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1 Introduction

In this paper, we consider the connection of the solution set of a discrete
time Riccati equation (DARE) to the invariant subspaces of a linear opera-
tor. Because this paper is not written to be self-contained, we assume that
the reader has access (and some understanding) to the our previous works
[12], [13], [14], [16], [17], and [18]. All these works are written in discrete time
but the references they contain are mostly written in continuous time. A pre-
liminary version of this paper have been presented in MMARO98 conference,
Poland, see [15].

Let us first recall some basic notions. Let ¢ = (4 B) be an I/O stable
and output stable discrete time linear system (DLS), and J € L(Y) a self-
adjoint cost operator. The symbol Ric(¢,J) denotes the associated discrete
time Riccati equation, given by

A*PA— P+ C*JC = KiApKp
(1) Ap=D*JD + B*PB
ApKp = —D*JC — B*PA.

If P is a self-adjoint solution of Ric(¢, J), we write P € Ric(¢,J). So, the
same symbol is used for DARE and its solutions set. We believe this does
not cause any confusion.

We make it a standing assumption that ¢ is both I/O stable and output
stable. Then DARE (1) is called H*DARE, and write ric(¢, J) in place
for Ric(¢,J). A reasonable theory for H*DARE is given in our previous
works [16] and [17]. Several subsets of the solution set Ric(¢,J) are defined
and studied in [16]. The most interesting (and smallest) of them, the set of
regular H* solutions ricy(¢, J), contains those P € Ric(¢, J) whose spectral
DLS ¢p := (_f}P ?) is both output stable and I/O stable, and, in addition,
the residual cost operator

Lap:=s—limAYPAI

j—00

exists and equals 0.

1.1  Partial ordering and Riccati equation

Our starting point is the following lemma, given in [17, Theorem 95]. Tt
relates, under technical assumptions, the natural partial ordering of the non-
negative solutions P € ricy(@, J) to the partial ordering of certain chains of
(adjoined) partial inner factors of the I/O map Dy.



Lemma 1. Let J > 0 be a cost operator in L(Y'). Let ¢ := (4 B) be an I/O
stable and output stable DLS, such that range(By) = H. Assume that the
input space U and the output space Y are separable, and the input operator B
is Hilbert-Schmidt. Assume that the reqular critical solution P € rico(¢, J)
exists.

For Py, P, € rico(¢, J), the following are equivalent

(i) P, < P,.

(ii) range(Np, ;) C range(Np, 7y ), where Np is the (Ap, Apest )-inner fac-
tor of Dy,

We have to explain what the causal Toeplitz operator N, p, T4, with an
adjoint symbol, means in the previous lemma. The adjoint I/O map of Np
by Np is easiest defined in terms of the transfer functions Np(z) = Np(2)*,
for all z € D. To see what Np stands for, consider the following spectral
DLS, centered at P € ricy(¢, J)

A B
op = (—Kp I)

for arbitrary P € rico(¢, J). Its I/O map Dy, is a stable spectral factor of
the Popov operator Dy JD;. Under the assumptions of Lemma 1, the I/0
map Dy, has a (Ap, Ape)-inner/outer factorization Dy, = NpX, where
the outer factor X has a bounded inverse. Furthermore, X is independent
of the particular choice of solution P € rico(¢, J), and it follows that the
inner part Mp alone is responsible for parameterizing different stable spectral
factors of the Popov operator. We conclude that the partial ordering of the
nonnegative P € ricy(¢, J) becomes important because its connection to the
spectral factorization structure of DyJDy, and if P > 0, to the inner-outer
factorization of Dy in an order-preserving way, see [17, Lemma 79].

In operator theory, the notion of partial ordering emerges in connection
with the lattice of invariant subspaces of a bounded linear operator. The
question arises, whether the natural partial ordering of ricy(¢,J), as dis-
cussed above, would describe the invariant structure of some linear operator
in a fruitful way. We are led to seek answers to the following two main
questions:

A. Is there a bounded linear operator 7T, a model operator, such that
the natural partial ordering of the solution set ricy(¢, J) (under some
restrictive, but technical assumptions) gets encoded into the invariant
(or co-invariant) subspace structure of 7'7

B. If such T exists, can it be expressed in simple and practical terms of the
given original data, namely the quadruple (4 B) together with the cost
operator J? Furthermore, can we obtain system theoretic information
about the DLS ¢ and the associated H*DARE (1), by looking at the
structure of such an operator 77



It is well know that several variants of both these question can be (and have
been) given a positive answer, under some particular restrictive assumptions
that vary from work to work. These lead to several approaches, leading to
different descriptions of the partial ordering of the solutions set of DARE.
We proceed to make a brief survey of this literature in Subsections 1.2 and
1.3. After that we return to interpret Lemma 1 in Subsection 1.4, and get
another candidate for the model operator T

1.2  Description in terms of invariant subspaces
of a Hamiltonian operator

In the case of a matrix-valued DARE, the standard theory, as presented in
great detail in the monograph [10], provides us answers to the main questions
A. and B. of the previous Subsection. In this theory, the solutions of DARE
are in one-to-one correspondence with the family of maximal, j-neutral in-
variant subspaces of a j-unitary Hamiltonian operator 7'. Here the Hermitian
matrix j := (5 ¢’) induces an indefinite scalar product, and the require-
ment of j-neutrality is related to the requirement that the solution of DARE
should be self-adjoint. For a particular construction of 7' from the data of
DARE, see [10, Chapter 12]|. See also [9] which contains good references and
an account of history.

Analogous operator approaches have been developed for systems with
an infinite-dimensional state space, see the continuous time example [2, Ex.
6.25] for Hamiltonians that are Riesz spectral operators, and its application
[3, Lemma 3.0.4]. We remark that in the literature, the main emphasis lies
on a a less general DARE (its continuous time analogue), arising from the
Least Squares type of problems. This LQDARE is given by

5 A*PA—P+C*JC = A*PB-A;' - B*PA
2) Ap =D*JD + B*PB.

Further comments and comparisons about the Riccati equations (1) and (2)
can be found in the introductory section of [17].

1.3 Description in terms of unobservable, unstable sub-
spaces

The unobservable and unstable subspaces of the semigroup generator A can
be used to classify the nonnegative solutions P for LQDARE of type (2).
These subspaces coincide with (the essential part of) the null spaces ker(P).
In this direction we refer to finite dimensional results [11], [23], [24], and
[25]. A particularly interesting result on the factorization of rational discrete
time inner function is [8, Theorem 4.1] and a continuous time result [7,
Theorem 4.3]. The results in [1] and [3] are also in this directions but infinite
dimensional.



We now consider the discrete time matrix work [25] (Wimmer) as a rep-
resentative of this genre. The LQDARE considered is a special case of (2),
written in our notations as

(3) A*PA— P +C*C = A*PB(I + B*PB)"' B*PA.

The linear system associated to this LQDARE is assumed to output stabiliz-
able, which is a sufficient and necessary condition for the LQDARE to have
a nonnegative solution. The state space C" is written as a direct sum of two
subspaces C" := Uy @ U,, where Uy is a subspace of V_(A, C), and the latter
is the subspace spanned by unobservable generalized eigenvectors associated
to the unimodular eigenvalues of A. In [25, Theorem 1.1], it is shown that
any nonnegative solution P can be decomposed according to this direct sum
representation. The part corresponding to Uy, say Py > 0, is a solution of
a Liapunov equation. As a source of inconvenience, P, is essentially forgot-
ten. The other part, say P, > 0, solves a reduced Riccati equation, and is
interesting enough to be further studied. The nonnegative solutions P, € S
of the reduced DARE can now be classified roughly as follows. To this end,
we define the family A of subspaces of C"

N:={NcC" | ANCN,
Vo(A,C)C NCV(AC), N+R(AB)+E.(A)= C”}

where V(A,C) is the unobservable subspace, V-(A,C) is the stable unob-
servable subspace, R(A, B) is the controllable subspace (range of the con-
trollability map) and E_(A) is the stable spectral subspace of the semigroup
generator A. The set N is shown to be in one-to-one order-preserving cor-
respondence with the solutions P, € S of the reduced LQDARE, see [25,
Theorem 1.3]. The correspondence is given by the mapping v : S — N is
given by v(P,) = ker(P,). We remark that for the class of LQDAREs (3),
it is quite easy to show that the null spaces ker(P) are A-invariant. In fact,
this technique is used in the proof of Lemma 9.

1.4 Descriptions in terms of shift-invariant subspaces

There is a completely different candidate for a model operator 7', discussed
in Subsection 1.1. This approach is based on Lemma 1, and it consequently
originates from our previous works [16] and [17]. To be more precise, we first
have to interpret Lemma 1 in the sense of Beurling—Lax—Halmos Theorem
on the shift-invariant subspaces.

In order to be able to speak about the usual inner transfer functions,

1
NpA%. Now the transfer

2
Pocrit
function N3(2) is inner £(U)-valued analytic function in D, having unitary
nontangential boundary limits K/;(ei")) a.e. e € T. Furthermore, /V}’ﬁ+
is the Toeplitz operator with causal symbol, equivalent (via Fourier trans-
form) to the multiplication operator by the (boundary trace of the) transfer

we normalize and define the I/O map N := A



function N3(e) on the Hardy space H2(T;U) C L3(T;U). So as the range
spaces range(./\7 P74 ), the reader will immediately notice that this situation
is described by the Beurling-Lax—Halmos Theorem of forward shift-invariant
subspaces. _

Because the inclusion of the ranges range(Np7, ) obey the partial ordering
of P € rico(¢,J) by Lemma 1, it follows that the orthogonal complement

spaces, denoted by

(@) Kp; = C(2450) © range( V),
are partially ordered by inclusion, but in a reverse direction. Clearly K )
are (backward unilateral shift) S*-invariant. We conclude that the restric-
tions S*|Km obey the partial ordering of the solution set ricy(¢, J), and
it is easy to imagine that each S*|K1TP/), P € ricy(¢, J), can be seen as part
of an associated operator T in its invariant subspace. This T would be a
restriction of the backward shift, too.

We have presented a rough outline of an answer to the first main question
A. we asked in Subsection 1.1. We now proceed to show that alse the second
main question B can answered in a satisfactory manner. In Subsection 1.5,
we discuss why the present approach is interesting from operator and system
theoretic point of view. In Subsection 1.6 we (quite superficially) compare

our approach to the two approaches, reviewed in Subsections 1.2 and 1.3.

