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31 IntroductionThis is the �rst part of a two-part study on the input-output stable (I/Ostable) discrete time linear system (DLS) � := ( A BC D ) and the associatedalgebraic Riccati equation (DARE)8><>: A�PA� P + C�JC = K�P�PKP ;�P = D�JD +B�PB;�PKP = �D�JC �B�PA;(1)denoted, together with its solution set, by Ric(�; J). The input, state andoutput spaces of the DLS � are separable Hilbert spaces and possibly (butnot necessarily) in�nite dimensional. In this �rst part, the necessary techni-cal machinery is developed. Then the (stable) spectral factorizations of thePopov operator D�JD are parameterized by the self-adjoint solutions of theDARE. Here D denotes the I/O map of the DLS, and J is a cost operatoron the outputs of the DLS. Many results given here do not require the costoperator J or the solution of the DARE to be nonnegative.The second part of this study is [27], where inner-outer type factorizationsof the I/O map are considered. These results are valid only for nonnegativecost operators J and nonnegative solutions of the DARE. In fact, this workand [27] provide an order-theoretic characterization of the solution set of thein�nite-dimensional operator DARE, in terms of spectral and inner-outerfactorizations. We remark that this work and [27] are written in two partsmerely for the reasons of page limitations. The section and equation numbersof the latter work [27] start where those of this work end. Also the referencelists of these papers are identical. The conference article [24] is a shortpresentation of the main lines of [26] and [27].Let us brie�y review some of our relevant previous work on the DLSs andtheir Riccati equations. In [21], the theory of (well posed) DLSs and theirfeedbacks is developed; much in the style and notation of the recent contin-uous time works by O. J. Sta�ans [36], [37], [38], [39], [40], [41], [42], [43],[44], and [45]. The work [20] contains discrete time minimax control theory,analogous to the early discrete time work [13] by J. W. Helton and parallel-ing the continuous time works of Sta�ans and also [54] by M. Weiss and G.Weiss. A considerable part of this work consists of a sharpening the resultsof [20] under more restrictive assumptions. The conference paper [19] is anabbreviated version [20]. Another direction (related to certain semigroup-invariant subspace problems) on the description of the nonnegative solutionsof DARE is outlined in [25] and the associated conference paper [22].



41.1 Outline of the paperWe proceed to give an outline of this paper. In the preliminary Section 2we extend the discussion of the fundamental notions of discrete time linearsystems (DLSs), initiated in [21]. Some additional structure is introduced:transfer functions and their nontangential limit functions (boundary traces)in the Nevanlinna class N(L(U ;Y )) of analytic (transfer) functions. Someresults from Banach space -valued integration theory and Fourier transformtheory are reviewed.By � := ( A BC D ) denote an I/O stable DLS of interest, by D� its I/O-map,and by J = J� a cost operator. The corresponding discrete time algebraicRiccati equation (DARE),8><>: A�PA� P + C�JC = K�P�PKP ;�P = D�JD +B�PB;�PKP = �D�JC � B�PA;(2)denoted by Ric(�; J), is introduced in Section 3. Even though the DARERic(�; J) can be written for an arbitrary DLS �, our interest mainly liesin the case when the DLS � is I/O stable; i.e., the transfer function D�(z)of � satis�es D�(z) := D + zC(I � zA)�1B 2 H1(L(U ;Y )). In this case,we call equation (2) an H1DARE, and write ric(�; J) instead of Ric(�; J).Furthermore, if P 2 L(H) is a self-adjoint solution of Ric(�; J) (or ric(�; J)),we write P 2 Ric(�; J). Thus Ric(�; J) and ric(�; J) represent both theequations itself and their solution sets.To each P 2 Ric(�; J), we associate an indicator operator �P and twoadditional DLSs: the spectral DLS �P and the inner DLS �P , centered atP 2 Ric(�; J) (see De�nition 19). These three objects are central in thiswork. They appear in a natural way in the open and closed loops DLSswhen certain state feedbacks (associated to P ) are applied to �, as will beseen later in [27, Section 9]. The solutions of the H1DARE ric(�; J) areclassi�ed in De�nition 20 according to the stability properties of the spectralDLS �P , and in De�nition 21 according to their residual cost behavior �atin�nite time�. The smallest subset of solutions for H1DARE is denoted byric0(�; J) � the set of regular H1 solutions P 2 ric0(�; J). Our strongestresults are given in this subset.In Theorem 27 of Section 4 we prove the equivalence of� the solvability of a minimax cost optimization problem associated topair (�; J),� the solvability of a certain (spectral, inner-outer) factorization problemfor the I/O-map D�, and� the existence of a special (regular critical) solution P crit0 of H1DAREric(�; J).



5This result appears in a more general form in [19, Theorem 40], and is statedhere only in the generality appropriate for this work. For similar results,see also [13], [29], [37], [39], and [54]. We remark that the existence of sucha P crit0 2 ric0(�; J) is close to being a standing hypothesis in the presentstudy. Well known su�cient conditions (relying on the nonnegativity of J orD��JD�) for this are given in Proposition 31 and Corollary 32.In Section 5 we present some auxiliary results from the operator-valuedfunction theory. A result of particular importance to us is Lemma 41, whichallows us to deal with an in�nite-dimensional input space U in [27], providedthat the input operator B 2 L(U ;H) is restricted to be a compact Hilbert�Schmidt operator. This result has some application in the following Section6. Section 6 contains two spectral factorization results, namely Lemma 45(the spectral factorization of truncated Toeplitz operators) and Proposition46 (the spectral factorization of the Popov function D�(ei�)�JD�(ei�), con-structed from the nontangential boundary trace of the H2 transfer functionD�(ei�)). Despite of this, our main interest here lies in the output stabil-ity and I/O stability question of the spectral DLS �P , for various solutionsP 2 Ric(�; J). The output stability of �P is easier, and it is treated inPropoposition 43 by nonnegativity techniques. The I/O stability of �P isconsidered in Corollary 47 and the remarks following it. The section in con-cluded by Lemma 49, which is an inertia result for the indicator operators�P , P 2 Ric(�; J) in a inde�nite metric.In Section 7, a spectral factorization of the Popov operatorD��JD� = D��P�PD�P(3)is associated to each solution of the Riccati equation P 2 ric0(�; J) satisfyinga certain residual cost condition. We say that the operator D�P is a stablespectral factor of the Popov operator D��JD�. Also the converse it true: eachsuch factorization induces a solution of the DARE ric(�; J), if range(B�) = Hwhere B� is the controllability map of �. This is the content of Theorem 50,one of the main results of this paper. We remark that the factorization ofthe Popov operator does not necessarily require the cost operator J to benonnegative, if we have an a priori knowledge that �P is output stable andI/O stable. For nonnegative cost, this follows as in previous Section 6, underthe indicated technical assumption.If P = P crit0 is the regular critical solution in the sense of Theorem 27, thenthis factorization is the �P crit0 -spectral factorization D��JD� = X ��P crit0 X ,where the spectral factor X is stable and outer, with a bounded causal inverseX�1. This leads to the (J;�P crit0 )-inner-outer factorization of the I/O-mapD� = NX with X = D�crit0 , see [20, Proposition 20]. We remark that ifP 6= P crit0 , then we do not always obtain an analogous factorization of D�, asa composition of two stable I/O-maps. The circumstances when we get suchstable factors, are considered in the second part of this work [27]. Inertiaresults, concerning the positivity of the indicator �P for all P 2 ric0(�; J),



6are given in Lemma 53 and Corollary 54. These are variants of Lemma49, which depends on the restrictive assumption that the input operatorB 2 L(U ;H) of � is Hilbert�Schmidt.In Proposition 55, the spectral factor D�P (i.e. the I/O-map of the spec-tral �P ) appearing in equation (3) is (�P ;�P crit0 )-inner-outer factorized asD�P = NPX , under the assumption that the original DARE ric(�; J) hasa regular critical solution P crit0 . Quite expectedly, the outer part of D�Pdoes not depend on the choice of the solution P 2 ricuw(�; J). Realizationsfor the factors are computed. Section 7 is concluded with Proposition 56,where a realization algebra is considered for the inner factors NP . This laysfoundation to the second part [27] of this work.1.2 Connections to earlier worksWe now brie�y consider the appropriate references to earlier works by otherauthors. The general idea of using the (matrix) Riccati equations for thecanonical and spectral factorization of rational transfer functions is quite old.Both the continuous and discrete time case is considered in [15, Chapters 10and 19] (P. Lancaster and L. Rodman). At the end of both chapters, a shortaccount for the history of such factorizations is given.The discrete time result [13, Theorem 4.6] (J. W. Helton) is closely re-lated to our Theorem 50 on the spectral factorization, but the informationstructure of the system and DARE is that of a LQDARE( A�PA� P + C�JC = A�PB � ��1P �B�PA;�P = D�JD +B�PB;(4)where the input is penalized by direct cost. The reasons why we discuss themore general DARE (2) instead of DARE (4) will be discussed in [27, Section8]. In [13, Theorem 4.6], a �nonvanishing residual cost� has been includedin the Popov function, whose spectral factor is to be calculated. A similarmodi�cation can be done to Theorem 50.The related results in [10] (P. A. Fuhrmann; continuous time, in�nite-dimensional) and [11] (P. A. Fuhrmann and J. Ho�man; discrete time, matrix-valued, a state space factorization of rational inner functions) seem to be mostcomplete. A reference to an earlier work [7] (L. Finesso and G. Picci) is alsogiven there. Unfortunately, there is a considerable overlap between ourresults and those given in [10] and [11]; we learned about these referencesat MTNS98 conference (Padova, July 1998), after the present work (in itsoriginal form) was completed. In style and basic assumptions these works arequite di�erent from ours, which makes is a hard (but nevertheless a feasible)task to compare the (continuous time) results of [10] to our (discrete time)results. It appears that all the results are in harmony to each other in abeautiful way.Fuhrmann approaches the general structure from the minimal spectralfactorization point of view, rather that from the Riccati equation point of



7view that we have adopted. In [10], unstable systems and spectral factors areparameterized by solutions of a Riccati equation of a quite special kind. Wecan roughly say that our generality is in the Riccati equations and classes ofstable systems, whereas more general spectral factors and unstable systemsare considered in [10]. The work [10] is written under the standing hypothesisof strict noncyclicity of the spectral function (corresponding the Popov func-tion in our work). In [10, Theorem 2.1], this assumption is associated to theexistence of Douglas�Shapiro�Shields factorization of the spectral function,see [8] and [9].We remark that many results such as [10, Theorem 6.1], (analogous toour Lemma 45, Proposition 46 and Theorem 50) are genuinely two-directionalwhere our results are not. By this we mean that in Theorem 50, we do notprove that all spectral factors of D��JD� can be associated to a solutionof DARE. Only those spectral factors are parameterized by the solution inric0(�; J) that can be realized in a particular way, with the original semigroupgenerator A and the input operator B of DLS � = ( A BC D ). The full param-eterization of spectral factors in [10] comes from the additional minimalityassumption of the used realization, and the use of a state space isomorphismresult that does not hold in the full generality in our setting. We returnto this matters in a later work. It is true that the general lack of a statespace isomorphism is quite dissappointing, and it makes the state space ideasomewhat �too good to be true� for general in�nite-dimensional systems, see[9, Chapter 3].



