3). From now on, we hoose rn := 1� 1=n in (5). ThenMn + 1rnn (1� rn)�1 = Mn + 1 �1� 1n�n n (!M=e as n!1;�M for all n � 1:So the seond term in (5) is bounded with this hoie of r = rn.The �rst term of the right side of inequality (5) (when hoosing r = rn)we have sn � fn(rn) = n�1Xj=0(I � T )T j(1� rjn):By the mean value theorem, there exists rj0 2 [rn; 1) for any j > 0, suh thatwe an estimate 1� rjn = jrj�10 (1� rn) � j(1� rn) = jn:5



This together with (3) yieldsksn � fn(rn)k � n�1Xj=0 jnk(I � T )T jk� n�1Xj=0 jn Mj + 1 �M 1n n�1Xj=0 1 = M:So ksnk is uniformly bounded, whih is equivalent to the power boundednessof T . This ompletes the proof.If the tauberian ondition (3) holds for T , then a number of onditionswill be equivalent. The following theorem is analogous to [11, Theorem 2.1℄,exept that now (3) is a standing assumption instead of power boundedness.Theorem 3. Assume that T 2 L(X) satis�es the tauberian ondition (3).Then the following are equivalent:(i) T is power bounded,(ii) T satis�es Kreiss resolvent ondition for some onstant CKk(�� T )�1k � CKj�j � 1for j�j > 1,(iii) there exists 0 < � � 1 � C <1 suh that T satis�es the Ritt resolventondition (1) for all real � 2 (1; 1 + �),(iv) there exists 0 < � � 1 � C <1 suh that T satis�es the seond orderRitt ondition k(�� 1)2(�� T )�2Tk � C;for all real � 2 (1; 1 + �),(v) there exists 0 < Æ � 1 � C <1 suh that T satis�es the Ritt resolventondition (1) for all � 2 K 0Æ := f� = 1 + rei�jr > 0; j�j < �2 + Æg, and(vi) A := T � I generates an uniformly bounded, norm ontinuous, analytisemigroup t 7! eAt of linear operators.Proof. It is shown by estimating the von Neumann series that (i) ) (ii).It is trivial that (ii) ) (iii), and (iii) ) (i) by Theorem 2, noting that theresolvent ondition is only used near point 1 in the proof.It is trivial that (iii) implies (iv). Conversely, noting that beause �(T ) �D by the tauberian ondition (3), we obtain for all jrj < 1(I � rT )�1 =Xj�0 (j + 1)(I � T )T jrj + (1� r)(I � rT )�2T:6



From this we onlude, by using (3) in the estimation, thatk(1� r)(I � rT )�1k � (1� r) �MXj�0 rj + k(1� r)2(I � rT )�2Tk= M + k(1� r)2(I � rT )�2Tkfor all 0 � r < 1. Replaing r = 1=� shows now that (iv) ) (iii).Claims (i) and (v) are equivalent by Proposition 1 and the extensionresult that an be found e.g. in [9℄. By the lassial theorem of E. Hilleand K. Yoshida, laim (v) is equivalent (apart from the analytiity of thesemigroup) to the existene of CHY <1 suh that for eah integer k � 1k(�� T )�kk � CHY(�� 1)k for all � > 1: (6)Setting k = 1 gives (iii). Conversely, (i) ) (vi) (apart from the analytiity)by the estimate ketTk �Xj�0 kT jktjj! � supj�0 kT jk � etfor all t � 0. Moreover, it is not diÆult to see that kAetAk �Mt�1 (1� e�t)where A := T � I, if (3) holds. This implies that etA is analyti, by a slightgeneralization of [12, Theorem 5.2℄.The impliation (i) ) (ii) (with expliit onstants) was �rst given byZ. Yuan by using a Cauhy integration argument, see [15℄. We remark thatthe tauberian ondition (3) implies kT nk = O(lnn), and by [4, Theorem3.3℄, [7℄, the growth an really be there for an operator in a Banah spae.Condition (3) \almost" implies ondition (iii) of Theorem 3, too. Indeed, as(1 � r)(I � rT )�1 = I � r(I � T )(I � rT )�1 for all jrj < 1, we obtain theestimatek(1� r)(I � rT )�1k � 1 +MXj�0 jrjj+1j + 1 = 1 +M ln 11� jrjfor all 0 � jrj < 1. Setting r = 1=� for � > 1 gives nowk(�� 1)(�� T )�1k � 1 +M ln ��� 1 :Hene k(�� T )�1k = O ((�� 1) ln (�� 1)) as �! 1+. Again, the logarith-mi term an really be present on the right hand side, see [7℄.Finally, the tauberian ondition (3) \almost" implies ondition (vi) ofTheorem 3. Indeed, as kAetAk � Mt�1 (1� e�t) where A := T � I, and thefuntion t 7! t�1 (1� e�t) is dereasing for t � 0, it follows thatketAk � 1 + Z t0 kAetAk dt � 1 +M +M(1� e�1) ln t for all t � 1:7