1.5 Why is the desription by the shift-invariant sub-
spaces interesting?

From first sight it might seem that the choice of (a truncated version of the)
the backward shift S* on ¢?(Z;U) as the model operator T' would be unin-
teresting. Such 7' could have very little to do with the original data, namely
the I/O stable and output stable DLS ¢ = (4 B) and the cost operator
J > 0. Even if there were a connection, it might be techically complicated
to describe. Such a connection could be quite intractable, so that actual
numerical computations (needed in the applications of the Riccati equation
theory) could be impossible. In this description, the model operator T" oper-
ates generally in a infinite-dimensional sequence space (*(Z,;U), even if all
the spaces U, H and Y were finite dimensional. In Subsections 1.2 and 1.3,
the solutions were parameterized by subspaces H x H and H, respectively,
where H is the finite dimensional state space. At least in the first case, the
solution of matrix DARE can be found (even numerically!) by solving a
generalized Hamiltonian eigenvalue problem.

If all the bad things were true, the second main question B. might lack a
reasonable answer, and the practical significance of our earlier works [16] and
[17] would be diminished. The main goal of this paper is to establish a clear
and simple connection of the compressed shifts S*|K?F)’ P € rico(p, J), to
the original data (4 B) and J. We consider first certain closed loop semigroup
(co-)invariant subspaces of the state space.



Let J > 0 be a cost operator, and ¢ = (& 2) an output stable and I/O
stable DLS, with range(B,) = H. Assume that a regular critical solution
Pt = (Cg™)" JCS™ exists, and let P € Ric(¢,J) be such that 0 < P <
P¢rit. Define the subspaces HF := ker(P{™ — P)t = range(P§"™ — P) C H
where H is the state space of ¢. Clearly, the subspaces HY are ordered (by
inclusion) in the same way as are the solutions 0 < P < P§" (by nonnegativ-
ity). By a particular case of Corollary 8, each HF is a co-invariant subspace
for the closed loop semigroup generator A%t := Apgic = A+ BEKpaie. We

conclude that the (A)*-invariant subspaces HT, together with the restric-
tions (A)*|HF obey the partial ordering of the set

{P € Ric(¢,J) | 0<P< P} ={P¢cricg(o,J) | P >0},

where the equality is by [17, Theorem 96|, under stronger assumptions.

It is the main result of this paper to show that the compressions of the
shift S*|Kgo‘(7;) can be connected to restrictions (A)*|HF, for all P €
rico(p, J), P > 0. We now explain the outline how this is done. For tech-
nical simplicity, it is now assumed that Dy is (J, Aperit)-inner, and the outer

factor X’ of U of Dy (and each Dy, ) equals the shift- invariant identity Z. A real-

ization d)( ) is constructed for Mp, such that the semigroup generator gb( )
is the restriction (A*)*|H?, see Lemma 14. Under stronger technical as-

sumptions, ¢(P) becomes output stable (dom(C¢( )) HF) and observable

(ker( ) = {0}), see claims (ii) and (iii) of Lemma 22. Now we have the
commutant equation

(5) §*Cops = T4 7" oy = Coms (A |HP),

which connects (A)*|HP to a compression of the backward shift

—_~—

S*|range(C 7P )) Here ¢°(P) is a normalized version of ¢(P). Furthermore,
it appears that range(CN) is closed, and equals the co-invariant subspace

K¢o( 7 defined in equat1on (4)
This shows that the two descriptions of the set ricy(o,J),
the former by restricted operators (A®*)*|HF and the latter by restricted

shifts S*|range(Cm), are connected by a similarity equivalence, induced

by a bounded linear bijection. This connection is analogous to the connec-
tion of the zeroes and poles of a rational inner function to the generalized
eigenvectors and eigenvalues of the semigroup generator of its matrix-valued
realization. However, we use neither the notion of zeroes, nor the general-
ized eigenspaces of the semigroups. In this sense, our results are “genuinely”
infinite dimensional.



1.6 Comparison to similar existing theories

In Subsection 1.3, it was indicated how to parameterize the solution of LQ-

DARE by A-invariant null spaces ker(P). In our approach, we seem to have

turned everything upside down; we parameterize the solutions of DARE by

Acmit _co-invariant subspaces ker(P§t — P). We now explain why this is done.
For all P € rico(¢,J), P > 0, we have the stable factorization

(6) J2Dy = J?Dyr - Dy,

assuming that the technical assumptions of [17, Lemma 79| are satisfied.
In principle, each of the factors J%D¢p and Dy, could be used to associate
chains of inner factors and shift-invariant subspaces to chains in ricy(¢, J). In
[17], we have chosen to use spectral DLS ¢p because it is an easier object to
handle than the I/O map of J%D¢p. The first reason for this is that the input

space U and the output space Y of J %D¢ are generally different. We have
the additional trouble that for noncoercive J > 0, we can only conclude the
output stability and I/O stability of J%D¢p in [17, Lemma 79|, but not that
of Dyr; thus Ric(¢”, J) is not generally a H*DARE. Finally, if we make the
requirement (and we always do!) that a solution P € Ric(¢, J) should have
an invertible indicator Ap, it then follows that each of the spectral DLSs ¢p
can be normalized to have a boundedly invertible feed-through operator; in
our case it is the indentity. Thus the inconvenient nonsquareness and possible
“zero” of the transfer function Dy(z) at z = 0 will always be included in the
left factors J%Dd,p in the factorization (6).

We now explain why the choise of ¢p over ¢¥ “turns everything upside
down”. By Dy, = Np& denote the (Ap, Apet)-inner-outer factorization.
Because the inner factor in Dy, “decomposes” from the left in factorization
(6), and it should “decompose” from the right in order to be in harmony
with the Beurling-Lax-Halmos Theorem, we have to adjoin once and use
Np instead of Np in Lemma 1. This is the reason why A®*-co-invariant
subspaces HP must be used, instead of some A®-invariant subspaces. An
analogous comment can be made why the spaces ker(P¢™ — P) rather than
ker(P) are used.

We also remark that, under technical assumptions, the approaches pre-
sented in Subsections 1.2 and 1.3 give a full classification of the solution sets
of the DARE. Our corresponding results work only in one direction: to each
reasonable solution of DARE, a restricted backward shift is associated, but
not conversely. Much of this apparent weakness could be fixed if we a practi-
cal form of a state space isomorphism theorem were available. Unfortunately,
this is not possible in the full generality that we are considering.
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1.7 The technical outline of this work

In this subsection, we give an outline and a technical battle plan of this
paper. The following standing assumptions are used throughout the paper:

(i) The basic DLS ¢ = (4 B) is I/O stable and output stable, such that
dom(Cy) := {x € H | Cx € (*(Z;;Y)} is all of the state space H.
Furthermore, ¢ is assumed to be approximately controllable in the
sense range(By) = H, where range(B,) := Bydom(B,) and dom(By) :=
Seq_(U).

(ii) The input space U, the state space H, and the output space Y are
separable Hilbert spaces.

(iii) H*DARE (1) has the unique regular critical solution Pg* :=
(Csrit)™ JCgt € rico(¢, J) whose indicator satisfies A pesv > 0. Here

C;rit — (I _ 7?+D¢(7?+D;JD¢7T+)*17?+D;J)C¢

is the critical closed loop observability map, see [16, Definition 28 and
Proposition 29].

We also assume that the I/O map Dy is (J, Apeic)-inner, but this technical
assumption is lifted in the final Section 7. To obtain the full results of this
paper, the DLS ¢ = (4 B) is assumed input stable, the input operator B is
Hilbert—Schmidt, and the cost operator J is nonnegative. In this case, the
regular critical solution P§"* is nonnegative, and its indicator is definitely
positive.

In Section 2, we give basic result for DLSs ¢ whose I/O map Dy is (J, S)-
inner, i.e.

DjJDy =51

for some self-adjoint, boundedly invertible S € L(U). It appears that the
H>*DARE ric(¢, J) always has the critical regular solution P, and in fact
Apeie = S, see Proposition 2. In claim (iii) of Lemma 6, we show that
P§™t = C;JCs. In claim (iv) of Lemma 6, we show that the null space
ker(Pg* — P) is A-invariant, for P € rico(¢), J) with a positive indicator.
The rest of Section 2 is devoted to proving that the null spaces of type
ker(13— P) are Ap-invariant, provided that P, Pe rico(@, J) are comparable
to each other, see Lemma 9 and Corollary 10.

The reason to study a DLS with a (J, Apeit)-inner I/O map is the fol-
lowing. If we consider the cost optimization problem in the sense of [12],
associated to the pair (¢, J), many proofs and formulae will simplify. Same
comment holds also for the H*DARE theory, as presented in [16] and [17].
This is due to the fact that the outer factor A" in the (J, Apent)-inner-outer
factorization D = N X is identity, because we normalize S = Apgm and
moXme = I. We take the full advantage of all this triviality. In the final
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Section 7, we generalize the results to DLSs having a nontrivial outer fac-
tor X # Z, by using the results of [17, Section 15]. It is the price of this
additional generality that stronger technical assumptions must be made, see
Theorems 23 and 27.

In Proposition 12, the null space of the observability map C4 is “divided
away” from the state space H, to obtain an observable DLS ¢™¢ that has the
same I/O map as ¢ but a smaller state space. We remark that Dy is not re-
quired to be (J, Apocrit)—inner in Proposition 12. In Definition 13, we associate
the characteristic DLS @(P) to each P € rico(¢, J). The characteristic DLS
@(P) is simply a reduced, observable version of the spectral DLS ¢p in the
sense of Proposition 12. The basic properties of ¢(P) are given in Lemma
14. In particular, Dypy = Dy, = Np, where Dy, = NpX = NpZ is the
(Ap, Apgrit)-inner-outer factorization, see [16, Proposition 55].

The semigroup generator of @¢(P) is the compression IIpA|H?, where
[Ip is the orthogonal projection of H onto ker(P& — P)t, and HF :=
range(Ilp) is the state space of ¢(P). Because IIpA = [IpAllp by Lemma
6, (HPA|HP)* equals the restriction A*|HF. Trivially, if P{™ > P; > P, for
Py, Py € ricy(¢, J), then {0} = H%™ ¢ HP* ¢ H? c H. This connects the
partial ordering of the solution set rico(¢, J) to the partial ordering of the
A*-invariant subspaces H”, for the DLS ¢ with a (J, S)-inner I/O map.

In Section 4, an orthogonality result is given for DLSs whose trans-
fer functions are inner. In claim (iii) of Proposition 15, it is shown that
range(C,) = range(7Dym_) if range(7Dym_) is closed and proper techni-
cal assumptions hold. An application of this result is Lemma 17, where the
orthogonal direct sum decomposition
(7) (*(Z,;U) = range(No7y) @ range(Cm)
is proved for DLSs ¢ whose I/O map is (J, Apgm)—inner and P € rico(o, J)

is arbitrary. We remark that range(C(;;(Ig)) is closed as a conclusion, not

as an assumption of Lemma 17. The operator N3 and the DLS ¢°(P) are
connected to the characteristic DLS ¢(P) by equations (13) and (14).