81.3 NotationsWe use the following notations throughout the paper: Z is the set of integers.Z+ := fj 2 Z j j � 0g. Z� := fj 2 Z j j < 0g. T is the unit circle andD is the open unit disk of the complex plane C. If H is a Hilbert space, thenL(H) denotes the bounded and LC(H) the compact linear operators in H.Elements of a Hilbert space are denoted by upper case letters; for exampleu 2 U . Sequences in Hilbert spaces are denoted by ~u = fuigi2I � U , whereI is the index set. Usually I = Z or I = Z+. Given a Hilbert space Z, wede�ne the sequence spacesSeq(Z) := �fzigi2Z j zi 2 Z and 9I 2 Z 8i � I : zi = 0	;Seq+(Z) := �fzigi2Z j zi 2 Z and 8i < 0 : zi = 0	;Seq�(Z) := �fzigi2Z 2 Seq(Z) j zi 2 Z and 8i � 0 : zi = 0	;`p(Z;Z) := �fzigi2Z � Z j Xi2Z jjzijjpZ <1	 for 1 � p <1;`p(Z+;Z) := �fzigi2Z+ � Z j Xi2Z+ jjzijjpZ <1	 for 1 � p <1;`1(Z;Z) := �fzigi2Z � Z j supi2Z jjzijjZ <1	:The following linear operators are de�ned for ~z 2 Seq(Z):� the projections for j; k 2 Z [ f�1g�[j;k]~z := fwjg; wi = zi for j � i � k; wi = 0 otherwise;�j := �[j;j]; �+ := �[1;1]; �� := �[�1;�1];��+ := �0 + �+; ��� := �0 + ��;� the bilateral forward time shift � and its inverse, the backward timeshift � � � ~u := fwjg where wj = uj�1;� �~u := fwjg where wj = uj+1:Other notations are introduced when they are needed.



92 A crash course of DLSs2.1 Notion of causality and shift-invarianceOur basic object is a �xed state space realization of a (well-posed) transferfunction analytic in some neighborhood of the origin. We call this realizationa discrete time linear system (DLS), given by a system of di�erence equations(xj+1 = Axj +Buj;yj = Cxj +Duj; j � 0;(5)where uj 2 U , xj 2 H, yj 2 Y , and A, B, C and D are bounded linearoperators between appropriate Hilbert spaces. We call the ordered quadruple� = ( A BC D ) a DLS in di�erence equation form. The operators are as follows:the semigroup generator A, input operator B, output operator C and thefeed-through operator D of �. The three Hilbert spaces are as follows: U isthe input space, H is the state space and Y is the output space of �. It iswell known that equations (5) are a state space model for a unique causalshift-invariant operator D = D� : Seq(U) ! Seq(Y ), called the I/O-map of�. There is also another equivalent form for the same DLS, called DLS inI/O-form (see [21, Theorem 11]). It consists of four linear operators in theordered quadruple � := �Aj B� �jC D � :(6)Note that � stands for the DLS in di�erence equation form, and the capital� is the same DLS written in I/O-form. The operator A 2 L(H) is calledthe semigroup generator, and the family fAjgj�0 is called the semigroup of�. It is the same operator A that appears in the corresponding DLS � indi�erence equation form. B : Seq�(U)! H is called the controllability mapthat maps the past input into present state. C : H ! Seq+(Y ) is calledthe observability map that maps the present state into future outputs. Theoperator D : Seq(U) ! Seq(Y ) in (6) is the I/O-map of � that maps theinput into output in a causal and shift-invariant way. The DLS � is called a(state space) realization of its I/O-map D.By using the bilateral shift operator � de�ned on Seq(U), a formula forthe I/O-map can be givenD�~u = D~u+Xi�0 CAiB� i+1~u:(7)The above converges pointwise: for all k 2 Z, ~u 2 Seq(U), we have only�nitely many nonzero terms in the sum �k �Pi�0CAiB� i+1~u�, by the def-inition of Seq(U). We remark that the vector spaces Seq(U), Seq(Y ) arenow given the topology of componentwise (pointwise) convergence. SeveralDLSs can be realizations for the same I/O-map because formula (7) depends



10only on the operators fCAiBgi�0, and not on the operators A;B and C sep-arately. We remark that each well-posed causal shift-invariant operator ofform (7) can be written as an I/O-map of a DLS, see [21, Lemma 8].Consider again the two forms � = � Aj B��jC D � and � = ( A BC D ) of the sameDLS. The operators appearing in � and � connected by straightforward al-gebraic relations (see [21, Lemma 7 and De�nition 9]):� B : Seq�(U)! H, C : H ! Seq+(Y ) and D : Seq(U)! Seq(Y ).� D, B and C are causal; i.e. they satisfy��D��+ = 0; B��+ = 0; ��C = 0:� B satis�es B� � = AB + B� ��0;B� �j ~u = Aj B~u+ j�1Xi=0 AiBuj�i�1;B = B��1 2 L(U;H);where U is identi�ed with range(��1) on Seq(U) in the natural way.� C satis�es ��+� �C = CA;C = �0C 2 L(H; Y );where Y is identi�ed with range(�0) on Seq(Y ) in the natural way.� D satis�es ��+D�� = CB;D� = �D; D� � = � �DD = �0D�0 2 L(U; Y );where U , Y are identi�ed with range(�0) in the natural way.For the input, output and state sequences the following notation is used:� The state of � at time j � 0 is denoted by xj(x0; ~u), and it is de�nedby xj(x0; ~u) := Ajx0 + j�1Xi=0 AiBuj�i = Ajx0 + B�� �j~u:(8)� The output sequence ~y(x0; ~u) := fyj(x0; ~u)gj2Z+ of � is de�ned byyj(x0; ~u) := CAjx0 + j�1Xi=0 CAiBuj�i +Duj = �j(C�x0 +D�~u);(9)



11where x0 2 H denotes the initial state at time j = 0, and ~u 2 Seq+(U) is aninput sequence. We remark that the veri�cation of these relations essentiallygives the correspondence between DLSs in di�erence equation form and inI/O-form.De�nition 1. Let �1 = � A1 B1C1 D1 �, �2 = � A2 B2C2 D2 � be two DLSs. Assume thatthe input space of �2 is U , the output space of �2 and the input space of �1is W , and the output space of �1 is Y .(i) If D�11 2 L(Y ;U) exists, then de�ne��11 = �A1 � B1D�11 C1 B1D�11�D�11 C1 D�11 �This DLS is called the inverse DLS of �1.(ii) De�ne �1�2 = 0@�A1 B1C20 A2 � �B1D2B2 ��C1 D1C2� D1D2 1A ;provided �1 and �2 as such that all the proposed operator compositionsare sensible. This DLS is called the product DLS of �1 and �2.(iii) De�ne e�1 = �A�1 C�1B�1 D�1� :This DLS is called the adjoint DLS of �1.Proposition 2. Let �1, �2 be as in De�nition 1.(i) D�1 : Seq(W )! Seq(Y ) is invertible and its inverse is a I/O-maps ofa DLS if and only if D�11 2 L(Y ;W ) exists. In this case, the inverseD�1�1 : Seq(Y )! Seq(W ) is given by D�1�1 = D��11 .(ii) The composition of the I/O-maps D�1 and D�2 satis�es D�1 D�2 =D�1�2 .(iii) The adjoint DLSs satisfy g( e�1) = �1, and](��11 ) = ( e�1)�1. Furthermore,Dg�1�2 = Df�2f�1.



12Proof. Consider �rst the �if� part of claim (i). Assume ~y 2 Seq(Y ), ~u 2Seq(W ) satisfy ~y = D�1 ~u, such that D�11 is bounded. Then(xj+1 = A1xj +B1uj;yj = C1xj +D1uj; for all j � 0;, (xj+1 = A1xj +B1uj;uj = �D�11 C1xj +D�11 yj; for all j � 0;, (xj+1 = (A1 �B1D�11 C1)xj +B1D�11 uj;uj = �D�11 C1xj +D�11 yj; for all j � 0;, ~u = D��11 ~ywhere the initial value is xJ = 0 for so large J that both ~u, ~y have no nonzerocomponents with index less than J . This gives D��11 D�1 = I on Seq(U). Byusing (��11 )�1 = �1, also D�1D��11 = I. So D��11 is a two-sided inverse of D�1.To prove the �only if� part of claim (i), assume that D�1�1 is an I/O-map of some DLS �0. Then, because I = D�1�1 D�1 = D�1D�1�1 , we have�0 = �0D�1�1 D�1�0 = �0D�1�1 �0 � �0D�1�0, by causality of both D�1�1 and D�1.Now, �0D�1�0 = D, and I = D0D, where D0 = �0D�1�1 �0. Similarly, I = DD0.It follows that D is a bounded bijection between Hilbert spaces U , Y . It thushas a bounded inverse D�1 = D0. This completes the proof of claim (i).For the second claim (ii), recall formula (7) for the I/O-map of a DLS.Use this to obtain a formula for D�1 D�2D�1 D�2 = D1D2 +Xk�1 Tk�k;(10)whereTk := D1C2Ak�12 B2 + C1Ak�11 B1D2 + k�1Xj=1 C1Aj�11 B1C2Ak�j�12 B2; k � 2(11)T1 := D1C2B2 + C1B1D2and all Tk 2 L(U ;Y ). Sum (10) converges in the same sense as formula (7).We then calculate the similar formula for the I/O-map of the DLS �1�2. Forthis end, note that the powers of an upper triangular (block) matrix can becalculated by �a c0 b�k = �ak Pk�1j=0 aj c bk�j�10 bk � ; k � 1:



13An application of this gives for k � 1C�1�2Aj�1�2B�1�2 = �C1 D1C2� �A1 B1C20 A2 �k �B1D2B2 �= �C1 D1C2� �Ak1 Pk�1j=0 Aj1B1C2Aj�i�120 Ak2 � �B1D2B2 �= C1Ak1B1D2 +D1C2Ak2B2 + C1 k�1Xj=0 Aj1B1C2Aj�i�12 !B1:But this equals Tk+1 of equation (11). The case k = 0 gives�C1 D1C2� �B1D2B2 � = C1B1D2 +D1C2B2 = T1:Because also the static parts of D�1D�2 and D�1�2 are both D1D2, equations(10) and (11) give also the I/O-map of �1�2. The last claim (iii) is immediate.This completes the proof.We remark the there is no uniqueness in the realization �1�2 for the causalshift-invariant operator D�1D�2. Furthermore, generally g�1�2 6= e�2 e�1 butthe state spaces of these product DLSs are unitarily isomorphic. Given anI/O-map D�, its adjoint I/O-map fD� is de�ned by fD� := De�. It is easyto show, by using formula (7), that fD� is independent of the choise of therealization �.2.2 Notion of feedbackThe notion of state feedback is central in this work. In di�erence equationform, we realize the state feedback by �rst adding still another equationvj = Kxj + Fuj to equations (5), where K 2 L(U). This gives us anextended DLS �ext. We get the closed loop DLS �ext� in di�erence equationform by simple manipulation. The same structure written in I/O-form issomewhat more complicated but nevertheless useful. In I/O-form, the newoutput signal given by K provides a new output `2(Z+;U) 3 ~v = Kx0 + F ~uto �, thus giving an (open loop) extended DLS �ext := [�; [K;F ]]. This is aCartesian product of two DLSs with the same input and semigroup structure,as presented in the following picture:Aj B� �j�CK� �DF�? x0� xj(x0; ~u)� ~y(x0; ~u)� ~v(x0; ~u) 6 ~u



14The ordered pair of operators [K;F ] is called a feedback pair of �. Here Kis a valid observability map and F is a valid I/O-map for the system withsemigroup generator A and controllability map BThe operator (I � F)�1 : Seq(U) ! Seq(U) is required to be an I/O-map of a DLS (well-posed, causal and shift invariant), to ensure that theclosed loop is well de�ned. From an I/O stable feedback pair we requirethat dom(C) � dom(K), and both F and (I � F)�1 are bounded in the`2-topology. If, in addition, K : H ! `2(Z+;U) is bounded, then we saythat [K;F ] is stable. The closed loop extended DLS �ext� is the DLS that weobtain when we close the following state feedback connection:
Aj B� �j�CK� �DF�? x0� xj(x0; ~u)� ~y(x0; ~u)� ~v(x0; ~u) t -+ d6� ~uextHere ~uext = fuextj g is an external (disturbance) signal, so that vj = Kj +F (vj + uextj ) holds in the closed loop. The formulae for the closed loopsystem in terms of the open loop operators can be easily calculated (see [21,De�nition 18]). Thus we have two di�erent notions of state feedback; onefor DLSs in di�erence equation form, the other for DLSs in I/O-form. Itfollows that these feedback notions are equivalent in the same way than thetwo notions of the DLS are equivalent (see [21, Section 5]). The stabilityproperties of the open and closed loop feedback systems are discussed in [21,Section 9].2.3 Notion of energyAs proposed earlier, the sequence spaces Seq(Z), for Z Hilbert space, canbe given the topology of componentwise convergence. This is a rather weaktopology; so weak that it does not admit a useful energy notion. To �xthis, we introduce a smaller vector subspace `2(Z+;Z) � Seq(Z), whichis a Hilbert space of square summable sequences. The norm of `2(Z+;Z)is regarded as the energy of the signal. A DLS is called I/O stable if theToeplitz operator of the I/O-map D��+ : `2(Z+;U) ! `2(Z+;Y ) is bounded.Then the Toeplitz operator has a unique bounded extension, by continuityand shift invariance, to the whole of `2(Z;U). This extension is also denotedby D.For the study of the operators B and C, a suitable de�nition is needed fortheir domains ([21, De�nition 24]). We de�ne dom(B) := Seq�(U), equippedwith the `2(Z;U)-inner product. If dom(B) = H, we say that � is (in�nite



15time) approximately controllable. The domain of C is given bydom(C) := fx0 2 H j Cx0 2 `2(Z+;Y )g;(12)equipped with the inner product topology ofH. Neither of the operators B, Care assumed to be bounded in their domains. The domains for the operatorsD��+ and D�0 (the impulse response operator) are de�ned similarly (see [21,De�nition 24]). This makes all the operators D��+, D�0 and C closed (see[21, Lemma 27]). The case for the observability map is given below:Lemma 3. Let � = � Aj B��jC D � be a DLS. De�ne the domain of the observ-ability map as above. Then C : dom(C)! `2(Z+;Y ) is closed.Proof. Let dom(C) 3 xj ! x0 2 H be a convergent sequence in H such thatCxj ! ~y 2 `2(Z+;Y )in the norm of `2(Z+;Y ). We shall show that x0 2 dom(C) and Cx0 = ~y,which proves the closed graph property for C. For each k � 0 we have(Cxj)k = CAkxj ! CAkx0 as j !1(13)in the norm of Y , because both A and C are bounded. On the other hand,because Cxj ! ~y in the norm of `2(Z+;Y ), for all k � 0:(Cxj)k ! yk as j !1(14)in the norm of Y . Now equations (13) and (14) imply, by the uniquenessof the limit, that CAkx0 = yk for all k � 0, or equivalently ~y = Cx0 forthe algebraic observability map. But then, because ~y 2 `2(Z+;Y ), we havex0 2 dom(C) and ~y = Cx0. This completes the proof of this lemma.If B or C is bounded, we say that � is input stable or output stable, respec-tively. There is one more important stability condition used in this paper,namely the strong H2-stability. We say that � is strongly H2 stable if its im-pulse response operator D��0 is bounded from U = range(�0) to `2(Z+;Y ).This implies that D���+ : `1(Z+;U) ! `2(Z+;Y ) boundedly. I/O stabilityand output stability are su�cient conditions for the strong H2-stability. Wenote that the strongH2-stability is characterized by the following propositionProposition 4. Let � = � Aj B��jC D � = ( A BC D ) be a DLS. Then the followingare equivalent:(i) BU � dom(C),(ii) range(B) � dom(C),(iii) � is strongly H2 stable.



16Proof. The equivalence of (i) and (ii) is [21, Lemma 39]. Assume (i). BecauseBU � dom(C), then CBu 2 `2(Z+;Y ) for all u 2 U . But then D�0~u =D�0~u + �CBu0 2 `2(Z+;Y ) for all ~u = fujgj�0 such that u0 = 0. Becauseu 2 U is arbitrary, it follows that dom(D�0) = U . But now D�0 : U !`2(Z+;Y ) maps boundedly by the Closed Graph Theorem, because D�0 isclosed with a complete domain. Claim (iii) follows. The implication (iii) )(i) is from [21, Lemma 40].The inclusion range(B) � dom(C) is known as the compatibility condition in[21, Lemma 39]). Unfortunately, the description of the strong H2 stabilityremained incomplete there.For an I/O stable (and even strongly H2 stable) DLSs, we can restrictthe state space H to dom(C) without essentially changing the I/O-properties,by Proposition 4. The observability map Cjdom(C) of the restricted statespace DLS is now densely de�ned and closed. For this reason, we assumethroughout this paper that dom(C) = H. By introducing the graph norm ofC, we can make the vector space dom(C) into a Hilbert space. In fact, thestrenghtening the topology of the state space in this manner gives us another,output stable DLS whose properties are roughly the same as those of theoriginal DLS, see [21, Theorem 46]. We conclude that any non-output stable,I/O stable DLS � can always be made output stable, and the lack of outputstability tells us that the state space of � is �too large� or �inconvenientlynormed�. For this reason, we do not regard it as a grave sin to assume thatour I/O stable DLSs are, in addition, output stable � provided that one such�xed topology of the state space H of � is �good� for the full description ofthe essential structure of �, seen as a realixation of its I/O-map. Fortunately,this is the case, as the present papers [26] and [27] show.The stability notions associated to the semigroup generator A of the DLS� are the following (see [21, De�nition 21]): A is power (or exponentially)stable, if �(A) < 1; A is strongly stable, if Ajx0 ! 0 as j !1; A is powerbounded, if supj�0 jjAjjjH < 1. All these imply that �(A) � 1. The powerbounded behaviour is discussed in [31] and the references therein. So as tothe strongly stable operators with a `p growth bound, [48] is an interestingreference.We say that � is stable if it is I/O stable, input stable, output stable andits A semigroup generator is power bounded. If � is stable and A is stronglystable, then � is strongly stable. The relations between various stabilityconditions of open and closed loops systems are discussed in [21, Section 6].The following notions are from [20, De�nition 17]:De�nition 5. Let J 2 L(Y ) be self-adjoint, and let S 2 L(U) self-adjointand invertible. Let D, N and X be I/O-maps of I/O stable DLSs.(i) The operator E 2 L(U) is S-unitary, if it is boundedly invertible andE�SE = S.(ii) N 2 L(`2(Z;U); `2(Z;Y )) is (J; S)-inner, if N �JN = S.



17(iii) X 2 L(`2(Z;U)) is outer, if range(X ��+) = `2(Z+;U).(iv) X 2 L(`2(Z+;U)) is S-spectral factor of D�JD, if X has a boundedcausal shift invariant inverse X�1 2 L(`2(Z;U)) and D�JD = X �SX .Spectral factors of D�JD and coercive outer factors of D have one-to-onecorrespondence, by [20, Proposition 20].2.4 Notion of the transfer functionFor the I/O-map D of a DLS � = � := ( A BC D ), formula (7) is given. Thebilateral shift operator can be formally replaced by a complex variable z, andthe formal sum is obtained: D +Xi�0 CAiBzi+1:(15)Because A is bounded by the de�nition of the DLS, this sum convergesfor jzj < jjA�1jj�1, thus de�ning an analytic L(U ;Y )-valued function D(z)in a neighborhood of the origin. In fact, D(z) = D + zC(I � zA)�1 forjzj < jjA�1jj�1. The analytic function D(z) is called the transfer function of�. Because all I/O-maps of DLSs have transfer functions analytic in a neigh-borhood of origin, we say that the the DLS is a well-posed linear system. Thewell-posedness makes it possible to add and multiply two transfer functionsof appropriate type in a common neighborhood of the origin where both areanalytic. We remark that the corresponding continuous time notion of well-posedness is deeper, see [45]. Because the power series coe�cient (centeredat the origin) of an analytic function are unique, we have one-to-one cor-respondence between the I/O-maps of DLSs and operator-valued functions,analytic in a neighborhood of the origin of the complex plane, see [21, Lemma8]. In the following de�nition, we consider signals instead of systems.De�nition 6. Let Z be a Hilbert space.(i) The sequence ~u = fujgj2Z+ 2 Seq+(Z) is well posed, if the power series~u(z) := 1Xj=0 ujzjconverge to an analytic function in some neighborhood of the origin.(ii) The mapping Fz : ~u 7! ~u(z) is called the z-transform.The setWSeq+(Z) of well-posed sequences is a vector subspace of Seq+(Z).It is a matter of taste whether z-transform should be de�ned to be analytic ina neighborhood of the origin or of the in�nity. It seems that in the functiontheory the former alternative is used, and in the control theory the latter ispreferred.



