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1 Introdu
tionLet T 2 L(X); a bounded linear operator on a (
omplex) Bana
h spa
e X.It was R. K. Ritt who �rst studied the Ritt resolvent 
onditionk(�� T )�1k � Cj�� 1j (1)for j�j > 1. R. K. Ritt himself proved that if T satis�es (1) for j�j > 1, thenlimn!1 kT n=nk = 0, see [13℄. Clearly (1) implies that �(T ) � D [ 1, but infa
t even �(T ) � K
Æ \ (D [ f1g) for some Æ > 0, whereKÆ := f� = 1 + rei� : r > 0 and j�j < �2 + Æg; (2)see O. Nevanlinna [10, Theorem 4.5.4℄ and Yu. Lyubi
h [6℄.The following result was given by Y. Katznelson and L. Tzafriri in 1986:for power bounded operators T in the sense that supn�1 kT nk <1, we have�(T ) � D [ f1g if and only if limn!1 k(I � T )T nk = 0, see [5℄. Related tothis, J. Zem�anek asked in 1992 whether (1) implies limn!1 k(I � T )T nk = 0,too. This was answered in positive by O. Nevanlinna, and he also noted thatif (1) hold in the larger set KÆ[D 
 for some Æ > 0, then T is power bounded,see [10, Theorem 4.5.4℄, [11℄ and [16℄.It was then observed independently in 1998 by B. Nagy and J. Zem�anek[9℄, O. Nevanlinna, and Yu. Lyubi
h [6℄ that if (1) holds for all j�j > 1, then(1), indeed, holds for all � 2 KÆ [ D 
 for some Æ > 0 (with another possiblylarger 
onstant ~C in pla
e for C). Hen
e, if T satis�es (1) for all j�j > 1, thenT is power bounded. The upper bound supn�1 kT nk � (eC2)=2 was givenby N. Borovykh, D. Drissi and M. N. Spijker, see [1℄. A tighter estimatesupn�1 kT nk � C2 was shown by O. El-Fallah and T. Ransford in [2℄.Mu
h of these developments 
ulminate in the following fundamental re-sult 
onne
ting power boundedness, the Ritt resolvent 
ondition and thetauberian 
ondition (3):Proposition 1. The following are equivalent:(i) T satis�es (1) for all j�j > 1,(ii) �(T ) � D [ f1g and T satis�es (1) for all � 2 KÆ for some Æ > 0, and(iii) T is power bounded, and it satis�es the tauberian 
onditionsupn�1 (n + 1)k(I � T )T nk � M (3)for some M <1.Indeed, the equivalen
e (i), (ii) has already been dis
ussed above. That(ii)) (iii) is given in [10, Theorem 4.5.4℄, and we shall 
ompute an estimateforM in (3) in Theorem 4. That (iii) implies (i) was reported in [11, Theorem3



2.1℄. The proof relies on the theory of analyti
 semigroups, and it follows
losely [12, Theorem 5.2℄1.We further note that J. Esterle has pointed out in [3℄ thatlim infn!1 (n+ 1)k(I � T )T nk � 196for a power-bounded T satisfying �(T ) = f1g; see also [8℄ (and referen
estherein) for the determination of the optimal lower bound 1=e instead of1=96. Hen
e the stronger version limn!1(n+1)(I�T )T n = 0 of the tauberian
ondition (3) 
annot generally hold for T satisfying (1) for all j�j > 1.We shall show in this paper that the 
onditions of Proposition 1 
an be
ombined in a di�erent way. Indeed, we shall prove the following tauberiantheorem and dis
uss some of its 
onsequen
es:Theorem 1. If T 2 L(X) satis�es the the Ritt 
ondition (1) for all � > 1and tauberian 
ondition (3), then T is power bounded.We also estimate supn�1 k(n+ 1)(I � T )T nk for operators satisfying (1)for all j�j > 1. Most of the results of this paper (in parti
ular, the mainresult Theorem 2) were proved in 2002 in [15℄.2 Equivalent 
onditionsunder the tauberian 
onditionLet us remind the results of the 
lassi
al tauberian theorem in the s
alar
ase. Let fang be a 
omplex sequen
e and sn = a0 + a1 + :::+ an for n � 0.A. Tauber proved in 1897 that if(i) limn!1(n+ 1)an = 0, and(ii) limr!1� f(r) = s, where f(r) =P10 anrn for 0 < r < 1,then limn!1 sn = s. It was J. E. Littlewood who later in 1910 showed thatthe tauberian 
ondition (i) 
an in fa
t be repla
ed by the weaker tauberian
ondition supn njanj < 1. As it is mentioned in [14, Chapter 9℄, the proofwith this modi�
ation be
omes 
onsiderable harder.If we take an = (I � T )T n, we see that the weaker tauberian 
ondition isexa
tly (3). Now the 
orresponding partial sums are simply sn = I � T n+1.In this paper, we are not interested in the limit behaviour of fsng, but onlyin the boundedness of this sequen
e under the weaker tauberian 
ondition(3). This will save us from the extra 
ompli
ations that would be requiredif we had to take advantage of Littlewood's variant of the 
lassi
al tauberiantheorem instead.1However, the restri
tive assumption 0 2 �(A) must be �rst removed from [12, Theorem5.2℄ by a more 
areful analysis. 4