In Section 5, we give a brief overview about a particular case of the
Sz.Nagy-Foias shift operator model. The inner characteristic functions for
class Cyg-contractions are introduced, and necessary results from the spectral
function theory are presented. Some work is done to translate the frequency
space notions, commonly used in the literature, to the time domain notions
used in our Riccati equation work.

In Section 6 we give our first main results. The battle plan here is roughly
as follows. For arbitrary P € ricy(¢, J), we study the normalized and ad-

—~——

joint version of the characteristic DLS ¢(P), denoted by ¢°(P) and defined

in equation (14). The inner transfer function D——= (z) = Np(z) is the char-

—_—~——

¢°(P)
acteristic function of the truncated shift operator S*|Km in the sense of
Sz.Nagy-Foias. Here K(;OTP/) = (*(Z;U) erange(Dm) is the S*-invariant

subspace, as given in Definition 21. The spectral function theory, presented
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in Section 5, connects effectively the operator theoretic properties of the

Coo-contraction S*|K ) to the function theory of the normalized transfer

function N 2(z), without assuming any finite dimensionality in any of the
spaces or the operators.

Because Dypy = Dy, = Np by our (practically) standing assumption on
the outer factor X = Z, we conclude, by Lemma 17, the equality K?F) =

range(Cm) from equation (7). We have obtained the similarity transform

* _ = L S * P
(S K O(P)) Co =™ Cam = S (A7)

by the basic formula 7, 7*C4 = C4A that decribes the interaction of the back-
ward time shift and the semigroup generator A for any DLS ¢. It is clear that
such a similarity transform gives us quite strong results about the restricted
adjoint semigroups A*|HF for P € ricy(¢,J). Of course, the strongest re-
sults are obtained when the similarity transform C 715 is a bounded bijection
with a bounded inverse, see Lemma 22 and Theorem 23. Then the restric-
tions A*|HP are similar to a Cgp-contractions, whose characteristic functions
are causal, shift-invariant and stable partial inner factors of the I/O map Dy,
see [17, Theorems 81 and 83].

So far we have considered only DLSs ¢ = (4 B) whose I/O maps are
(J, Apgrie)-inner. The general case, when D; is only assumed to be I/O stable,
is considered in Section 7. Instead of requiring an inner I/O map, we now
require only that the regular critical solution Pt € ricy(¢h, J) exists. It
is shown in [17, Section 15|, that the structure of the H*DARE ric(¢, J)
remains unchanged, if a preliminary critical feedback associated to Pt ¢
rico(¢, J) is applied. The resulting (closed loop) inner DLS has a (J, A peri )
-inner I/O map, and the results of the previous sections can be applied on
the pair (¢, J) instead of the original pair (¢,.J). In order to have the
equality rice(¢,.J) = ric(pF5",J) for the regular H™ solution sets. we
must assume, in addition to the assumptions of Theorem 23, that the input
operator B is Hilbert—Schmidt, and the cost operator J is nonnegative. For
details, see Theorem 27. Clearly, now the co-invariant subspace results are
for the critical closed loop semigroup generator At = Apesie of ¢F 5™ rather
than the open loop semigroup generator A of ¢.
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1.8 Notations

We use the following notations throughout the paper: Z is the set of integers.
Z.={jeZ | j>0}yZ ={j€Z | j<O0} Tistheunitcircleand
D is the open unit disk of the complex plane C. If H is a Hilbert space, then
L(H) denotes the bounded and LC(H) the compact linear operators in H.
Elements of a Hilbert space are denoted by upper case letters; for example
u € U. Sequences in Hilbert spaces are denoted by @ = {u;};cr C U, where
I is the index set. Usually I = Z or I = Z,. Given a Hilbert space Z, we
define the sequence spaces

Seq(Z) := {{zi}ticz |2 € Z and 3I€Z Vi<I:z =0},
Seqi(Z) == {{zitiez | 2 € Z and Vi< O0:z =0},

Seq (Z) := {{zi}icz € Seq(Z) | z; € Z and Vi>0:2z =0},
*(Z;Z) = {{ziticz C Z | Z ||zi]| < oo} for 1<p< oo,

i€Z

#(Zy; Z) = {{zi}icz, C Z | Z ||zill < 00} for 1<p< oo,

i€Zy
(°(Z; 2) = {{zi}icz C Z | sup||zil|z < oo}
i€Z
The following linear operators are defined for Z € Seq(Z):
e the projections for j,k € Z U {+oo}

mikZ = {w;t; wy =z for j<i<k, w;=0 otherwise,
71-.7 = 71-[]1.7]’ 7T+ = ﬂ-[l,oo}, T = 7'('[_00’_1},

Ty =7y +mTy, T_ =7y +m_,

e the bilateral forward time shift 7 and its inverse, the backward time
shift 7*

78 = {w;} where w;=1u; 1,

"0 = {w;} where w;=1u;j;.

Other notations are introduced when they are needed.
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2 DLSs with inner I/O maps

As discussed in Section 1, we start this paper by considering first DLSs
¢ = (A B) whose I/O map D, is (J, S)-inner for two self-adjoint operators
J € L(Y)and S € L(U). Basic results for such DLSs are given in this section.
In particular, we are interested in the invariant subspaces of the semigroup
generator A that are of the form ker(P§™ — P). Here P§"t := (C§™)" JCS™ €
rico(¢, J) is a regular critical solution, the closed loop critical observability
map is given by

C;rit = (I _ 77-+D¢(7T+D:;JD¢7T+)_17?+D;J)C¢a

and P € ricy(¢,J) is another solution that is comparable to P, Such
invariant subspaces are considered in Corollary 10. The A-co-invariant or-
thogonal complements HF := ker(P"* — P) in H are central in the later
developments of this work.

In order to be able to speak about the spaces ker(PS — P), the regular
critical solution P§"* must, of course, exist. Clearly, for an (J, S)-inner I/O
map Dy, the Popov operator is a static constant: D3JD, = S. Then the
sufficient and necessary conditions for the existence of a critical solution of
DARE are easy to give. The following result is a consequence of [16, Theorem
27 and Proposition 29|.

Proposition 2. Let J € L(Y) be a self-adjoint cost operator, and ¢ = (4 B)
an output stable and I/0 stable DLS, such that Dy is (J, S)-inner.

Then S has a bounded inverse if and only if a reqular critical solution
Pt € ricy(¢, J) exists. When this equivalence holds, S = Apgic and Dy 1s
(J, Apgrit)-inner.

For later reference, we give somewhat trivial and technical results about
DLSs with an inner I/O map. If a DLS has an inner I/O map, so has its
adjoint DLS:

Proposition 3. Assume that S1,S2 € L(U) are boundedly invertible, S; >
0, Sy > 0, where U is separable Hilbert. Suppose that N is a (Si, Ss)-inner
I/O map of an I/0 stable DLS with input space U, such that the static part

satisfies N'(0) = I. Then the adjoint I/O map N is (S5, Si)-inner.

1
Proof. By normalizing N° := SFN'S, 2, we get the transfer function N °(2)
r 1
be inner from the left. Because N°(0) = S5, ? has a bounded inverse, it
follows by [16, Proposition 34] that A/°(z) is inner inner from both sides. The
nontangential boundary trace A°(ei) is unitary a.e. €? € T. So the nontan-
~ 11
gential boundary trace of the adjoint function is N°(e%) := S, * N (e?)S} =
N°(e?)*. But now N is (S, ', Sy !)-inner. O



15

The following corollary is about the I/O map N, p whose Toeplitz operator
appears in Lemma 1.

Corollary 4. Let J € L(Y) a self-adjoint cost operator. Let ¢ = (4 5)
be an output stable and I/O stable DLS, with a separable input space U.
Assume that a critical P{™ € ricy(¢, J) exists, such that Apgic > 0. For any
P € ricy(o, J), let Np denote the (Ap, Apge)-inner factor of Dy,. Then the

adjoint 1/O map Np is (A, pmt’ Aph)-inner.

Proof. By [16, claim (i) of Proposition 55|, Dy, has the (Ap,APSm)—inner
factor Np. The static part of Np is identity, by [16, claim (ii) of Proposition
55]. The inertia result [16, Lemma 53| implies that Ap > 0 for all P €
rico(p, J). An application of Proposition 3 completes the proof. a

If J > 0, there are plenty of examples of DLS with (J, S)-inner I/O maps. If
the conditions of [17, claim (iii) of Lemma 79| are satisfied, the (normalized)
inner DLS Jz¢F has a (I, Ap)-inner I/O map, for each nonnegative P €
rico(p, J). We also remark that, under restrictive assumptions, the family
of DLSs with inner I/O maps is sufficiently rich to carry the structure of
all H*DAREs that have a critical solution, in the sense of [17, Theorem
105]. This will be exploited in Section 7 where the results of this paper are
extended to the general DLSs that do not have an inner I/O map.

The rest of this section is devoted to the study the Riccati equation, and
semigroup invariant subspaces of the state space. We start with a technical
proposition that only marginally depends on the structure of DARE.

Proposition 5. Let ¢ = (2 B) be a DLS and J a self-adjoint cost opera-
tor. Let P;,P, € Ric(¢,J). Then Kp, — Kp, = A;;B*(Pz — P)Ap, and
A;}B*(PQ - Pl)Apl - AI_DZIB*(PQ - Pl)Apz.

Proof. To prove the first equation, we calculate

KP1 - KP2 = A;llQpl - A;;lep2 = (A;ll - A;;)Qpl + A;;(Qpl - sz)a
where Qp := —D*JC — B*PA. Because v ! —y ! =y }(y— )z !, we have
Apl — Apl = AR B*(P, — P;)BAp!. Now we obtain, because Qp, — Qp, =
B*(P,— P)A

Kp, — Kp, = A;j (B*(P, — P)BKp, + B*(P, — P1)A)

= Ap B*(P, — P1)(A+ BKp,).
This gives the first equation of the claim. The second equation is obtained
by interchanging P; and P, in the first equation, and comparing these two

equations. m

Basic properties of DLSs with (J, Apeic)-inner I/O map are given below.
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Lemma 6. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B) be
an output stable and I/0 stable DLS, such that range(By) = H. Assume that
the reqular critical solution P := (C;ﬁt)* JCI* € rico(¢, J) exists, and the
1/0 map Dy is (J, Apgt)-inner.

Then for any P € Ric(¢,J) the following holds:

(i) The feedback operators satisfy Kpai = 0 and Kp = — A B (Pt —
P)A. Furthermore, Apgm = A and Cpocrit = C. The operator Q =
Pttt — P satisfies the following Riccati equation

@ A*QA— Q+ A*QB-Ap' - B*QA =0,
Ap = D*JD + B*PB.

(1i) The spectral DLS ¢p can be written in the following equivalent forms:
(9)

¢ _ A B _ Apézrit B _ A B
Po\-Kp I) \Kpww—Kp I) \A'B(Pf™—P)A I)°

(111) We have Cy = C¢P3m = Cg™ and P§™ = C3JCy.