18Proposition 7. Let D be an I/O-map of a DLS, and D(z) its transfer func-tion. Let ~u 2 WSeq+(U) and ~u(z) its z-transform. Let ~y 2 Seq+(Y ). Thenthe following are equivalent:(i) ~y = D~u(ii) ~y is well-posed, and ~y(z) = D(z)~u(z) in some neighborhood of the ori-gin.Proof. Assume claim (i). Because both D(z) and ~u(z) are analytic in a somecommon neighborhood of the origin, so is the Y -valued function f(z) :=D(z)~u(z). Identify the unilateral shift � by the multiplication by the complexvariable z. By comparing the expression of both D~u and D(z)~u(z) it is clearthat the power series coe�cients fj of f equal yj. So ~y 2 WSeq+(Y ) is wellposed and (ii) follows. The converse direction is similar.Corollary 8. Let �1 and �2 be DLSs with compatible input and output spaces.Then D�1�2(z) = (D�1D�2)(z) = D�1(z)D�2(z).Proof. Let ~u 2 WSeq(U) be arbitrary. Then D�1�2 ~u and D�2 ~u are well posedby Proposition 7, and(D�1�2 ~u)(z) = D�1�2(z)~u(z) = (D�1(D�2 ~u))(z)= D�1(z)(D�2 ~u)(z) = D�1(z)D�2(z)~u(z);where all the equalities are by Proposition 7, except the second which is byclaim (ii) of Proposition 2. Because ~u is arbitrary, the claim follows.We conclude that the algebraic structure of corresponding I/O-maps andtransfer functions is equivalent, when the well-posed inputs are considered. Inparticular, because I/O-map is known if its action on sequences ~u 2 WSeq(U)satisfying �j~u = 0 for j 6= 0, no uniqueness problems can arise if we restrictto well posed inputs. We have `2(Z+;U) � WSeq+(U). This is triviallytrue because ~u 2 `2(Z+;U) is a bounded sequence, and thus the power seriesPj�0 ujzj converge for all z 2 D by a simple argument.At this point, it is necessary to introduce the Hardy spacesHp(D;L(U ;Y ))(operator-valued) and Hp(D;U) (Hilbert space -valued) for each 1 � p <1.They are de�ned as the Banach spaces of analytic functions in D with thenorms jjD(z)jjpHp(D;L(U ;Y )) := sup0<r<1 12� 2�Z0 jjD(rei�)jjpL(U ;Y ) d�;jj~u(z)jjpHp(D;U)) := sup0<r<1 12� 2�Z0 jj~u(rei�)jjpU d�:



19Out of these, the cases p = 2 are most important to us. The space H2(D;U)is Hilbert, with the inner producth~u(z); ~v(z)iH2(D;U) = limr!1� 12� 2�Z0 
~u(rei�); ~v(rei�)�U d�and the Parseval identityh~u(z); ~v(z)iH2(D;U) = h~u; ~vi`2(Z+;U) :(16)The interpretation of equation (16) is that the z-transform Fz : ~u 7! ~u(z)is an isometric isomorphism of the Hilbert spaces `2(Z+;U) and H2(D;U).For further information, see [33, Section 1.15] and [14, Chapter III].Now that we have identi�ed the z-transforms of �nite energy signals, weidentify the transfer functions of I/O stable DLSs. For this end, we meetone more Hardy space, namely the celebrated H1(D;L(U ;Y )). We say thatD(z) 2 H1(D;L(U ;Y )) if it is L(U ;Y )-valued analytic function in the wholeof D, and jjD(z)jjH1(D;L(U ;Y )) := supz2D jjD(z)jjL(U ;Y ) <1:Proposition 9. Let D be a I/O-map of a DLS, such that all the Hilbertspaces U , H and Y are separable. Then D is I/O stable if and only if D(z) 2H1(D;L(U ;Y )). Furthermore, jjD(z)jjH1(D;L(U ;Y )) = jjDjj`2(Z+;U)7!`2(Z+;Y ).Proof. This is the contents of [33, Theorem 1.15B]), or [8, Theorem 1.1,Section IX, p. 235], to mention few possible references. In [33], the inputand output spaces are written to be the same space. However, by usingthe Cartesian product Hilbert space W = U � Y as both input and outputspace, and extending the operators T 2 L(U ;Y ) to T 0 = ( 0 0T 0 ), the notationalinconvenience is resolved.For the representation of bounded causal shift-invariant operators byH1functions,see also [47] and [49]. Related to the operator-valued H2(D;L(U; Y ))-space,another less known variant, called the strong H2(D;L(U; Y )) is de�ned asfollows:De�nition 10. The strong H2(D;L(U; Y )) (brie�y: sH2(D;L(U ;Y ))) isthe set of L(U ;Y )-valued analytic functions D(z) in D, such that D(z)u0 2H2(D;Y ), for all u0 2 U .Clearly sH2(D;L(U ;Y )) is a vector space. The following proposition givesa hint why sH2(D;L(U ;Y )) is important to us.Proposition 11. If the DLS � := ( A BC D ) is output stable or, more generally,strongly H2 stable, then the transfer function D�(z) 2 sH2(D;L(U ;Y )).



20Proof. We �rst show that the transfer function D�(z) is analytic in the wholeof D. If � is output stable, thenjjC�x0jj2̀2(Z+;Y ) = jjfCAjx0gj�0jj2̀2(Z+;Y ) =Xj�0 jjCAjx0jj2Y <1for all x0 2 H. Then, in particular supj�0 jjCAjx0jjY < 1 for all x0 2H. Now Banach�Steinhaus Theorem implies that the family fCAjgj�0 isuniformly bounded, and then easily the power seriesP1j=0CAjBzj convergesfor all z 2 D. The power series expansion of transfer function D�(z) is givenby D�(z) = D +Xj�1 CAj�1BzjBy output stability, fCAjBu0gj�0 � `2(Z+;Y ) for any u0 2 U . The Parsevalidentity implies now that D�(z)u0 2 H2(D;Y ) for each u0 2 U . So D�(z) 2sH2(D;L(U ;Y )). The case of the strong H2-stability is similar.2.5 Nontangential limits of transfer functionsWe have seen that the I/O-maps of DLSs and well-posed signals have aone-to-one correspondence to their transfer functions and z-transforms, re-spectively. Furthermore, the I/O stability and �nite signal energy notionsare well behaved under the z-transform. The following question arises: whatessentially new does the replacement of the bilateral shift � by the complexvariable z bring us? A (partial) answer is: point evaluations of the transferfunction D(z) at all points of analyticity z. This gives us the notion of zeroesand poles of the transfer function, at least in the case when all the Hilbertspaces U , H and Y are �nite dimensional.The notions of zeroes and poles are not central in our work, and if it wasonly for this reason, we would not need to de�ne the transfer functions in the�rst place. However, there is another reason to introduce transfer functionsthat is important to us. Namely, there are classes of (transfer) functionsD(z) and (signals) ~u(z), analytic for z 2 D, that can be evaluated in a usefulsense at the boundary points ei� 2 T = @D, too. In these classes, the notionof the nontangential limit functions or, equivalently, boundary traces D(ei�)and ~u(ei�) can be de�ned byD(ei�)u0 = limzj!ei�D(zj)u0 for all u0 2 U;~u(ei�) = limzj!ei� ~u(zj);for all such ei� 2 T, where the limit exists for all u0 2 U and all sequencesD 3 zj ! ei� 2 T lying inside some nontangential approach region, as de�nedin [6, p. 6], [34, Theorem 11.18], or any other book of basic function theory.We remark that the operator limit D(ei�) is taken pointwise, in the strong



21operator topology. If D(z) is matrix-valued, then the strong nontangentiallimit is actually a nontangential norm limit, because in a �nite dimensionalspace pointwise convergence implies norm convergence. We proceed to de�nethe classes where boundary traces ~u(ei�) andD(ei�) are available in a practicalsense.Suppose now that ~u(z) 2 Hp(D;U) for 1 � p < 1, and D(z) 2Hp(D;L(U ;Y )) for 1 � p � 1. By [33, Theorem 4.6A], if U , Y are sepa-rable, the nontangential limit functions, denoted by ~u(ei�) and D(ei�), exista.e. ei� 2 T modulo the Lebesgue measure of the unit circle T. Actu-ally this is true in much larger classes N(D;U), N(D;L(U ;Y )), N+(D;U),N+(D;L(U ;Y )), de�ned in the following.De�nition 12. Let X be U or L(U ;Y ).(i) Then N(D;X) is the set of analytic X-valued functions f(z), such thatsup0<r<1 2�Z0 log+jjf(rei�)jjX d� <1:The set N(D;X) is called the Nevanlinna class, and its elements arecalled the functions of bounded type.(ii) Hg(D;X) is the set of analytic X-valued functions f(z), such thatsup0<r<1 2�Z0 g(log+jjf(rei�)jjX) d� <1;where g is a strongly convex function. The space Hg(D;X) is calledthe Hardy-Orlicz class.(iii) N+(D;X) := [Hg(D;X), where the union is taken over all stronglyconvex functions g.A function g : R ! R+ is strongly convex (in the sense of [33, p. 135])if it is convex, nondecreasing, satis�es limt!1 g(t)=t = 1, and for somec > 0 there exists M � 0 and a 2 R such that g(t + c) � Mg(t) for allt � a. All the sets Hg(D;X); N+(D;X); N(D;X) are vector spaces, andHg(D;X) � N+(D;X) � N(D;X). For additional information, see [33,Chapter 4]. In particular, choosing g(t) = ept gives the Hp(D;X) space, for0 < p < 1. Because H1(D;X) � H2(D;X), also the bounded analyticfunctions are of bounded type.These spaces are introduced because for f(z) 2 N(D;X), the boundarytrace function f(ei�) exists almost everywhere on T. The set of the cor-responding boundary traces is denoted, quite naturally, by N(T;X). Themapping N(D;X) 3 f(z) 7! f(ei�) 2 N(T;X) is one-to-one and linear.Furthermore, the operator products of such functions are well behaved: IfF (ei�) 2 N(T;L(U ;Y )) and G(ei�) 2 N(T;L(U)), then F (ei�)G(ei�) 2