Theorem 2. Assume that T 2 L(X) satis�es tauberian 
ondition (3), andk(�� 1)(�� T )�1k � C (4)for all � > 1. Then T is power bounded with the estimateskT nk � 2 + CkTk+ 2M andlim supn!1 kT nk � 2 + CkTk+ (1 + 1=e)M:Proof. De�ne sn := n�1Xj=0(I � T )T j = 1� T n;f(r) := 1Xj=0(I � T )T jrj = (I � T )(1� rT )�1; andfn(r) := n�1Xj=0(I � T )T jrj:Then for all r 2 (0; 1) and n � 0, we haveksnk � ksn � fn(r)k+ kfn(r)� f(r)k+ kf(r)k: (5)Condition (4) implies sup0�r<1 kf(r)k � 1 + CkTk, and the last term of theright hand side is bounded by C1 := 1+CkTk. For the se
ond term, we havekfn(r)� f(r)k = kXj�n(I � T )T jrjk �Xj�n Mj + 1rj= Mn+ 1Xj�n n + 1j + 1 rj � Mn + 1rn(1� r)�1by (3). From now on, we 
hoose rn := 1� 1=n in (5). ThenMn + 1rnn (1� rn)�1 = Mn + 1 �1� 1n�n n (!M=e as n!1;�M for all n � 1:So the se
ond term in (5) is bounded with this 
hoi
e of r = rn.The �rst term of the right side of inequality (5) (when 
hoosing r = rn)we have sn � fn(rn) = n�1Xj=0(I � T )T j(1� rjn):By the mean value theorem, there exists rj0 2 [rn; 1) for any j > 0, su
h thatwe 
an estimate 1� rjn = jrj�10 (1� rn) � j(1� rn) = jn:5



This together with (3) yieldsksn � fn(rn)k � n�1Xj=0 jnk(I � T )T jk� n�1Xj=0 jn Mj + 1 �M 1n n�1Xj=0 1 = M:So ksnk is uniformly bounded, whi
h is equivalent to the power boundednessof T . This 
ompletes the proof.If the tauberian 
ondition (3) holds for T , then a number of 
onditionswill be equivalent. The following theorem is analogous to [11, Theorem 2.1℄,ex
ept that now (3) is a standing assumption instead of power boundedness.Theorem 3. Assume that T 2 L(X) satis�es the tauberian 
ondition (3).Then the following are equivalent:(i) T is power bounded,(ii) T satis�es Kreiss resolvent 
ondition for some 
onstant CKk(�� T )�1k � CKj�j � 1for j�j > 1,(iii) there exists 0 < � � 1 � C <1 su
h that T satis�es the Ritt resolvent
ondition (1) for all real � 2 (1; 1 + �),(iv) there exists 0 < � � 1 � C <1 su
h that T satis�es the se
ond orderRitt 
ondition k(�� 1)2(�� T )�2Tk � C;for all real � 2 (1; 1 + �),(v) there exists 0 < Æ � 1 � C <1 su
h that T satis�es the Ritt resolvent
ondition (1) for all � 2 K 0Æ := f� = 1 + rei�jr > 0; j�j < �2 + Æg, and(vi) A := T � I generates an uniformly bounded, norm 
ontinuous, analyti
semigroup t 7! eAt of linear operators.Proof. It is shown by estimating the von Neumann series that (i) ) (ii).It is trivial that (ii) ) (iii), and (iii) ) (i) by Theorem 2, noting that theresolvent 
ondition is only used near point 1 in the proof.It is trivial that (iii) implies (iv). Conversely, noting that be
ause �(T ) �D by the tauberian 
ondition (3), we obtain for all jrj < 1(I � rT )�1 =Xj�0 (j + 1)(I � T )T jrj + (1� r)(I � rT )�2T:6