(iv) Assume, in addition, that P € rico(¢, J) and Ap > 0. Then ker(P§™t —
P) =ker(Cy,). In particular, ker(P{™ — P) is A-invariant.

Proof. Because Dy is assumed to be (J, Apenc)-inner, the outer factor A’ in
the unique (J, Apgm)—inner—outer factorization Dy, = N X equals the identity
Z. The outer factor X = T is the I/O map of the spectral DLS ¢P6:rit =

(*Kf’f?”“ 7 ), whence we conclude that — K perie range(Bs) = 0. Because K pesi

is a bounded operator and range(Bs) = H, by explicit assumption, it follows
that the critical feedback operator Kpeic = 0. Immediately Apeie = A +
BKpaiw = A, Cperie = C'+ DKpee = C, and the second equality in (9) is
proved.

By applying Proposition 5 to Kp = Kp — Kpgie we obtain Kp =
—AR'B*(P§t — P)A, for any P € Ric(¢,J). This gives the third equal-
ity in (9), and completes the proof of claim (ii).

To complete the proof of claim (i), the Riccati equation (8) must be
verified. Because A};gm P§ritA Pt —Pocrit—i-C’;gm JC porit = 0 by [17, Proposition

68], a..nd Apgrit - A, Cpocrit - C, we have
APt 4 — PS4 C* JC = 0.

By rewriting the original DARE (1) with the aid of the already proved Kp =
—A'B*(PSt — P)A, we obtain for any P € Ric(¢, J)

A*PA—-— P+ C*JC = A*(Pocrit B P)BA;l . B*(Pocrit B P)A
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Subtracting these equations will give give the Riccati equation (8).
We now consider claim (iii). Because Kpeie = 0, the inner DLS at Pgrit

satisfies
crit A B
PO — —
? <C D) ¢

and so C, = C¢P§rit. Now claim [16, claim (iv) of Proposition 103| gives
C¢P8rit - C(ﬁcrit, Where

C((;‘it = (I _ ﬁ-+D¢(ﬁ'+D;JD¢7_T+)_1ﬁ+D;J)C¢

Thus P§™* := (C§™)" JC§™ = C;JCy, and claim (iii) follows.

Because P € ric(¢, J), both ¢ and ¢p are output stable. As in [16, proof
of Proposition 23], we conclude from DARE A*PA— P+ C*JC = K} ApKp
that

(10) P=P—TLap=ClJCs—Cl ApCsp,

where the residual cost Ly p = s —lim,, .o A* PA exists and vanishes because
R € rico(p, J), by assumption. Inserting Pt = C3JCy into equation (10)
gives

Pyt — P =C; ApCy,,

where P € rico(¢, J) is arbitrary. Because Ap > 0, claim (iv) immediately
follows because ker(Cy, ) is A-invariant. O

Actually, we now have all the results on invariant subspaces of the semigroup
that we need to complete this work. For academic interest, we continue to
study the subspaces ker(P§"* — P). We begin with another variant for the
result of claim (iv) of Lemma 6 is the following:

Corollary 7. Make the same assumptions as in Lemma 6. Let P € Ric(¢, J)
be arbitrary, such that Ap > 0 and P < Pocrit.
Then Aker(P§* — P) C ker(Pg — P).

Proof. Now Q := P§* — P > 0 satisfies DARE (8). Furthermore, this
equation can be put into form

A*Q*-R-Q*A=Q, R=1I+Q*BA;'B*Q".

Now, because Ap > 0 and the indicator is always invertible, Az' > 0. It now
follows that R > I. For any © € H we can now write the balance equation

11 1
|R?> - Q2 Az[| = [|Q3x]].

Because ker(Q?) = ker(Q) = ker(P& — P), and R® has a bounded inverse,
the claim follows. O
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The case when P§"t < P instead of P§™ > P is investigated similarly:

Corollary 8. Make the same assumptions as in Lemma 6, but assume, in
addition, that 0 € Ric(¢,J), Agp > 0, and P > 0. Let P € Ric(¢,J) be
arbitrary, such that Ap > 0 and Pt < P.

Then Aker(Pgt — P) C ker(Pgmt — P).

Proof. Again, we use the DARE (8). This time we write Q := P — P¢"it > 0.
By claim (i) of Lemma 6, @ satisfies

A*Q*-R-Q*A=Q, R=1I-Q*BA;'B*Q>.

This is exactly the same as the corresponding equation in Corollary 7, except
that one + has changed into —. The claim is proved when we can show, under
the additional assumption, that nevertheless R > 0 is boundedly invertible.

Because Pg"it > 0, we have 0 < Ap_pocrit =Ap— B*PgritB < Ap. Because
the indicator operator always has a bounded inverse, it follows that 0 <
A;l < A;ipcrit = Aél. Now, clearly R > 0 has a bounded inverse, if in
equation ’

R>1- Q%BA;{PgmB*Q% =1 - QiBA;'B*Q?

the right hand side is strictly positive. Because 0 € Ric(¢, J), is follows that
Ay = D*JD > 0 has a bounded inverse. We have

Q*BAG'B*Q* = Q*B (Ao + B'QB) ' B*Q?
1 _1 _1 S At S | 1 1~ ~ -\ 1 - 1
— QIBA, (I + A, *B*QBA, ) A, ?B*Q% = Qi B (I n B*QB) B*Q}

. _1
where B := BA, *. Now, by a straightforward calculation (e.g. with the aid
of the Neumann series),

(I+QBB*Q*) ™ =1 Q*B(I+ B*QB)"'B*Q* =R,

because Q%BB*Q% > 0 and thus I + Q%BB*Q% is boundedly invertible. It
follows that R > 0 with a bounded inverse, and the claim is proved. O

An immediate consequence of Corollaries 7 and 8 is the following;:

Lemma 9. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (A B)
be an output stable and I/0 stable DLS, such that range(By) = H. Assume
that the regular critical solution P{™t := (C;rit)* JCG € rico(p, J) emists,
and P§t > 0. Assume that the I/O map Dy is (J, Apgric)-inner. Assume
that 0 € Ric(¢,J) and D*JD = Ay > 0,

Let P € Ric(¢,J) be arbitrary, such that Ap > 0, and P is comparable
to PgMt. Then Aker(P§"t — P) C ker(Pgmt — P).

The closed loop semigroup generators Az = A = BK have the following
invariance properties, for P € ricy(¢, J), P > 0. Recall that these solutions

are exactly those that satisfy 0 < P < P if the conditions of [17, Theorem
96] hold.
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Corollary 10. Let J > 0 be a coercive self-adjoint cost operator in L(Y').
Let ¢ = (4 B) be an output stable and I/O stable DLS, such that range(B,) =
H. Assume that the input space U and the output space Y are separable, and
the input operator B € L(U; H) is Hilbert-Schmidt. Assume that the reqular
critical solution Pt = (C;"it)* JCG™ € rico(¢, J) exists, 0 € Ric(,J). Let
P € ricy(¢,J), P >0, be arbitrary.

Let P € Ric(¢,J) be arbitrary, such that Ap > 0 and P is comparable to
P. Then Apker(P — P) C ker(P — P).

Proof. By [17, claim (iii) of Lemma 79] and the assumption that J has a
bounded inverse, the inner DLS

¢15 _ As B

Cs D
is output stable and I/O stable, and the I/O map D5 is (J, Ap)-inner. Thus
Ric(¢f,J) is a H®DARE. Because range(B;) = H, it also follows that
range(B,») = H, as in the proof of [17, Proposition 86]. By Proposition 2,
there is a regular critical solution ]30Crit € T?;CO(QSP, J), and by [17, Lemma 100],
P§"t = P > 0. Because the full solution sets of DAREs satisfy Ric(¢,.J) =
Ric(¢", J) by [17, Lemma 65], it follows that 0 € Ric(¢”,J). Because J > 0,

it follows that the indicator Ag = Ag = D*JD > 0. An application of Lemma
9 on DLS ¢ and cost operator J proves the claim. O
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3  Characteristic DLS ¢(P)

In this section, we first develop tools that are required to “divide” the unob-
servable subspace ker(C4) away from the state space. This gives us a reduced
DLS. With the aid of this construction, we define the characteristic DLS
@(P) for each solution P € ric(¢, J), see Definition 13. The basic properties
of ¢(P) are given in Lemma 14.

Proposition 11. Let ¢ = (4 B) be an output stable DLS. Then ¢ = (4. €. )
18 input stable, and C} = Bg flip. Here flip = flip? = flip* is the unitary
mapping on § € (*(Z;Y), given by

(flipg); = y—j—1.

Proof. Let §j € (*(Z,;Y), o € H be arbitrary. Then
(§,Cxo) = D (45, CAwo) =y (AC"y;, o)
=0 =0
=3 (ATCH flip ) 5 1,20) = (B(ip§), 20 ) = (Ci,20)
=0

Actually the previous is (at first) true only for § with finitely many nonzero
components. Only in this case flipg € dom(Bg), but then because dom(Bg) =
Seq (V) is dense in (*>(Z_;Y), it follows that B - flip coincides with the
bounded operator C* in a dense set. Because flip is unitary, it follows that
By is bounded and ¢ is input stable. Recall that dom(B) := Seq_(U) consist
of finitely long input sequences for all controllability maps. The input stable

controllability map B can always be extended by continuity from dom(B) to
all of (2(Z_;U). O

For a quite general DLS ¢, the kernel ker(C,) can be divided away from the
state space, without changing the I/O map Dy.

Proposition 12. Let ¢ = (4 B) be an output stable and I/0O stable DLS,
with state space H. Assume that Hy := ker(Cy) is nontrivial.

(i) Then there is a reduced DLS ¢™? with a smaller state space H™® :=
ker(Cy)™ C H, H = Hy® H", such that Dy = Dyrea and ker(Cyrea) =
{0}. The DLS ¢"*¢ is given by

¢red o HredA|Hred HredB
—\ C|H D )

where T1"%¢ 4s the orthogonal projection of H onto H™®. In particular,
¢red is I/0 stable and output stable.



21

(i) We have TI"?A = TI"@AI™, By = "By and Cyrea = Cy|H™.
Thus ¢ written in I/O-form is

(HredA|Hred)j Hred8¢7*j

red __
¢ - C¢|H1~ed D¢
(iii) The adjoint DLS %’"\‘;d is I/O stable and input stable. Furthermore,
range(B ;) = Hred,

(iv) If, in addition, ¢ is input stable, then ¢"°¢ is input stable and %’”\‘;d i8
output stable.