22N(T;L(U ;Y )). If f(ei�) 2 N(T;U), then F (ei�)f(ei�) 2 N(T;L(Y )). Notonly the sensible products of bounded type functions are of bounded type,but also the boundary trace of the product is always the product of theboundary traces. In the in�nite-dimensional cases these are nontrivial factsbecause the operator multiplication is not continuous in the strong operatortopology; or in the poetic words of [33, p. 88]: �there is more here than meetsthe eye�. The proofs of these results are based on the powerful representationfor the Nevanlinna class functions as a fraction of two H1 functions, with ascalar zero-free denominator. The H1 case can then be handled more easily.For further information, see [33, Theorem 4.2D and Theorem 4.5A].Let us return to discuss the special case ofHp(D;X)-spaces and the corre-sponding boundary trace spaces Hp(T;X). Ultimately, the spaces Hp(T;X)are identi�ed with subspaces of certain Lebesque spaces Lp(T;L(U ;Y ))(operator-valued) and Lp(T;U) (Hilbert space -valued), for each 1 � p � 1.In order to introduce the operator and vector Lebesque spaces, it is necessaryto remind some notions of measure theory.De�nition 13. Let U , Y be separable Hilbert spaces. Let the measure space(T;B; d�) be the usual (Lebesque completion of the) Borel �-algebra of theunit circle T, where d� denotes the Lebesque measure of T.(i) The U-valued function f(ei�), de�ned d�-almost everywhere on ei� 2 T,is weakly (Lebesque) measurable, if for all u 2 U , the C-valued functionfu(ei�) := 
f(ei�); u�U is (T;B; d�)-measurable.(ii) The L(U ;Y )-valued function F (ei�), de�ned d�-almost everywhere onei� 2 T, is weakly (Lebesque) measurable, if for all u 2 U , y 2 Y , theC-valued function Fu;y(ei�) := 
F (ei�)u; y�Y is (T;B; d�)-measurable.If f(ei�); g(ei�); F (ei�); G(ei�) are weakly measurable, then so areF (ei�)f(ei�) and F (ei�)G(ei�), if the products make sense. Furthermore,the following scalar functions are measurable: 
f(ei�); g(ei�)�U , jjf(ei�)jjUand jjF (ei�)jjL(U ;Y ). If r(ei�) is a measurable scalar function and u 2 U ,A 2 L(U ;Y ), then r(ei�)u and r(ei�)A are weakly measurable, see [5, Part I,Chapter III]), [14, Chapter III, p. 74], [33, comment on p. 81], and [47].De�nition 14. Let 1 � p <1. The Lebesque spaces are de�ned as follows:(i) Lp(T;U) is the vector space of weakly measurable U-valued functionsf(ei�), de�ned a.e. ei� 2 T, such thatjjf(ei�)jjpLp(T;U) := 12� 2�Z0 jjf(ei�)jjpU d� <1:(ii) Lp(T;L(U ;Y )) is the vector space of weakly measurable L(U ;Y )-valuedfunctions F (ei�), de�ned a.e. ei� 2 T, such thatjjF (ei�)jjpLp(T;L(U ;Y )) := 12� 2�Z0 jjF (ei�)jjpT;L(U ;Y ) d� <1:



23(iii) L1(T;L(U ;Y )) is the vector space of weakly measurable L(U ;Y )-valuedfunctions F (ei�), such thatjjF (ei�)jjL1(T;L(U ;Y )) := ess supei�2TjjF (ei�jjL(U ;Y ) <1:Note that the scalar integrals appearing in De�nition 14 are well de�ned,by the assumed weak measurability. All the Lebesque spaces are Banachspaces. L2(T;U) is a Hilbert space with the inner product
f(ei�); g(ei�)�L2(T;U) := 12� 2�Z0 
f(ei�); g(ei�)�U d�:Because of the nice properties of the weak measurability, much of the scalarLebesque space theory can be carried over to the corresponding vector-valuedtheory, by quite straightforward arguments. For example, because T is ofthe �nite Lebesque measure, the Hölder inequality implies that if 1 � p1 �p2 � 1, then Lp2(T;X) � Lp1(T;X).For 1 � p � 1, Hp(T;X) can be regarded as a closed subspace ofL2(T;X), such that the Fourier coe�cients of f(ei�) (to be introduced innext Subsection 2.6) satisfy fj = 0 for all j < 0 , see [33, Theorem 4.7C].Furthermore, f(z) can be recovered from f(ei�) by both Poisson and Cauchyintegrals. Finally, the Hp(D;X)-functions f(z) and their boundary tracesf(ei�) 2 Hp(T;X) can be and usually are identi�ed by an isometry, see [33,Theorem 4.7D].2.6 Vector-valued integration and Fourier transformLet U and Y be separable Hilbert spaces. In order to de�ne the Fourier trans-form in the Lebesque spaces Lp(T;L(U ;Y )) and Lp(T;U) for p � 1, we musthave an integration theory for these Banach space -valued functions. Notethat in Subsection 2.5, only a scalar Lebesque integration theory, togetherwith a characterization of weakly measurable Banach space -valued func-tions, was required to de�ne the spaces Lp(T;L(U ;Y )) and Lp(T;U). Alsorecall that if 1 � p1 � p2 � 1, then Lp2(T;L(U ;Y )) � Lp1(T;L(U ;Y ))and Lp2(T;U) � Lp1(T;U). It is well known that in the largest classesL1(T;L(U ;Y )) and L1(T;U), a vector-valued integration theory (and in factmany of those) can be developed:Proposition 15. Let U and Y be separable Hilbert spaces. Let f(ei�) 2L1(T;U) and F (ei�) 2 L1(T;L(U ;Y )).(i) There is a unique c 2 U such that for all u 2 Uhc; uiU = 2�Z0 
f(ei�); u�U d�:We call c the weak Lebesque (Pettis) integral of f(ei�) and writeR 2�0 f(ei�) d� := c.



24(ii) There is a unique C 2 L(U ;Y ) such that for all u 2 U , y 2 YhCu; yiY = 2�Z0 
F (ei�)u; y�Y d�:We call C the weak Lebesque (Pettis) integral of F (ei�) and writeR 2�0 F (ei�) d� := C.Proof. For claim (i), see [14, De�nition 3.7.1 and Theorem 3.7.1], and notethat U , as a Hilbert space, is re�exive. We outline the proof how claim(ii) follows from claim (i). Let u 2 U . Then F (ei�)u is a Y -valued weaklymeasurable function, and by claim (i) there is a unique cu 2 Y such thathcu; yiY = 2�Z0 
F (ei�)u; y�Y d�for all y 2 Y . It is easy to show that the mapping U 3 u 7! cu 2 Y is linear,and we write C : U ! Y by Cu := cu. It remains to be shown that C isbounded. Let now u 2 U and y 2 Y be arbitrary. Thenj hCu; yiY j � 2�Z0 j 
F (ei�)u; y�Y j d� � jjujjU � jjyjjY � 2�Z0 jjF (ei�)jj d�;where the �rst estimate holds by the property of scalar Lebesque integral,and second by the Schwartz inequality. Because F (ei�) 2 L1(T;L(U ;Y )),the integral of its norm is �nite, and it the follows thatjjT jjL(U ;Y ) := supjjujjU=jjyjjY=1 j hCu; yiY j � jjF (ei�)jjL1(T;L(U ;Y )) <1:We regard this proposition as proved.Now that we can integrate, we are prepared to consider the Fourier trans-forms. Let f(ei�) 2 L1(T;U) and F (ei�) 2 L1(T;L(U ;Y )). Trivially, thefunctions ei� 7! eij�f(ei�) 2 L1(T;U) and ei� 7! eij�F (ei�) 2 L1(T;L(U ;Y ))for all j 2 Z, and we can uniquely de�ne the weak integralsfj := 12� 2�Z0 f(ei�)e�ij� d� 2 U; Fj := 12� 2�Z0 F (ei�)e�ij� d� 2 L(U ;Y ):These integrals are called the Fourier coe�cients of the respective functions.We call the formal seriesf(ei�) �X fjeij�; F (ei�) �XFjeij�



25the Fourier series of the respective functions. Two Fourier series are identicalif all their respective coe�cients fj or Fj are identical. The mappingsf(ei�) 7! ffjgj2Z � U; F (ei�) 7! fFjgj2Z � L(U ;Y )are called the Fourier transforms of the respective spaces. It is easy to showthat the Fourier transform is a linear mapping, and the Fourier coe�cientare uniformly bounded: jjfjjj � jjf(ei�)jjL1(T;U) � p2�jjf(ei�)jjL2(T;U) andjjFjjj � jjF (ei�)jjL1(T;L(U ;Y )) � p2�jjF (ei�)jjL2(T;L(U ;Y )). The questions ofconvergence of the Fourier series (in various topologies) are generally highlynontrivial. In this paper, the classes L2(T;U) and L2(T;L(U ;Y )) are ofparticular interest. The case of the Hilbert space is well known:Proposition 16. The Fourier transform f(ei�) 7! ffjgj2Z is an isometricisomorphism of the Hilbert space L2(T;U) onto the Hilbert space `2(Z;U).The Fourier series P fjei� converges to f(ei�) in L2(T;U). The Parsevalidentity holds 
f(ei�); g(ei�)�L2(T;U) = hffjg; fgjgi`2(Z;U) :The closed subspace H2(U) � L2(T;U) is mapped onto the closed subspace`2(Z+;U) � `2(Z;U).However, we need the following result on the operator-valued L2(T;L(U ;Y )).Proposition 17. Let U and Y be separable Hilbert spaces, and u 2 U arbi-trary. Let F (ei�) 2 L1(T;L(U ;Y )). De�ne the Y -valued function Fu(ei�) :=F (ei�)u. Then(i) Fu(ei�) 2 L1(T;Y ),(ii) the Fourier coe�cients fFjgj2Z of F (ei�) and f(Fu)jgj2Z of Fu(ei�)satisfy Fju = (Fu)j for all j 2 Z;(iii) the Fourier series Pj2Z (Fju) eij� converges in L2(T;Y ) to F (ei�)u.Proof. Claim (i) is trivial. To prove claim (ii), �x u 2 U , j 2 Z, and lety 2 Y be arbitrary. By the de�nition of weak integral, the Fourier coe�cientFj 2 L(U ;Y ) is an operator such thathFju; yiY = 12� 2�Z0 
F (ei�) e�ij�u; y�Y d� = 12� 2�Z0 
F (ei�)u; y�Y e�ij� d�:(17)