3 An upper bound for k(n + 1)(I � T )T nkAssume that T 2 L(X) satis�es the Ritt resolvent ondition (1) for all j�j >1. Then supn�1 kT nk � C2, as shown in [2℄ as a partiular ase of a muhmore general result. The earlier upper bound supn�1 kT nk � (eC2)=2 wasgiven in [1℄. We proeed to give a ommon upper bound for the operatorsn(I � T )T n appearing in the tauberian ondition (3).Theorem 4. Assume that T 2 L(X) satis�es (1) for all j�j > 1. Thensupn�1 (n + 1)k(I � T )T nk � 2 supn�2 kT nk+ eC3: (7)Proof. Reall that we have by the Cauhy interal(I � T )T n = 12�i Z� �n(1� �)(�� T )�1d�;where � is an arbitrary positively oriented irle j�j = r > 1. By partiallyintegrating twie, we obtain(I � T )T n = 1�i(n+ 1)(n+ 2) Z� �n+2(1� �)(�� T )�3d�+ 1n+ 1 � 2�i(n+ 2)(n+ 3) Z� �n+3(�� T )�3d�:By partially integrating twie the Cauhy integral representation, we getT n+1 = 1�i(n + 2)(n+ 3) Z� �n+3(�� T )�3d�:So we have for all n � 1(n+ 1)(I � T )T n � 2T n+1 = 1�i(n + 2) Z� �n+2(1� �)(�� T )�3d�:By the Ritt resolvent ondition (1) we get k(1� �)(�� T )�3k � C3j1� �j�2and hene for all r > 1k(n+ 1)(I � T )T n � 2T n+1k � rn+2C3J(n+ 2)� ; (8)where after omputationsJ = Z ��� rdtjreit � 1j2 = 2�rr2 � 1 :Inserting the above expression for J into (8), we getk(n+ 1)(I � T )T n � 2T n+1k � 2C3F (n; r); (9)8



where F (n; r) := rn+3(n+2)(r2�1) for all r > 1 and n � 1. Moreover,minr>1 F (n; r) = F  n;r1 + 2n + 1! = n+ 32(n+ 2) �1 + 2n + 1�n+12and after rather long omputations that we omit here, we get �nallysupn�1 F �n;p1 + 2=(n+ 1)� = e=2. These together with (9) prove thelaim.By letting j�j ! 1, it is easy to see that neessarily C � 1 in (1).Using this together with the bounds supn�1 kT nk � C2 and (7) gives a moresimple upper bound sup(n+1)�1 (n+ 1)k(I � T )T nk � (2 + e)C3. In fat,the proof of Theorem 4 shows that the boundedness of sequenes fT ng andf(n+1)(I � T )T ng is equivalent, whenever T satis�es only the \third order"Ritt ondition supj�j>1 k(1� �)3(�� T )�3k <1:Referenes[1℄ N. Borovykh, D. Drissi, and M. N. Spijker. A note about Ritt's onditionand related resolvent onditions. Numerial Funtional Analysis andOptimization, 21(3{4):425{438, 2000.[2℄ O. El-Fallah and T. Ransford. Extremal growth of powers of operatorssatisfying resolvent onditions of Kreiss{Ritt type. Journal of FuntionalAnalysis, 196:135{154, 2002.[3℄ J. Esterle. Quasimultipliers, representations of H1, and the losed idealproblem for ommutative Banah algebras. In Radial Banah algebrasand automati ontinuity (Long Beah, Calif., 1981), volume 975 of Le-ture Notes in Mathematis, pages 66{162, Berlin, 1983. Springer Verlag.[4℄ N. Kalton, S. Montgomery-Smith, K. Oleszkiewiz, and Y. Tomilov.Power-bounded operators and related norm estimates. Preprint, 2002.[5℄ Y. Katznelson and L. Tzafriri. On power bounded operators. Journalof Funtional Analysis, 68:313{328, 1986.[6℄ Yu. Lyubih. Spetral loalization, power boundedness and invariantsubspaes under Ritt's type ondition. Studia Mathematia, 143(2):153{167, 1999.[7℄ O. E. Maasalo, J. Malinen, and V. Turunen. An example of an oper-ator satisfying a tauberian ondition. Preprint, Helsinki University ofTehnology. 9
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