Proof. Trivially Hy := ker(Cy) = Njsoker(C A7) is A-invariant. By Proposi-
tion 11, C§ = By -flip, where flip is the unitary flip reflecting (*(Z;Y") onto
(*(Z_;Y). We have ker(Cy) = range(C;)" = range(B;)", where = (49
is the adjoint DLS of ¢. _

Because the semigroup generator of ¢ is A*, it follows that the controllable
subspace of ¢, given by H" : = range(B;) = ker(Cy)" is A*-invariant, and
we have the orthogonal direct sum decomposition Hy @ H™ = H. If I1"*? is
the orthogonal projection onto H"¢ then A*II"¢? = [1"*¢ A*II"*¢ because the
ransge of the observability map is always semigroup invariant.

Define the bounded operators via their adjoints as follows: (A™?)* :=
A*|Hred . Hred _ Hred’ (Cred)* — [IredC* - Y — Hre4 and (Bred)* —
B*|H™?: H™*¢ — U. Define the DLSs

red Ared Bred /_;;1 _ (Ared)* (Cred)*
¢ (Cred D ) ’ ¢ - <(Bred)* D* ) :
These DLSs are adjoints of each other, and the state space of both ¢ and
¢"ed is, by definition, H"™®¢ C H. It is easy to see that ¢"¢ equals the one
given in claim (i).

Because A*II"? = TI"A*TI™ it follows that (Aed)*(Cred)* =
(A*)ITI"*4C*. Now, because C* is the input operator of ¢, we have range(C*) C
range(B;), and thus II"?C* = C*. This shows that B = B; = 11'B;
where H"? is regarded as a subspace of H and the projection IT"¢ serves
only as a reminder of this. In particular, because ¢ is output stable, then

QS is input stable together with qS’”ed But then, ¢™*? is output stable. From
definition of H™, it immediately follows that range(B (;J) is dense in H"™®4

red

and then ker(Cyrea) = {0}, where Cyrea : H™? — (*(Z,;Y).
Claim (i) is proved, once we show that the I/O maps coincide Dy =D

Because A*II"¢? = [1"*¢ A*I1"4, then (A|H"®?)/ = AJ|H"*. Now

red-

(Bred)* (Ared) *J (C«red)* — B*(A*)j|Hred el o
As above, from the inclusion range(C*) C range(Bj) it follows that
(Bred)* (Ared)™ (Cmed)* = B*(A*)IC* for all j > 0. Because also the static
parts coincide, we have Dq; = D ~,, and equivalently Dy = D 4rea.

¢red7
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We consider the second claim (ii). The claim about the semigroup is
already settled. We have already shown B grea = H’"equ;, and adjoining this
gives flip - CpII"*® = flip - Cyrea, Or Cy|H™® = Cyrea, because flip is unitary.

It remains to consider the controllability map of ¢"®¢. Because II"*¢A =
HredAHred, (Ared)jBred — (HredAHred)jHredB — HredAjB' Thus B¢redﬁ —
[1"*B,i for all & € dom(By). Consequently, if ¢ is input stable, so is ¢
This proves claims (ii) and (iv). The claim (iii) follows by adjoining the
previous results. O

We make an additional remark on the controllability properties of ¢"*?. Be-
cause Byrea = I1"*4By, it follows from the boundedness of the orthogonal

projection that II"*?range(Bs) C II"*range(B,) = range(Bge.a). Because
the range of the projection II"®? : H — H"? is of the second category in
Hred " range(By) is, by the Open Mapping Theorem, a closed subspace
of range(Byrea), in the norm of HF. If ¢ is approximately controllable, then
[17ed range(B,) is dense in Hr? because a continuous surjective mapping
maps dense sets onto dense sets. It then follows that range(Bgra) = H"™%;
i.e. ¢"4 is approximately controllable.

Similar results as Proposition 12 for continuous time well-posed linear
systems are given in [21]. There, the state space of the reduced system is a
factor space of type H/ker(C,). If H is a Hilbert space, we can identify this
with the Hilbert subspace ker(Cy4)*.

We are ready to define the main object of this section, namely the char-
acteristic DLS ¢(P), for P € ric(¢, J).

Definition 13. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B)
be an output stable and I/O stable DLS. Assume that there exists a regular
critical solution P € ricy(¢, J) and the I/0O map D is (J, Apgric)-inner. Let
P € ric(¢, J) be arbitrary.

(i) Define the closed subspaces
Hp :=ker(Cs,), HT :=ker(Cs,)",
of the state space H. By Ilp denote the orthogonal projection onto HF .

(ii) The reduced DLS (¢pp)"¢ of ¢p (as given in Proposition 12) is denoted
by

_ (TpA|H? TpB
QS(P) T <—KP|HP I >a

The DLS ¢(P) is called the characteristic DLS (of pair (¢, J)), centered
at P

The following lemma collects the results we have obtained in a useful
form.
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Lemma 14. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B)
be an output stable and I/0 stable DLS. Assume that there exists a regular
critical solution P§™ € ricy(, J), and the 1/O map Dy is (J, Ape)-inner.
Let P € rico(¢, J) be arbitrary. Then the following holds:

(i) The state space of ¢(P) is HY. The DLS ¢(P) is I/O stable, output
stable, and ker(Cypy) = {0}. The I/O map of ¢(P) satisfies Dypy =
Dy,

The adjoint DLS ¢(P) is input stable and approzimately controllable:

range(B;) = HY.

—_~—

(1) If, in addition, ¢ is input stable, then ¢(P) is input stable and ¢(P) is
output stable.

(111) Assume, in addition, that range(By) = H, and Ap > 0. Then Hp =
ker(P§Mt — P), where P{Mt .= (C;rit)* JCF* € rico(p, J) is the unique
reqular critical solution.

Proof. Claim (i) follows from claims (i) and (iii) of Proposition 12. If ¢
is input stable, so are all spectral DLSs ¢p, P € ric(¢,J) because they
have the same controllability map. Claim (ii) follows now from claim (iv) of
Proposition 12. Claim (iii) is a consequence of claim (iv) of Lemma 6. [

We remark that only the last claim (iii) required the I/O map of ¢ to be
(J, Apgrie)-inner. Because we can write Hp in terms of the solutions P and

Pttt we can actually calculate the projection IIp and also the operators
appearing in ¢(P).



24

4 Hankel and Toeplitz operators,
and the characteristic DLS ¢(P)

Let J € L(Y) be a self-adjoint cost operator, and ¢ be an I/O stable and
output stable DLS, such that a regular critical P{™ € ricy(¢, J) exists. Fur-
thermore, assume that ¢ has a (J, Aperit)-inner I/O map. In Definition 13 and
Lemma 14, we associate to each P € ricy(¢, J) the characteristic DLS ¢(P).
The I/O map Dy(p) equals the (Ap, Apesit)-inner operator Np, where Np is
the inner factor in the (Ap, Apei)-inner-outer factorization of the spectral
factor Dy, = NpX. If Dy itself is (J, Apee)-inner, then Dy, = Np and the
outer factor is trivially X = Z, see [16, Proposition 55]. However, we use the
symbol Np in place for Dy, , because in the final Section 7, we allow Dy, to
have a nontrivial outer factor X

In the main result of this section, Lemma 17, we consider the ranges of
the observability map C@;) and the Hankel operator 7, Npm_ of the adjoint
characteristic DLS given by

—  (A|HP —TpK}

Naturally, the I/O map of m equals Np. Because Np is (Ap, Apgrit)-inner,
/\7p is (A;ﬁt, A;l)—inner, by Corollary 4.
0

—_~—

The DLS ¢(P) is interesting because the ranges of the Toeplitz operators
vafnr code the partial ordering of the solution set rico(¢, J), even if Dy, con-
tains a nontrivial outer factor. For details, see Lemma 1 and the discussion
associated to it. We remark that because Lemma 1 deals with the adjoint

—_~—

operators Np rather than the original Ap, the adjoint DLS #(P) must be
considered instead of ¢(P).

In order to prove Lemma 17, we again need auxiliary Propositions 15
and 16 that have some interest in themselves. Let ¢ be a quite general 1/0O
stable and output stable DLS. In Proposition 15, we consider the inclusions
of the ranges range(Cy) and range(7,Dym_). In the particular case, when
the range(7, Dym_) is closed, equality of the ranges appears.

Proposition 15. Let ¢ := (& B) be an output stable and I/O stable DLS,
with input space U, state space H and output space Y. Define the domains
and ranges as follows: range(m,Dyn_) := 74Dy l*(Z_;U), dom(B,) :=
Seq_(U), range(By) := Bydom(By), and range(Cy) := Cy H.

(i) If ¢ is input stable, then

range(7; Dym_) C range(C).

(i1) If ¢ is approximately controllable, i.e. range(B,) = H, then

range(C,) C range(7Dym_).
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(1ii) If ¢ is input stable and approzimately controllable, and the Hankel op-
erator T, Dym_ has closed range, then

range(Cy) = range(7. Dym_).

Proof. We start by establishing claim (i). Let § € range(7,DyT_) be ar-
bitrary. Then there exists a (possibly nonunique) @ € ¢*(Z_;U) such that
§ = 7 Dym_1u. Because dom(B,) := Seq_(U) is dense in (*(Z_;U), we can
choose a sequence {@;};>9 C dom(B,) such that @; — @ in the norm of
(*(Z_;U). Then, because D, is bounded,

(11) 7:Dym_t; —§ as j — 00,

in the norm of ¢*(Z,;Y). Because B, is bounded, there is z € H, such that
Bygm_u; — x. Because Cy4 is bounded,

(12) C¢B¢7r,ﬁj — C¢33 as j — 00,

in the norm of ¢*(Z;Y). Because T;Dym_ = CyBs on dom(By), we have
Cyor = § and § € range(Cyp), by equations (11), (12), and the uniqueness of
the limit. Because § € range(7,.D47_) was arbitrary, claim (i) follows.

The proof of claim (ii) is straightforward. Trivially C4range(B;) C
range(7_Dm_). But then, the continuity of C, implies the inclusions

range(C) := C H = Crange(By) C Crange(By) C range(7_Dr_),

because H = range(B,) as claimed. The last claim (iii) is an easy consequence
of the previous claims. O

Proposition 16. Let H be a Hilbert Space, and Hy its closed subspace. Let
Hy be a (possibly nonclosed) vector subspace of H, such that Hy L Hy and
H - H1 + HQ.

Then Hy is closed, and we have the orthogonal direct sum decomposition
H - H1 @ HQ.

Proof. If x € H; N H,, then the orthogonality of H; and Hs implies that
0 = (z,z) = ||z||?, whence x = 0. Thus H; N Hy, = {0}, and H = H; + H,
is an algebraic direct sum. Assume x € H,, and let Hy 3 r; — x in the
norm of H. Then © = %, + &, for unique #; € H; and ¥, € H,. Let
P be the orthogonal projection onto H;. Then Pz; = 0 for all j because
z; € Hy C Hi". Now we can estimate

||Pz|| = ||Pz — Pz;|| < ||z —zj|| > 0 as j — oo.
It follows that 0 = Px = PZ, + PZ,. Because Z; € H;, then PZ, = Z;.