26for all y 2 Y . By the de�nition of the weak Hilbert space -valued integral,the Fourier coe�cient (Fu)j 2 Y is an element such thath(Fu)j; yiY = 12� 2�Z0 
Fu(ei�) e�ij�; y�Y d� = 12� 2�Z0 
F (ei�)u; y�Y e�ij� d�:(18)
for all y 2 Y . Comparing the right hand sides of equations (17) and (18)implies that hFju; yiY = h(Fu)j; yiY for all y, or equivalently Fju = (Fu)j.Because u and j are arbitrary, this proves claim (ii). The last claim (iii)follows from the previous claim and Proposition 16.2.7 DiscussionWe conclude this section with a general discussion. In this section we haveintroduced three (essentially) equivalent formalisms (DLS in di�erence equa-tion form, DLS in I/O-form and transfer function formalism) to realize anddescribe the same class of objects (well posed, causal shift-invariant linearoperators in discrete time). At �rst sight, this might seem a little super�uous,and we try to defend ourselves in the following.We note that all the operators A, B, C, D, B, C and D appearing inquadruples ( A BC D ) and � Aj B��jC D � are separate functional blocks, present inany linear state space model. From the control theoretic point of view, theinteraction between controllability-, observability- and I/O-maps can be con-veniently described because these operators constitute the DLS in I/O formin our formalism. What we have actually done, it to collect the operator ofthe same kind into two di�erent structures: DLS in I/O-form and in di�erenceequation form. In this notational framework, also nonlinear generalizationsare admitted.Notationally our DLS-formalism is very similar to the formalism used in[37], [39], [40], and [45] for continuous time stable well-posed linear systems.In continuous time, however, the notions corresponding to our �di�erenceequation form� and �I/O-form� are not equivalent because generally the feed-through operator D cannot be separated from the I/O-map D without anextra regularity assumption, see [45], [50], and [51].So as to the transfer function representation, we also remark that the op-erator theoretic study of these linear systems becomes notationally clumsy, ifthe basic operators are always stated as multiplications by transfer functions.In monographs [33] and [46], the basic objects are the unilateral shift opera-tors and the Toeplitz operators � the complex analysis results are presentedmore or less as an important application. The only reason for us to intro-duce the transfer functions is to get the additional structure associated to theboundary trace algebra of the functions in the Nevanlinna class N(D;L(U)).We remark that this is only possible under stronger assumptions, requiringe.g. the separability of all the Hilbert spaces involved.



273 H1 Riccati equationIn this section we give basic de�nitions of the discrete time algebraic Riccatiequation, associated to an output stable and I/O stable DLS � and a pos-sibly inde�nite cost operator J 2 L(U). The solutions P of such equationare classi�ed according to stability properties of an associated DLS �P , seeDe�nitions 19 and 20. An additional classi�cation is done according to theresidual cost properties, as introduced in De�nition 21. After that, inclusionsof the various solution sets are considered.De�nition 18. Let J 2 L(Y ) be self-adjoint, and � = � Aj B��jC D � = ( A BC D ) bea DLS. Then the following system of operator equations8><>: A�PA� P + C�JC = K�P�PKP�P = D�JD +B�PB�PKP = �D�JC � B�PA(19)is called the discrete time algebraic Riccati equation (DARE) and denoted byRic(�; J). The linear operators are required to satisfy �P ;��1P 2 L(U) andKP 2 L(H;U). Here P is a unknown self-adjoint operator to be solved. IfP 2 L(H) satis�es (19), we write P 2 Ric(�; J).We use the same symbol Ric(�; J) both for the solution set of a DARE,and the DARE itself. This should not cause confusion. Clearly the equations(19) can be put into formA�PA� P + C�JC(20) = (D�JC +B�PA)� (D�JD +B�PB)�1 (D�JC +B�PA):This is the usual form of the DARE in the literature. Because �P andKP are quite fundamental objects in our treatment, the system (19) is usedinstead. For a given P 2 Ric(�; J), the operator �P is called the indicatorof P , and the operator KP is called the (state) feedback operator of solutionP . The operators AP := A + BKP and CP = C + DKP are the closedloop semigroup generator and the closed loop output operator, respectively.Sometimes DARE (20) has a trivial solution; if we can write (D�JD)�1 =D�1J�1(D�1)�, then clearly 0 2 Ric(�; J).To each solution P 2 Ric(�; J), two additional DLSs are associated:De�nition 19. Let J 2 L(Y ) be self-adjoint, and � = � Aj B��jC D � = ( A BC D ) bea DLS. Let KP , AP and CP be as above.(i) For P 2 Ric(�; J), the DLS�P := � A B�KP I �is the spectral DLS, associated to the pair (�; J) and centered at P .



28(ii) For P 2 Ric(�; J), the DLS�P := �AP BCP D�is called the inner DLS, associated to the pair (�; J) and centered atP .In this work, we consider DAREs Ric(�; J), such that � is output stableand I/O stable. These are called H1DAREs, and de�ned as follows:De�nition 20. Let the objects �, J , Ric(�; J), P 2 Ric(�; J), and �P beas in De�nitions 18 and 19. Assume that � is, in addition, I/O stable andoutput stable.(i) We denote the DARE (19) by ric(�; J) instead of Ric(�; J). TheDARE ric(�; J) is called H1DARE.(ii) If P 2 Ric(�; J) is such that the spectral DLS �P is I/O stable andoutput stable, then we say that P 2 ric(�; J). We say that such P isan H1 solution of a H1DARE.When we write inclusions and equalities like Ric(�; J) � Ric(�0; J 0),Ric(�; J) = Ric(�0; J 0), then these symbols refer to the solution sets ofthe respective DAREs. We remark that a H1DARE ric(�; J) could havea non-H1 solution P . This this case we write P 2 Ric(�; J) instead ofP 2 ric(�; J).A number of residual cost conditions are required in our work.De�nition 21. Let the objects �, J , Ric(�; J), P 2 Ric(�; J), and �P beas in De�nitions 18 and 19.(i) If the residual cost operatorLA;P := s� limj!1 A�jPAjexists as a bounded operator in L(H), we write P 2 Ric00(�; J).(ii) If LA;P = 0, we write P 2 Ric0(�; J). Such P satis�es the strongresidual cost condition.(iii) If hPAjx0; Ajx0i ! 0 for all x0 2 H, we write P 2 Ric000(�; J). SuchP satis�es the weak residual cost condition.(iv) If hPAjx0; Ajx0i ! 0 for all x0 2 range(B), we write P 2 Ricuw(�; J).Such P satis�es the ultra weak residual cost condition.We also de�ne the solution sets ric0(�; J) := Ric0(�; J) \ ric(�; J),ric00(�; J) := Ric00(�; J)\ric(�; J), ric000(�; J) := Ric000(�; J)\ric(�; J)and ricuw(�; J) := Ricuw(�; J) \ ric(�; J). The elements of ric0(�; J) arecalled regular H1 solutions.



29We remark that the residual cost conditions (i), (ii), and (iii) dependon the structure of the solution P in the whole state space H. The ul-tra weak residual cost condition (iii) imposes only requirements on P re-stricted to the (possibly nonclosed) controllable vector subspace range(B).Recall that range(B) = B(dom(B)) where dom(B) := Seq�(U) consists ofsequences in `2(Z�;U) with only �nitely many nonzero components. Equiv-alently, P 2 Ricuw(�; J) if and only if limj!1 hPB� �j~u;B� �j~ui = 0 for allfujgj�0 = ~u 2 `2(Z+;U) having only �nitely many nonzero components uj.Solutions P 2 Ricuw(�; J) are of particular interest in the factorization the-ory of Theorem 27 and Theorem 50. The residual cost conditions (i) and (ii)of De�nition 21 are convenient for the Liapunov equation techniques. Thefollowing inclusions are basic:Proposition 22. Let the objects �, J , Ric(�; J), P 2 Ric(�; J), and �P beas in De�nitions 18 and 21. Then the following holds(i) If A is strongly stable, then Ric(�; J) = Ric0(�; J).(ii) fP 2 Ric000(�; J) j P � 0g � Ric0(�; J) � Ric000(�; J).(iii) Ric0(�; J) [ Ric000(�; J) � Ricuw(�; J).(iv) Ric00(�; J) \ Ric000(�; J) � Ric0(�; J). If range(B) = H, thenRic00(�; J) \ Ricuw(�; J) � Ric0(�; J).(v) If range(B) = H and A is power bounded, then Ricuw(�; J) � Ric000(�; J)and fP 2 Ricuw(�; J) j P � 0g � Ric0(�; J).(vi) We have the inclusion:fP 2 Ric(�; J) j limj!1 
PB� �j~u;B� �j ~u� = 0 for all ~u 2 `2(Z+;U)g� Ricuw(�; J):If � is, in addition, input stable, then the inclusion is equality.Proof. If A is strongly stable, then for all x0 2 H we havejjA�jPAjx0jj � jjA�jjj � jjP jj � jjAjx0jj for all j � 1:By the strong stability of A, jjAjx0jj ! 0 as j ! 1. Furthermore, byBanach�Steinhaus Theorem, supj�1 jjAjjj <1 and thus also supj�1 jjA�jjj <1. Thus jjA�jPAjx0jj ! 0 for all x0 and LA;P := s� limj!1A�jPAj = 0.This veri�es claim (i).Assume that P 2 Ric000(�; J) is nonnegative. Then it follows thathPAjx0; Ajx0i = jjP 12Ajx0jj2 ! 0 for all x0 2 H. Again, by Banach�Steinhaus Theorem, C := supj�1 jjA�jP 12 jj < 1. It now follows thatjjA�jPAjx0jj � C � jjP 12Ajx0jj ! 0, and thus P 2 Ric0(�; J). Now claim (ii)follows. Claim (iii) is trivial.