From this we 
on
lude, by using (3) in the estimation, thatk(1� r)(I � rT )�1k � (1� r) �MXj�0 rj + k(1� r)2(I � rT )�2Tk= M + k(1� r)2(I � rT )�2Tkfor all 0 � r < 1. Repla
ing r = 1=� shows now that (iv) ) (iii).Claims (i) and (v) are equivalent by Proposition 1 and the extensionresult that 
an be found e.g. in [9℄. By the 
lassi
al theorem of E. Hilleand K. Yoshida, 
laim (v) is equivalent (apart from the analyti
ity of thesemigroup) to the existen
e of CHY <1 su
h that for ea
h integer k � 1k(�� T )�kk � CHY(�� 1)k for all � > 1: (6)Setting k = 1 gives (iii). Conversely, (i) ) (vi) (apart from the analyti
ity)by the estimate ketTk �Xj�0 kT jktjj! � supj�0 kT jk � etfor all t � 0. Moreover, it is not diÆ
ult to see that kAetAk �Mt�1 (1� e�t)where A := T � I, if (3) holds. This implies that etA is analyti
, by a slightgeneralization of [12, Theorem 5.2℄.The impli
ation (i) ) (ii) (with expli
it 
onstants) was �rst given byZ. Yuan by using a Cau
hy integration argument, see [15℄. We remark thatthe tauberian 
ondition (3) implies kT nk = O(lnn), and by [4, Theorem3.3℄, [7℄, the growth 
an really be there for an operator in a Bana
h spa
e.Condition (3) \almost" implies 
ondition (iii) of Theorem 3, too. Indeed, as(1 � r)(I � rT )�1 = I � r(I � T )(I � rT )�1 for all jrj < 1, we obtain theestimatek(1� r)(I � rT )�1k � 1 +MXj�0 jrjj+1j + 1 = 1 +M ln 11� jrjfor all 0 � jrj < 1. Setting r = 1=� for � > 1 gives nowk(�� 1)(�� T )�1k � 1 +M ln ��� 1 :Hen
e k(�� T )�1k = O ((�� 1) ln (�� 1)) as �! 1+. Again, the logarith-mi
 term 
an really be present on the right hand side, see [7℄.Finally, the tauberian 
ondition (3) \almost" implies 
ondition (vi) ofTheorem 3. Indeed, as kAetAk � Mt�1 (1� e�t) where A := T � I, and thefun
tion t 7! t�1 (1� e�t) is de
reasing for t � 0, it follows thatketAk � 1 + Z t0 kAetAk dt � 1 +M +M(1� e�1) ln t for all t � 1:7



3 An upper bound for k(n + 1)(I � T )T nkAssume that T 2 L(X) satis�es the Ritt resolvent 
ondition (1) for all j�j >1. Then supn�1 kT nk � C2, as shown in [2℄ as a parti
ular 
ase of a mu
hmore general result. The earlier upper bound supn�1 kT nk � (eC2)=2 wasgiven in [1℄. We pro
eed to give a 
ommon upper bound for the operatorsn(I � T )T n appearing in the tauberian 
ondition (3).Theorem 4. Assume that T 2 L(X) satis�es (1) for all j�j > 1. Thensupn�1 (n + 1)k(I � T )T nk � 2 supn�2 kT nk+ eC3: (7)Proof. Re
all that we have by the Cau
hy interal(I � T )T n = 12�i Z� �n(1� �)(�� T )�1d�;where � is an arbitrary positively oriented 
ir
le j�j = r > 1. By partiallyintegrating twi
e, we obtain(I � T )T n = 1�i(n+ 1)(n+ 2) Z� �n+2(1� �)(�� T )�3d�+ 1n+ 1 � 2�i(n+ 2)(n+ 3) Z� �n+3(�� T )�3d�:By partially integrating twi
e the Cau
hy integral representation, we getT n+1 = 1�i(n + 2)(n+ 3) Z� �n+3(�� T )�3d�:So we have for all n � 1(n+ 1)(I � T )T n � 2T n+1 = 1�i(n + 2) Z� �n+2(1� �)(�� T )�3d�:By the Ritt resolvent 
ondition (1) we get k(1� �)(�� T )�3k � C3j1� �j�2and hen
e for all r > 1k(n+ 1)(I � T )T n � 2T n+1k � rn+2C3J(n+ 2)� ; (8)where after 
omputationsJ = Z ��� rdtjreit � 1j2 = 2�rr2 � 1 :Inserting the above expression for J into (8), we getk(n+ 1)(I � T )T n � 2T n+1k � 2C3F (n; r); (9)8



where F (n; r) := rn+3(n+2)(r2�1) for all r > 1 and n � 1. Moreover,minr>1 F (n; r) = F  n;r1 + 2n + 1! = n+ 32(n+ 2) �1 + 2n + 1�n+12and after rather long 
omputations that we omit here, we get �nallysupn�1 F �n;p1 + 2=(n+ 1)� = e=2. These together with (9) prove the
laim.By letting j�j ! 1, it is easy to see that ne
essarily C � 1 in (1).Using this together with the bounds supn�1 kT nk � C2 and (7) gives a moresimple upper bound sup(n+1)�1 (n+ 1)k(I � T )T nk � (2 + e)C3. In fa
t,the proof of Theorem 4 shows that the boundedness of sequen
es fT ng andf(n+1)(I � T )T ng is equivalent, whenever T satis�es only the \third order"Ritt 
ondition supj�j>1 k(1� �)3(�� T )�3k <1:Referen
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