Because 2, € Hy C HlL, then PZs = 0. Thus ; = 0 and z = Z» € H,. This
implies that H, is (sequentially) closed. O
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Now we have obtained necessary preliminary results, and it rginjins to apply
Propositions 15 and 16 to the adjoint characteristic DLS ¢(P). We work
under the assumption that a regular critical P € ricy(¢, J) exists, and the
indicator Apes > 0. Then, as in Corollary 4, all indicators Ap, P € rico(¢, J)
are positive because it is assumed that the input space U is separable. So we
can define the normalized I/O maps

(13) Np = A NpAPmt, Np = A2 e}

PCI‘lt

where Np is inner from the left, (i.e. (I,I)-inner). In fact, the transfer
functions of both these normalized DLSs are inner (from both sides). If the
input space U is finite dimensional, this is a trivial fact because all isometries
are unitary in a finite dimensional space. The general case, when U is just
a separable Hilbert space, is related to the fact that the evaluation of the

1
transfer function Np(0) is identity, and thus Nps(0) = AZNp(0)A2 porit

bounded inverse. For details, see [16, Proposition 34|. The normalized DLSs
are defined analogously:

has a

(1) $(P) = ARd(PIA . and 3 (P)i= A, LGPIAL.

In the following lemma, we consider the adjoint characteristic DLS ¢°(P).
We show that the range of the Toeplitz operator Np7, is “complemented”
in (*(Z,;U) by the state space H” of ¢(P), through the observability map

Cm.

Lemma 17. Let J € L(Y) be a self-adjoint cost operator. Let ¢ be an
input stable, output stable and I/O stable DLS, such that the input space
U is separable. Assume that a regular critical P{™ € ricy(¢,J) emists, and
Apeic > 0. Assume that the 1/O map Dy is (J, APcrlt) -inner.
"For all P € rico(¢, J), we have an orthogonal direct sum decomposition
*(Z,;U) = range(Np7,) @ range(Cm),

where the symbols are defined as in equations (13) and (14). In fact,

range(Cm) = range(7, N3m_), where both subspaces are closed.

Proof. We first show that
(15) (*(Z,;U) = range(N57,) @ range(7 Npi_),

where both the spaces are closed in ¢*(Z;U). Because N3(e¥) is inner from
both sides, also N3(e') is inner from both sides.

Thus N3 : (2(Z;U) — (*(Z;U) is a bounded bijection, with range(Ng) =
¢*(Z;U) and a bounded, shift-invariant (but noncausal) inverse. Thus, for
each @ € (*(Z;U), there is a @ € ¢*(Z; U) such that

W = 7_T+./\f§ﬁ = 77'+N1g7_1'+a + 7_T+N}C3)7T,’[/:.
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So the algebraic direct sum of the (yet possibly nonclosed) vector spaces
range(7, Np7,) and range(7, Npr_) is all of (*(Z,;U).

[e]

We prove the orthogonality of these spaces. ANp is a causal isometry
on (*(Z;U), by [5, part (a) Theorem 1.1]; here we have used the fact that
N3 (e?) is unitary a.e. e € T, as discussed before this lemma. We have

(@ N7 ) Npm_ = 7 (NR)* 7y - R N
= 7 (NR)Npm_ — (r_Nprs ) m_Npm_
=gy — (m_N2&, ) m_N3n_ =0,

because T_N pT+ = 0 by causality. The range of the Toeplitz operator N, Py
is closed, because its symbol is inner from both sides. The range of the Hankel
operator range(7, Npm_) is closed, by Proposition 16 where the spaces are
H = (*(Z,;U), H, = range(N3) and H, = range(7, N37_). This verifies
that we have the orthogonal direct sum decomposition (15), and it remains to
show that the same is essentially true when the Hankel operator is replaced
by the observability map Cm.

As discussed before the statement of this Lemma, Ap > 0 for all P €
rico(p, J), and the adjoint charcteristic DLS is described by Lemma 14.

—_—~——

Clearly ¢°(P) is I/O stable, because its I/O map is even inner. By claim
(i) of Lemma 14, gz?o—(\P/) is input stable, and approximately controllable
range(Bys) = H”. Finally, by claim (il) of Lemma 14, °(P) is output
stable, because ¢ is assumed to be input stable. Now, claim (iii) of Propo-

sition 15 implies that range(7, N3r ) = range(Cm),

they are closed subspaces. The proof is now complete. O

and, in particular,

For the closedness of the range of a Hankel operator, see [6, p. 258-259].
In Theorem 23 it is important that the observability map Cm is coercive.
To have this under the conditions of Lemma 17, it is enough to establish

injectivity.
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5 Truncated shifts and operator models

In this section, we recall some notions from the Sz.Nagy-Foias operator model
for later use in Section 6. Good references are e.g. [5, Chapter IX, Section 5],
[19], and [22]. In this section, all Hilbert spaces are assumed to be separable.
This makes it possible to work in terms of the boundary traces because our
transfer functions are always of bounded type. As before, if © denotes an
I/O map, then O(z) is its transfer function, and ©(e) is the nontangential
boundary trace. We identify the spaces H*(T;U), (L*(T;U)) and ¢*(Z;U),
(¢%(Z; U), respectively), by Fourier transform. With this identification, the
unilateral shift operator S = 77, denotes the forward shift on (*(Z;U)
as well as multiplication by ¢ on H?(T;U). The adjoint backward shift
S* = 7, 7* is understood in the analogous way. Finally, the symbol © denotes
the multiplication operator by ©(e?) on L2(U), as well as the corresponding
I/O map on *(Z;U).

As before, an analytic function O(z) € H*(L(U)) is called inner (inner
from the left), if the boundary trace function ©(e?) is unitary (isometry,
respectively) a.e. e € T. If ©(z) is an inner from the left, the closed
subspace is defined by

(16) Ko = H*(T;U) © ©H*(T;U).

By Pe we denote the orthogonal projection onto Kg. Because © H*(T;U)
is S-invariant, Kg is S*-invariant, or equivalently, S-co-invariant. By the
Beurling-Lax—Halmos Theorem, all S*-invariant subspaces of H?(T;U) are
of the form H?*(T;U) © ©H?*(T;U’), where ©(z) € H®(L(U;U")) is inner
from the left, and U’ C U is a Hilbert subspace.

We now consider the restriction S*|Kg and its adjoint, the compres-
sion PyS|Kg. The restriction S*|Kg is a contractive linear operator on the
Hilbert subspace Ko C H?(T;U). It is well known that various properties
of S*|Kg are coded into the function ©(e); for this reasion it is called the
characteristic function of S*|Kg. In a more general case, the characteristic
function ©(e?) € H>®(T;U) can be allowed to be just contractive in the sense
that ||©(e?)|| < 1 a.e. ¢ € T. In this case, the set of operators {S*|Ke}
is rich enough to model all contractive linear operators. This is the famous
Sz.Nagy-Foias operator model of contractions. For a lucid introduction, see
[5, Chapter IX, Section 5]. The special case, appropriate to this work, is when
the characteristic function ©(e%) is inner. Then the contraction S*|Ke has
a number of interesting properties and we now look at some of them. The
following proposition is [19, Corollary, p. 43|:

Proposition 18. Let O(e) be a contractive analytic function. Then O(e')
is inner (from both sides) if and only if S*|Ke € Cyy. Here Coy denotes the

class of contractions T on a Hilbert space, such that

s — limj%ooTj =0, s-— limj%OOT*j =0.
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We clearly see that class of Cyg-contractions is invariant under unitary
similarity, and closed under taking the Hilbert space adjoint. Actually [19,
Corollary on p. 43] says more than Proposition 18: all Cpe-contractions
are unitarily equivalent to some S*|Kg, for some inner ©(z). The adjoint
(S*|Ke)* = PoS|Kpg is a Cgp-contraction, and it is unitarily equivalent to
S*|Kg, where O(z) = O(2)* is the adjoint inner function. For proof, see [19,
Lemma on p. 75|.

The spectrum of S*|Kg € Cyp is studied in Lemma 20 with the aid of
spectrum of the function ©(z), defined as follows:

Definition 19. Let O(z) be an inner function. Its spectrum o(©) is defined
to be the complement of the set of z € D, such that an open neighborhood
N, C C of z exists with

(i) ©(2)7! ewists in N, N D,
(11) ©(z)™" can be analytically continued to a full neighborhood N,.

For the proof of the following Livsic-Moller -type result, [19, Theorem on
p. 75].

Lemma 20. Let U be a separable Hilbert space, and O(z) € H®(L(U)) be
inner. Define Ty := PoS|Ke € L(Kg). Then

(i) 0(Te) = o(©), where 0(©) C D is the spectrum of the characteristic
function O(z).

(i) The point spectrum of Te and Tg = S*|K¢ satisfies

op(Te) ={z €D | ker(0(z)) # {0}}

op(Te) ={z€D | ker(0(z)) # {0}}

We remark that 0p(Tg) C 0(Te), and the inclusion can be proper. The
dimension dim U is the multiplicity of the shift that models Tg. If dimU <
0o, then 0,(T§) = 0,(Te), by dimension counting. Also, dimker(z — Tg) <
dimU for all z € D. Much more is known about the truncated shift S*|Kg
if we know its characteristic function ©(z), and conversely. For example, the
invariant subspace structure of S*|Kg and the left inner factors of O(z) are
connected. To apply these descriptions to DARE, we need to translate these
notions into the time domain and state space language.

Definition 21. Let ¢ = (4 B) be an I/O stable and output stable DLS. We
define the following subspaces

K, :=(*(Z,;Y) ©range(Dy7, )
K, :=range(Cy) C (3(Z,;Y).
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Both K4 and l?d, are S*-invariant. If the transfer function Dy(z) is inner,
we see that the closed subspace K corresponds, via Fourier transform, to the
co-invariant subspace Kp, C H*(T;Y), as defined in equation (16). In this

paper, the spaces K 70 is investigated. Under the assumptions of Lemma

17, we have the equality of the spaces range(C = K— = K ——, where

g 1) °(P) °(P)

D(;q}g) = N3. The model operator S*|KA7§ is the truncated unilateral shift
(Ty7) |K7TP/) in space (?(Z,;U). Actually, we shall write S* instead of 7, 7*
also in the time domain. Stated in other words, the backward shift S* =

- . . - N o
m,.T", restricted to K¢O(P) = range(C¢o(P)) is a contractive linear operator

whose characteristic function is N3(z) € H®(L(U)). In the next section, we

shall make a connection to the state space and semigroup of ¢°(P).