30 Let P 2 Ric00(�; J) \Ric000(�; J). Thus LA;P exists, and for all x0 2 Hwe have 0 = limj!1 
PAjx0; Ajx0� = limj!1 
A�jPAjx0; x0� = hLA;Px0; x0i :Now, [35, Theorem 12.7] implies that LA;P = 0, and the �rst part of claim(iv) follows. Because range(B) = H and P 2 Ricuw(�; J), it follows thatlimj!1 hPAjx0; Ajx0i = 0 for all x0 in a dense set. Thus LA;Px0 = 0 in adense set, and vanishes, by continuity. Now claim (iv) follows.To prove claim (v), assume that range(B) = H and supj�0 jjAjjj < 1.Because P 2 Ricuw(�; J), we have hPAjx;Ajxi ! 0 for all x 2 range(B).Let x0 2 H be arbitrary, and let range(B) 3 xk ! x0 in the norm of H, ask!1. Thenj 
PAjx0; Ajx0� j� j 
A�jPAjxk; xk� j+ j 
A�jPAjxk; (x0 � xk)� j+ j 
A�jPAj(x0 � xk); x0� j� j 
A�jPAjxk; xk� j+ supj�0 jjA�jPAjjj � jjx0 � xkjj � (jjxkjj+ jjx0jj)Because fxkg is a convergent sequence, it is a bounded set. Because A ispower bounded, supj�0 jjA�jPAjjj < 1. Then, by �rst increasing k suf-�ciently the latter term get arbitrarily small, and the former term getssmall as j is increased. Now hPAjx0; Ajx0i ! 0 for all x0 2 H, not justx0 2 range(B); or P 2 Ric000(�; J). The additional claim for P � 0 followsfrom claim (ii) of this Proposition.The inclusion part of claim (vi) is trivial. For the rest, let � > 0, ~u 2`2(Z+;U) and P 2 Ricuw(�; J) be arbitrary. Let K � 0 so large thatjj�[k;1]~ujj � �=jjBjj for all k � K, where the input stability is used. Then forj > k � K,j 
PB� �j~u;B� �j~u� j(21) � j 
PB� �j�[0;k�1]~u;B� �j�[0;k�1]~u� j+ j 
PB� �j�[0;k�1]~u;B� �j�[k;1]~u� j+ j 
PB� �j�[k;1]~u;B� �j�[0;k�1]~u� j+ j 
PB� �j�[k;1]~u;B� �j�[k;1]~u� j� 2 jjP jj � jjBjj � jj~ujj � � + jjP jj � �2 + j 
PB� �j�[0;k�1]~u;B� �j�[0;k�1]~u� j:Now we estimate the latter term. Because j � k, B� �j�[0;k�1]~u = Aj�kx0,where x0 = B� �k�[0;k�1]~u 2 range(B). But because P 2 Ricuw(�; J) by as-sumption,
PAj�kx0; Aj�kx0� ! 0 as j ! 1. So there is J � K such that thelatter term satis�es j 
PB� �j�[0;k�1]~u;B� �j�[0;k�1]~u� j < � for all j > J . Nowthe claim follows from estimate (21).The residual cost condition limj!1 hPB� �j ~u;B� �j ~ui = 0 for all ~u 2 `2(Z+;U)was used in [20]. For Riccati equation theory of I/O stable DLSs, thisresidual cost condition is �too strong�, and it can be replaced by requiringP 2 Ricuw(�; J).



31We proceed to consider the H1 solutions. The symbols ric(�; J) andric00(�; J) can be used synonymously, as far as they refer to the solutionsets.Proposition 23. Let � be an output stable and I/O stable DLS. Let J be acost operator. Then ric(�; J) = ric00(�; J), and we haveP � LA;P = C�JC � C��P JC�P :Proof. By iterating on DARE (19), we obtain for all j � 0:P � (A�)j+1PAj+1 = ��[0;j]C�� J ��[0;j]C�� ��[0;j]C�P �� �P ��[0;j]C�P �(22) = C�J � �[0;j]C � C��P J � �[0;j]C�P ;where we have written the adjoints by the assumed output stabilities. ClearlyC�JC = C�J�[0;j]C + C�J�[j+1;1]C. Now s� limj!1 �[j+1;1]C = 0 because C :H ! `2(Z+;Y ). Because C�J is bounded, s� limj!1 C�J�[j+1;1]C = 0 andthus s� limj!1 C�J�[0;j]C = C�JC. Similarly s� limj!1 C��P�P�[0;j]C�P =C��P�PC�P . Now we see from (22) that the strong limit LA;P :=s� limj!1 (A�)j+1PAj+1 on the left hand side exists, and the claim follows.Also the identity immediately follows.Note that the I/O stability of � and �P played no part in the proof of previousproposition.The question to what extent the operators �P , KP (or, equivalently theindicator �P and the spectral DLS �P in case range(B�) = H) uniquelyde�ne a solution P 2 Ric(�; J), is discussed in the following.Proposition 24. Let � = ( A BC D ) be an I/O stable output stable DLS. Let Jbe a self-adjoint operator. Let P1; P2 2 Ric(�; J) be such that �P1 = �P2 andKP1 = KP2.(i) If either P1 or P2 2 Ric00(�; J), then they both are in Ric00(�; J). Inthis case, P1 � P2 = LA;P1 � LA;P2.(ii) If, in addition, P1; P2 2 Ric0(�; J), then P1 = P2. This is, in particu-lar, always the case when A is strongly stable.Proof. It follows from equation (19) that A�P1A � P1 = A�P2A � P2, andimmediately P1 � P2 = A�j(P1 � P2)Aj = A�jP1Aj � A�jP2Aj for all j � 1.Now, if A�jP2Aj ! LA;P2 2 L(H) in the strong operator topology, A�jP1Ajconverges in the strong operator topology, too. Now LA;P1 �LA;P2 = P1�P2and claim (i) follows. The other claim is trivial.Proposition 25. Let � = ( A BC D ) be a DLS and J 2 L(Y ) a cost operator.Let P 2 Ric00(�) be arbitrary. If B�LA;PB = 0 and B�LA;PA = 0 thenP 0 = P � LA;P 2 Ric(�; J), and �P = �P 0, KP = KP 0.Proof. The claim immediately follows, by noting that A�LA;PA � LA;P =0.Under stronger assumptions, it in fact follows that LA;P = 0 and then P 0 = P ,see Lemma 52. In this case, the indicator �P and the spectral DLS �Puniquely determine P 2 ric(�; J).



324 Critical solutions of the Riccati equationThere are fundamental connections between a feedback solution of a certainminimax problem, the existence of a certain factorization of the I/O-map, andthe existence of a critical solution of the DARE, as de�ned in De�nition 28.This connection is the equivalence of Theorem 27, and it has been discussedin [20] under more general assumptions. We remark that it is practically astanding hypothesis of this work that the equivalence of Theorem 27 holds.Before going to this theorem, one more basic notion must be introduced:De�nition 26. Let � = � Aj B��jC D � be an I/O stable DLS, and J 2 L(Y )a self-adjoint operator. The self-adjoint and shift invariant linear operatorD�JD 2 L(`2(Z;U)) is called the Popov operator (of � and J).The Popov operator is clearly bounded, self-adjoint and shift invariant.Its causal Toeplitz operator ��+D�JD��+ is also called Popov operator, andthe Fourier transform is called the Popov function. A fair amount of controltheory has recently been written around the Popov operator, see [52], [53]and the references therein. In this respect, our approach is not di�erent.Theorem 27. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,and J 2 L(Y ) be self-adjoint. Then the following conditions (i), (ii) and (iii)are equivalent:(i) a) � is J-coercive; i.e. the Popov operator ��+D�JD��+ has a boundedinverse.b) There is an I/O stable feedback pair [K;F ] for � such that thecritical control of � is of feedback form with the critical feedbackpair [K;F ].(ii) There is a boundedly invertible operator S 2 L(U) such that D has a(J; S)-inner-outer factorization D = NX where the outer part X hasa bounded inverse.(iii) There is a (critical) solution P crit 2 Ricuw(�; J) of DARE (19), suchthat the spectral DLS �P crit is I/O stable, and its I/O-map DP crit isouter with a bounded inverse.Proof. The equivalence of claims (i) and (ii) is a particular case of [20, The-orem 27], applied to an output stable DLS �. Note that the assumed outputstability trivializes the condition �0N �JC 2 L(H;U) present in [20, Theorem27].To study condition (iii), assume that the equivalent conditions (i) and (ii)of this theorem hold. We �rst note that the critical (closed loop) observabilitymap Ccrit := �I � ��+D(��+D�JD��+)�1��+D�J� Cis bounded, because all its operators are bounded. The Popov operator(��+D�JD��+)�1 is bounded because � is J-coercive, by condition (i). The



33observability map C is bounded because � is assumed to be output stable.By [20, Lemma 35], the conjugate symmetric sesquilinear formP crit0 (x0; x1) := 
Ccritx0; JCcritx1�for all (x0; x1) 2 dom(C) � dom(C) = H � H, satis�es the Riccati equa-tion system of [20, De�nition 33]. Because Ccrit is bounded, the sesquilinearform P crit0 ( ; ) can be written P crit0 (x0; x1) = 
P crit0 x0; x1�, where P crit0 :=(Ccrit)�JCcrit is a bounded self-adjoint operator. Now P crit0 satis�es the Ric-cati equation system of De�nition 18 because P crit0 ( ; ) satis�es the Riccatiequation system of [20, De�nition 33].The spectral DLS �P crit0 is I/O stable and outer with a bounded inverse,by [20, Lemma 35]. Because Ccrit = (I � ��D(��+D�JD��+)�1��+D�J)C = �C,x0 2 H, we havejjA�jP crit0 Ajx0jj = jjA�jC����Cx0jj � jjC�jj � jj���jj � jj��+� �Cx0jj ! 0:It now follows that LA;P crit0 = 0, and in particular, P crit0 2 ric0(�; J) �Ricuw(�; J). Claim (iii) immediately follows.For the converse direction, assume that (iii) holds. We indicate howcondition (ii) follows. The solution P crit 2 Ricuw(�; J) de�nes a conjugatesymmetric sesquilinear form P crit( ; ) as above. Slight modi�cations 1 of [20,Lemma 37] and [20, Corollary 38] show that D = ND�Pcrit , N := DD�1�Pcrit , isa (J;�P crit)-inner-outer factorization, with the outer part having a boundedinverse. But this is condition (ii), thus completing the proof.For analogous results, see [13, Theorem 2.1] for equivalence of type (i) ,(ii), and [13, Theorem 4.1] for equivalence of type (ii), (iii). In continuoustime, we refer to [29], [39], [41], and [54]. We remark that the approximatecontrollability assumption range(B) = H is not needed in the proof of The-orem 27. This condition was needed in [20, Theorem 40] only as a technicaltool to prove the implication of type (iii)) (ii) in Theorem 27.De�nition 28. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,and J 2 L(Y ) be self-adjoint. The solution P crit 2 Ricuw(�; J) is critical, ifit satis�es the condition (iii) of Theorem 27. If a critical solution P crit liesin ric0(�; J), we call it a regular critical solution.Note that Theorem 27 takes no position whether a critical solution P critis unique in the set Ricuw(�; J). We remark that the spectral DLS �P crit ata critical P crit is not required to be output stable, and so it is not requiredto be a H1 solution. However, the proof of Theorem 27 shows that if acritical P crit 2 Ric(�; J) exists, then also a regular critical solution P crit0exists, and it can even be given by an explicit formula P crit0 := (Ccrit)�JCcrit.1We need not consider all xk(x0; ~u) for x0 2 dom(C) and ~u 2 `2(Z+;U) as has beendone in [20, Lemma 37]. It is su�cient to consider only x0 = 0 and ~u with a �nitenumber of nonzero components. But this is equivalent with considering only xk = Akx0for x0 2 range(B). Also the normalization of the outer factor is di�erent there.