6 Invariant subspaces of the semigroup

It is now time to combine the results of previous sections, and produce the
first of our main results. We start by reminding the main lines of previous
sections. Let J € L(Y) be a cost operator, and ¢ = (4 B) be an output
stable and I/O stable DLS, such that range(Bs) = H. We assume that
the regular critical solution Pg™ := (Cg™)*JCI™ € rico(@,J) exists and
Apgrie > 0. It then follows that all P € rico(¢p, J) have a positive indicator,
see [16, Corollary 54]. In this section, we still make the technical assumption
that the I/O map Dy is (J, Apgm)—inner, as in Lemma 14. This assumption
will be removed in the final Section 7 of this work.

Under these assumptions, we associate two mutually orthogonal sub-
spaces Hp := ker(Cy,) C H and HY := H © Hp to each solution P €
rico(¢p, J). Here, as always before, ¢p := (,ﬁp ?) denotes the spectral
DLS, centered at P. In claim (iv) Lemma 6 it is shown that Hp is A-
invariant. By the same lemma, the subspace Hp is related to the solution
P € rico(¢, J) in the following simple way: Because Dy is (J, Apgrit)-inner,
Hp = ker(Cy,) = ker(P§"t— P). Now we see that the solutions P € ricy(¢, J)
are immediately associated to a family { H”'} of A*-invariant subspaces. This
makes it possible to define the restricted operators A*|H? and their adjoints,
the compressions [Ip A|H? of the semigroup generator.

In this section, we study the structure of the restriction A*|HF € L(HT)
in terms of the characteristic (transfer) function N3(z), for arbitrary P €
rico(¢, J). This is done with the aid of the (normalized) adjoint charac-

teristic DLS ¢°(P) whose semigroup generator is A*|HY, and 1/O maps is
D%(z) = N3(z). The DLS ¢°(P) is the conveniently normalized adjoint
DLS of ¢(P) which has been introduced in the following way: By Proposi-
tion 12, the null space Hp := ker(Cy,) C H is divided away from the state
space H of the spectral DLS ¢p. We obtain another DLS, the characteristic

¢(P) := (¢p)"*® whose state space is HFY — it is the reduced DLS whose
I/O map equals that of the spectral DLS ¢p. Furthermore, the DLS ¢(P)
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is output stable and observable: ker(Cypy) = {0}. The adjoint DLS QT(\P/) is

input stable and approximately controllable: range(B—) = HY. A simple

Hable: range( D)
normalization is now required to turn ¢(P) into ¢°(P).
Under the above assumptions, the I/O map Np of ¢(P) is (Ap, Aperit)-

inner, where both Ap and A pgriv are positive. The normalization, as done in

—_—~——

formulae(13) and (14), gives us ¢°(P) and its adjoint DLS ¢°(P). The latter
is particularly interesting to us, and already considered in Section 4. The
DLS ¢(P) and its normalized version ¢°(P) is given by

OpA|H? TIpB o OpA|H?  TOpBA2,
op)i= (Trtie P) ey | TP TP
P CAZKpHP  ABALZ

Pperit
The state space of the DLSs ¢(P), ¢°(P), ggzﬁ/) and 50\(13/) is HF which is

regarded as a subspace of H. The properties of ¢°(P) and its semigroup
generator A*|HT are described in the following.

Lemma 22. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B) be
an output stable and I/0 stable DLS, such that the input space U is sepamble
Assume that the regular critical solution Pg™ := (C§™)*JCG™ € rico(¢, J)
ezists, and Apee > 0. Assume that the I/O map Dy is (J, Apgs)-inner.

For arbitrary P € ricy(p, J), the following holds:

—_——

(i) The normalized adjoint characteristic DLS ¢°(P) is input stable and
range(B(;;(}g)) = HF. The observability map C&QF) is densely defined

in HY, and closed. We have the commutant equation
* | T . * P * L = *
(17) (s K O(P)) Co 0 = Comg  (A'|H )0, S" = 7,77,

where the possibly nonclosed subspace K’m C

forallzy € dom((,’m),
(*(Z;U) is given in Definition 21.

(ii) Assume, in addition, that ¢ is input stable. Then the DLS ¢°(P) is
output stable and dom(C¢o( )) = HY. The range of Cm is closed,

and equals K , given in Definition 21. The following similarity

¢°(P)
transform holds

* _ . * P
(]‘8) (S |K o(P)) C¢0(P) - C¢0(P) (A |H )’
where all the operators are bounded.

(1ii) Assume, in addition, that ¢ is input stable and approzimately control-
lable: range(B,) = H. Then ker(C T ) = {0}, and the observability

—— - P -
Umeizec¢o(P) : HY — K¢O(P) 1s a bounded bijection with a bounded in
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Proof. We start with claim (i). The DLS ¢° ( ) is input stable and approxi-
mately controllable, by claim (i) of Lemma 14, because the normalization by
the boundedly invertible indicator operators A peric and Ap plays no essential
role. For any I/O stable DLS ¢, range(By) C dom(C,), by [14, Lemmas 49
and 40]. Tt follows that the observability map Cm is densely defined in

HP, because range(¢°(P)) = HP. The closedness of Cm is dealed in [14,
Lemma 27|. Equation (17) is a basic property of the DLS, and claim (i) is
now proved.

We proceed to prove claim (ii). Claim (ii) of Lemma 14 implies the output

stability of ¢°(P), if it is assumed that ¢ is input stable. By the Closed Graph
theorem, we see that dom(CA/)) HF. The range of C—— =) is closed, and

equals K by Lemma 17. Now the similarity transform (18) follows now

¢°(P)’
from equation (17).

To prove the final claim (iii), we show that approximately controllability
range(B,) = H implies the injectivity of the observability map C&;(};). We
first show that if range(B,) = range(B,,) = H, then range(Byp)) = H” =
range(IIp). For contradiction, assume that zo € range(Ilp) © range(Byp)).
Because Bypy = HpBy, = [IpB, by claim (ii) of Proposition 12, we would
have for such x¢ and all @ € ¢*(Z_;U):

0= <$0, HPB¢11> = <Hp$0, B¢ﬁ> = <$0, B¢ﬁ> .

But then zo = 0 because range(B;) is dense in H. So range(Byp)) = HY, or

equivalently, ker(C ¢(P)) = {0}, by Proposition 11. The proof is completed,
by recalling the well known functional analytic fact that a bounded bijection
between Hilbert spaces has a bounded inverse. O

We conclude from claim (iii) of Lemma 22 that if the observability map
Cm is injective, then the similarity transform (18) effectively combines
the properties of A*|H” to the properties of the restricted shift S*|K/~(—P/).
By using the theory of shift operator models as outlined in Section 5, the

properties of S*|KA/) and its characteristic function D =) ( ) = N3(z ) are

tied together in a very strong manner.

Theorem 23. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (A B)
be an input stable, output stable and I/0O stable DLS, such that the input
space U is separable and range(By) = H. Assume that the regular critical
Pgrit = (CF*)* JCF™ € rico(¢, J) ewists, and Apese > 0. Assume that the 1/0
map Dy is (J, Apese)-inner.
Then for arbitrary P € ricy(¢, J) the following holds:
(i) The restriction A*|HT is similar to a Cyo-contraction, whose inner
characteristic function is N3(z) € H®(L(U)). The similarity trans-
form is given by

* _ . * P
(19) ('K 75) - Coms = Cormy - (A1)
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where Cm :HY — Km s a bounded bijection, and the S*-invariant
subspace K&QF) 1s given in Definition 21.

(ii) The spectra satisfy o(IlpA|HP) = o(N3) = o(A*|HF), where the bar
denotes complex conjugation, and the spectrum of the inner function s
giwen in Definition 19.

In particular, both o(IIp A|HF) and o(A*|HT) are subsets of the closed
unit disk D.

(11i) The point spectra satisfy

(20) op(A*|HT) = {z € D | ker(Np(2)) # {0}}
and
(21) o,(IIpA|H") = {2 € D | ker(Np(2)) # {0} }.

In particular, if A*|H? is compact, then it 1is power stable
(i.e. p(A*|H?) < 1).

(iv) Both A*|HY and its adjoint Tip A|H” are strongly stable.

Proof. The first claim (i) follows from the similarity transform in equation
(18) of Lemma 22, together with the discussion in Section 5.

Let us look at claim (ii) of the spectrum. Let A € C be arbitrary. Then
we have

(22) (/\ - S*|Km) = Cop (A — A'|H”) (cm)_l .

-1
— . — P . .
where <C¢0(P)> : K¢0(P) — H" is the bounded inverse of the bounded

bijection. Immediately, & (S*|K¢jo“(}7)> = o(A*|H"). By adjoining

o (PWS|K¢:;(1-;)> = U((A*|HP)*) = o(IlpA|HP),

where PJ‘TP/) is the orthogonal projection of ¢*(Z,;U) onto Km. Lemma
20 implies now that o(A*|HP) = o(IlpA|HF) = o(N3). This proves claim
(ii). Claim (iii) about the point spectra follows similarly from equation (22)
and the latter claim of Lemma 20. We just remark that if A*|H? is compact,
then o(A*|HT) C D because the origin is the only accumulation point that
a spectrum of a compact operator can have.

To verify claim (iv), note first that (S*|K/;(—P/)) is a Cpo-contraction, see
Proposition 18. Then we have

. -1 J
* P\J . *
1(AEY 2ol < 11 (Coms ) 111 (S* 1K) Cmymoll = 0,

as j — oo. The adjoint part is similar, and the proof is complete. O
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Corollary 24. Make the same assumptions as in Theorem 23, but assume,
in addition, that dimU < oo . Then for arbitrary P € ricy(¢, J)

(23) o(A*|HP)N D = 0,(A*|HF) = 0,(TIp A|HF),

where the bar denotes complex conjugation. If {\;(A*|HF)};>1 is the enu-
meration of the eigenvalues o,(A*|H) in the nondecreasing order of absolute
values, then the following Blaschke condition is satisfied

(24) > (1= (AT H)]) < oo,

Jj>1
In particular, both A*|H? and IpA|H” are injective.

Proof. From claim (iii) of Theorem 23 we conclude that o,(A*|HY) =
o,(IIpA|HF) because for each z € D, ker(N5(z)) # {0} is equivalent to
ker(N3(2)*) = ker(N3(z)) # {0}, by dimension counting in the finite di-
mensional space U. Because 0,(A*|HY) C o(A*|H?) N D by claim (iii) of
Theorem 23, the equality (23) is proved once we establish o(A*|HF) N D C
op(A*|HT).

Because n := dim U < oo, we can consider the complex function det K/}%(z),
for 2 € D. By recalling the definition of the determinant as a finite sum of
products of the matrix elements, we see that det N3(z) is an analytic func-
tion. For any n x n matrix M we have by

[ det M| = [T I\(M)] < []o(M) < |||
7=1 7=1

where \;(M) are the eigenvalues of H, o;(M) are the singular values of M,
and their inequality is by H. Weyl, see [4, p. 1092]. This makes is possible to
conclude that det N'3(z) € H*(D; C), and because | det(U)| = 1 for unitary
U, we conclude that det A/3(z) is an inner function. Of course, the same is
true for det Np(z), too.

We proceed to show that

(25) c(N3)ND = {z e D] det N3(z) = 0}.

By the basic property of the determinant, the open set E := D\ {z €
D | det N3(z) = 0} is exactly the set of 2 € D where N3(z) is invertible.
To show (25), we must additionally show that the mapping z — N3(z)™"
is analytic in the set £ C D. This follows from the following outline of an
argument: Assume f(z) is a matrix-valued analytic function in £ C C, such
that det f(29) # 0 for some zy € E. Then f(zp) has an inverse, and we can
assume that f(z9) = I without any loss of generality. By developing f(z)
into its power series at zp, we have ||I — f(2)|| < 1/2if |z — z¢| < & for some
0 > 0. It then follows that the von Neumann series

T === f)) =) (I~ f(2))

j=0
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converges for all |z — zp| < . In fact, the convergence is uniform on the
compact subsets of {z ||z — z9| < §}. Because the limit of such a sequence of
analytic functions is analytic, f(z)! is analytic for |2 — 2| < §. Equation
(25) follows from this consideration and Definition 19 of o/(A3).

From equality (25), we conclude that o(A*|HF) N D =
{z € D |
det N3(z) = 0}, by claim (ii) of Theorem 23. Let z € o(A*[HF) N D be
arbitrary. Then det A/3(z) = 0, and the matrix N3(z) fails to be injective.
The same is true for N3(2) = N3(z)* because dimU < co. Now claim
(iv) of Theorem 23 shows that z € op(A*|HF), and the converse inclusion
o(A*|HY)ND C 0,(A*|HT) follows.

We have now proved that

o(A*IHPYND = {z € D | det Np(2) = 0} = op(A*|HT),

where det N3(2) is an inner function. By e.g. [20, Theorem 17.9], the zeroes
of an inner function can be factorized away by a Blaschke product. Because
the zeroes of the Blaschke product satisfy the Blaschke condition, equation
(24) follows. The final claim about the injectivity of A*|HY and IIpA|H?

follows because A’p(0) = I is invertible. O

Under particular conditions, we can make conclusions of the unrestricted
semigroup generator A itself. The proof of the following corollary is based
on Lemma 22 and Corollary 24.

Corollary 25. Make the same assumptions as in Theorem 23. Assume that
there erists a P € ricy(p,J) such that HP = H. Then A is similar to
a Cyo-contraction, and is strongly stable together with its adjoint A*. If A
is compact, then it is power stable p(A) < oo. If dimU < oo, then the

eigenvalues A\;(A),., = 0(A) N D satisfy the Blaschke condition

D (1= [N]) < o0

j>1

In particular, if P{™ > 0 and there exists a P € ricy(¢, J) such that P <0,
it follows that HF = H.

We complete this section by considering what happens if the approximate
controllability condition in claim (iii) of Lemma 22 is not satisfied, but all
the other conditions of the preceeding claim (ii) are satisfied. Then all the
operators are bounded in the commutant equation

* — . * P
(S |K¢°(P)) Com = Com AT,

and even range(Cm) = Km is closed. However, ker(Cm) can be non-

trivial. If we make the decomposition of the state space HY = ker(C(;q]g))L &
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ker(Cm) and use the fact the null space of the observability map is semi-
group invariant, the commutant equation takes now the form

(S*|K’o“(5)) . [(3@;)|1<e1r(cﬁ;))L o]

o __\L
- [c 75 ker (C) o] :

HlA*|keI‘(C¢;‘E—/P))L 0 ]
* 1 *
(I = ) A*fker(Co) - (I = Th) A*[ker(Cms)

or

(S*|K~) Comp er(Cimg )

¢°(P) ¢°(P)
e o 1 . * o 1
= Com lker(Cs) (HlA ker(C) )

where TI; is the orthogonal projection of HF onto ker(C—=)"', and

¢°(P)
Cm |ker((3(ﬁ—1;))L is now a bounded bijection. What has already been stated
about A*|HF under the approximate controllability of ¢, can now be gener-
ally stated about the compression HlA*|ker(ng(7;))L, at the cost of increased
notational burden.
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7 Generalization

In this section, we use extensively the tools developed in [17, Section 15|, and
in particular [17, Proposition 104 and Theorem 105].

The general goal of this section is to translate the results of previous sec-
tions (valid for DLSs ¢ having a (J, S)-inner I/O map) to general output sta-
ble and I/O stable DLS ¢ without this restriction. For this to be possible, we
must require that a regular critical solution P5™* := (C§™)*JCG™ € rico(¢, J)
exists, where

(26) C;rit = (I — ﬁ+D¢(ﬁ+D;JD¢ﬁ+)717?+D:;J)C¢

Furthermore, we make it a standing hypothesis that both J > 0 and
range(B,) = H. This implies that P¢™ is the unique critical solution in
set ric(¢, J) D ricy(d, J).

We first make the preliminary state feedback, associated to the solution
P¢tit. This gives the closed loop system

QSPézrit — <AP6:rit B) .
Cpeie D
This is the inner DLS of ¢, centered at the regular critical solution Pt €
rico(p, J). The DLS $Fs™ carries much of the interesting structure of the
original DLS ¢, see [17, Proposition 104], Even the structure H*DAREs
ric(¢, J) and ric(¢5", J) is quite similar, see [17, Theorem 105]. However,
the I/O map of ¢ is (J, Apes)-inner, by [17, Lemma 79]. To the inner
DLS ¢7"™ and inner DARE ric(¢F5"™", J), we can apply the theory of Section
6. The results are then translated back to the original data, namely the DLS
¢, cost operator J and H*DARE ric(¢, J). This trick gives us information

about the invariant and co-invariant subspace structure of the closed loop

semigroup generator Apocrit, rather than the open loop semigroup generator
A

The full solution sets of the DAREs Ric(¢, J) and Ric(gbpocrit, J) are equal
by [17, Lemma 65]. Thus the spectral DLS (475" )p makes sense, for all
P € Ric(¢,J). It is given by

it A crit B
Pcrl o P
(27) (970 )p = (Kpgm ° Kp [> .

by [17, equation (59) of Proposition 59] With the aid of formula (27), we
enlarge the definition of the characteristic DLS ¢(P) (see Definition 13) to
DLSs whose I/O map need not be (J, A peic )-inner.

Definition 26. Let J € L(Y) be a self-adjoint cost operator. Let ¢ = (4 B)
be an output stable and I/0 stable DLS, such that the input space U is sep-
arable. Assume that the regular critical solution P{™t := (C;ﬁt)*JC;ﬂt €
rico(p, J) exists.
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For P € ric(¢,J), the characteristic DLS ¢(P) of P is the reduced DLS
(in the sense of Proposition 12) of the spectral DLS (¢75" )p. It is given by

HPAPcrlt HP HPB
QS(P) <(Kpcr1t - KP)|HP I

where HY := ker(P§™ — P)L, Tlp is the orthogonal projection of H onto HY.

If range(Bs) = H and ¢ itself has an (J, Apee)-inner I/O map, then
Kpeie = 0, Apese = A and immediately ¢F"™ = ¢, see the proof of Lemma
6. In this case, the characteristic DLS ¢(P) coincides with the one given
in Definition 13, for DLSs with (J, Aperit)-inner I/O map. We now consider
restrictions of Aperit to its certain invariant subspaces, for each P € rico(d, J).

Theorem 27. Let J > 0 be a self-adjoint cost operator. Let ¢ = (4 5) be
an input stable, output stable and I/0 stable DLS, such that the input space
U and output space Y are separable. Assume that range(By) = H and the
input operator B € L(U; H) is Hilbert-Schmidt. Assume that the regular
critical solution P§™ = (C§™)*JCG™ € rico(¢, J) exists.

Let P € rico(¢, J) be arbitrary. By ¢(P) denote its characteristic DLS,
given by Definition 26. By Np denote the (AP,APSru)—inner factor of Dy,.
Then the following holds:

(i) The restriction of T pA*

Pcrlt 18 stmilar to a Cyy-contraction, whose

characteristic function is N 2(2). The similarity transform is given by

* e crit* P
(28) (S K )C¢°( )_C¢°(P) (ATHIHT)
where C&QF) : HP — Km 15 a bounded bijection, and the S*-invariant
subspace Km 15 given in Definition 21.

HP) = o(N3) = U(A*Pmt HP), where
the bar denotes complex conjugation, and the spectrum of the inner
function is given in Definition 19. In particular, both o(Ilp Aper HF)

and U(A};mt HYF) are subsets of the closed unit disk D.

(i) The spectra satisfy U(HPAPSm

(iii) The point spectra satisfy

Op(Apert| H) = {z € D | ker(Np(2)) # {0}}

and

0p(IpApert|[H) = {z € D | ker(Np(2)) # {0}}.

P

In particular, if A%

(A};mt HP) <1).

Pmt is compact, then it is power stable (i.e.
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(iv) Both A%

Porit HP are strongly stable.
0

HT and its adjoint TIp A perie

Proof. We reduce this theorem to Theorem 23 by making a preliminary feed-
back, associated to the solution Pg™* := (C§™*)*JCG™. This amounts to re-
placing the original pair (4, J) by the pair (¢75™, J). By [17, claims (i) and
(iii) of Proposition 104], the inner DLS ¢ is input stable, output stable,

I/O stable and approximately controllable range(B¢P5rit) = H. Also, the I/O

map of ¢ is (J, Apese)-inner. The input and output spaces of ¢ and PP
coincide, and are thus separable.

By [17, claim (ii) of Proposition 104], P§"* is the unique regular critical
solution of its inner DARE ric(¢F5"", J), too. Because J > 0, it follows that
Pttt > 0 and its indicator (equalling Apesie) is positive. We conclude that the

inner DLS ¢f6™ together with the cost operator J, satisfies the conditions
of Theorem 23. 4

An application of Theorem 23 to the DLS ¢, the cost operator .J
and the H®DARE ric(¢f0™, J) proves all claims (i), (ii), (iii) and (iv) for
arbitrary P € rico(¢™0, J). But ricg(¢F5", J) = rico(¢, J), by [17, claim
(ii) of Theorem 105] and the fact that the input operator B, common to both
¢ and ¢Fo™ | is Hilbert-Schmidt. This completes the proof. O

Under the assumptions of Theorem 27, also the analogous results to Corol-
laries 24 and 25 hold, if the open loop semigroup generator A is replaced
by the closed loop semigroup generator Apgm. In particular, Corollary 25
gives a stabilization result for the critical closed loop semigroup. We remark
that the Hilbert—Schmidt compactness assumption of the input operator B
in Theorem 27 is required only to obtain the equality of the solution sets
rico(¢T5™ , J) = rice(4, J). In particular, if dimU < oo, this assumption is
trivially satisfied.
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