34If follows that a critical solution P crit 2 Ricuw(�; J) exists if and only if aregular critical solution P crit0 exists. Note that Ccrit does not make sense as abounded operator, if the conditions of Theorem 27 do not hold. The specialregular critical solution is considered in the following.Proposition 29. Let � = � Aj B��jC D � be an I/O stable and output stableDLS, and J 2 L(Y ) be self-adjoint. Assume that a critical solution P crit 2Ricuw(�; J) exists. Then(i) P crit0 := (Ccrit)�JCcrit 2 ric0(�; J) is a critical solution, and(ii) the residual cost operator LAcrit;P crit0 exists and vanishes, where Acrit :=A+BKcrit = A +BKP crit0 .Proof. It has been shown in the proof of Theorem 27 that P crit0 satis�es thestrong residual cost condition LA;P = 0. We already know that the spectralDLS �P crit0 is I/O stable because its I/O-map is, by De�nition 28, the unique(properly normalized) outer factor of X of D, as in Theorem 27. To showthat P crit0 is an H1 solution, it remains to consider the output stability of�P crit0 .De�ne Kcrit := �0Kcrit= ��0(��+D�JD��+)�1��+D�JC = ��0X��1P crit0 ��+N �JC:This is the critical (one step, state) feedback operator that we can calculateby minimax method without solving any DARE; for details see [20, De�nition7 and Lemma 22]. We have Kcrit 2 L(H;U), because � is assumed to beoutput stable. From [20, Lemma 31, Eq. (48)] it follows that �P crit0 Kcrit =�D�JC � B�P crit0 A in the whole of dom(C) = H, by the assumed outputstability. By continuity, Kcrit = KP crit0 in the whole of H. The fact that weknow this in the whole of H, and not only in range(B), is a speciality ofthis particular critical solution P crit0 . We now conclude that the observabilitymap C�Pcrit0 = f�KP crit0 Ajgj�0 = f�KcritAjgj�0 =: �K is bounded. This isbecause K = ��P crit0 ��+N �JC, where N is the (J;�P crit)-inner factor of D,see [20, Lemma 25, Eq. (37)]. It follows that P crit0 2 ric(�; J).The proof of claim (ii) is analogous to the proof of LA;P = 0. BecauseCcritAcrit = ��+� �Ccrit by [20, Lemma 11], we havejj(Acrit�)jP crit0 (Acrit)jx0jj = jj(Acrit�)j(Ccrit)�JCcrit(Acrit)jx0jj� jj(Ccrit)�J jj � jj��+� �jCcritx0jj ! 0as j !1. It now follows that LA;P crit0 = 0.Without the approximate controllability assumption range(B�) = H, we can-not conclude that a regular critical solution is unique in the set ric0(�; J).However, the following uniqueness result is basic:



35Corollary 30. Let J 2 L(Y ) be self-adjoint. Let � = � Aj B��jC D � be an I/Ostable and output stable DLS, such that range(B) = H. Assume that a criticalsolution P crit 2 Ricuw(�; J) exists.(i) Then P crit0 is the unique critical solution in the set Ric00(�; J). If A isstrongly stable, then P crit0 is the unique critical solution.(ii) Assume, in addition, that P crit � 0. If P crit =2 Ric0(�; J), thensupj�0 jj(P crit) 12Ajjj =1.Proof. Let P crit0 be as in Proposition 29. Because both P crit0 , P crit are critical,the I/O-maps D�Pcrit0 , D�Pcrit are outer factors in the (J;�P crit0 ), (J;�P crit)-inner-outer factorizations that they induce, respectively. Using [19, Proposi-tion 21], we conclude that there is E 2 L(U) having a bounded inverse, suchthat D�Pcrit0 = E�1D�Pcrit ; and �P crit0 = E��P critE:Because the feed-through operators of both D�Pcrit0 and D�Pcrit are identityoperators, it follows that E = I and �P crit0 = �P crit. Also the restrictionsKP crit0 jrange(B) = KP crit jrange(B) because the controllability map B is samefor both spectral DLSs in question. Because range(B) = H, it followsKP crit0 =KP crit .By the de�nition of a critical solution, P crit 2 Ricuw(�; J), see claim (vi)of Proposition 22. Now, if P crit 2 Ric00(�; J), then P crit 2 Ric0(�; J), byclaim (iv) of Proposition 22 and the approximate controllability assumptionrange(B) = H. Proposition 24 implies that P crit 2 Ric00(�; J) satis�esP crit = P crit0 + LA;P crit � LA;P crit0 = P crit0 ;because P crit0 2 ric0(�; J), by Proposition 29. Now claim (i) follows.By the de�nition of a critical solution, P crit 2 Ricuw(�; J). BecauseP crit � 0, it follows that jj(P crit) 12Ajxjj ! 0 for all x 2 range(B). Assumethat supj�0 jj(P crit) 12Ajjj < 1. Let range(B) 3 xk ! x 2 H n range(B).Then, jj(P crit) 12Ajxjj � supj�0 jj(P crit) 12Ajjj � jjx� xkjj+ jj(P crit) 12Ajxkjj:The �rst term on the right can be made small by increasing k, and thelatter by increasing j. It follows that limj!1 jj(P crit) 12Ajxjj = 0 and thenP crit 2 Ric0(�; J), by the Banach�Steinhaus theorem. This completes theproof.For a �xed J , the I/O-map D may have (J; S)-inner-outer factorization D =NX for several di�erent S = S� 2 L(U). All these are parameterized by[19, Proposition 21]. Given a critical P crit 2 Ricuw(�; J), D = ND�Pcrit isa (J;�P crit0 )-inner-outer factorization, where N := DD�1�Pcrit by de�nition. In



36this case, the feed-through operator of the outer factor X = D�Pcrit is theidentity operator in U . This normalization is used throughout this paper.The rest of this section is devoted to the study of su�cient conditions thatquarantee that (one and hence all of) the equivalent conditions of Theorem27 hold. We remark that this is practically a standing hypothesis in thiswork.Proposition 31. Let � = � Aj B��jC D � be an I/O stable DLS whose input spaceU is separable, and J 2 L(Y ) be self-adjoint. If ��+D�JD��+ � ���+ > 0 forsome � > 0, then the equivalent conditions of 27 hold. In particular, thisis true if � is J-coercive and J � 0, or there is P 2 ricuw(�; J) such that�P > 0.Proof. ��+D�JD��+ is a nonnegative self-adjoint Toeplitz operator with abounded inverse. By [33, Theorem 3.7], there is an I/O stable I/O-mapG 2 L(`2(Z;U)) such that ��+D�JD��+ = ��+G�G��+. By this trick we get ridof the output space Y .By [33, Theorem 3.4], ��+D�JD��+ = ��+G�G��+ = ��+H�H��+, whereH is outer having possibly a nonclosed range. Two problems are present.Firstly, range(H��+) must be closed, so that the outer factor has a boundedinverse. Secondly, [33, De�nition 1.6] of outer operator does not requirethat range(H��+) should be even dense in `2(Z+;U), only that its closurereduces the shift and is thus of form `2(Z+;U 0) for some Hilbert subspaceU 0 � U . The �rst of these problems is easy to resolve. The coercivity��+H�H��+ � ���+ > 0 implies that the Toeplitz operator H��+ has a closedrange, and thus a bounded (pseudo) inverse.To attack the second problem, note that U 0 � U implies dimU 0 � dimU .Also dimU 0 � dimU holds because for all z 2 D, ker(H(z)) = f0g, bya lengthy calculation omitted here. Because dimU 0 = dimU , there is aunitary E 2 L(U 0;U) such that E�E = I. De�ne X = EH. This is theI-spectral factor X of the Popov operator ��+D�JD��+ such that (X ��+)�1 2L(`2(Z+;U)), or equivalently X�1 is bounded . This is also the outer factor(with a bounded inverse) in the (J; I)-inner-outer factorization D = NX , see[19, Proposition 20]. Now condition (ii) of Theorem 27 holds.If there is a solution in P 2 ricuw(�; J) such that �P > 0, then we obtainthe factorization of the Popov operator ��+D�JD��+ = ��+D��PJD�P ��+, by[19, Lemma 37] or claim (i) of Theorem 50 of this paper. By de�nition,D�(0) = I has a bounded inverse. We can now proceed as above, with Dreplaced by D�P .For a further comment on the condition�P > 0, see Lemma 53. The followingequivalence is now an immediate corollary:Corollary 32. Let � = � Aj B��jC D � be an I/O stable and output stable DLS,such that the input space U is separable. Let the self-adjoint cost operatorJ 2 L(Y ). Then the following are equivalent:(i) ��+D�JD��+ � ���+ for some � > 0.



37(ii) The Popov operator ��+D�JD��+ is nonnegative, and the equivalent con-ditions of Theorem 27 hold.Proof. The implication (i)) (ii) is in Proposition 31. The converse directionis claim (i) of Theorem 27.The case when the Popov operator ��+D�JD��+ � �I > 0 occurs in appli-cations. Such Popov operators arise e.g. in the study of linear quadraticoptimal control problems and in the factorization versions of Bounded andPositive Real Lemmas, see [41, Section 8].



385 Function theoretic de�nitions and toolsIn this section, we present some relevant results from the operator-valuedfunction theory. We work in terms of the nontangential boundary limits(boundary traces) D�(ei�) of transfer functions D�(ei�) that must now be ofbounded type D�(z) 2 N(D;L(U)). This requires the separability of theHilbert spaces U and Y , and a compactness assumption of an input operatorB of � = ( A BC D ), as we shall later see. Then various factorization problems,initially formulated in terms of the I/O-maps (or equivalently: transfer func-tions) of DLSs, are stated in the language of the boundary trace vector spacesand algebras. These function spaces contain additional structure that givesus stronger results.Inner and outer transfer functions are de�ned and investigated. In Propo-sition 34, we give a su�cient condition for an inner from the left analyticfunction to be inner (from both sides). In Proposition 36, the inner func-tions are characterized in the set H2(D;L(U ;Y )). Transfer functions andboundary traces of outer I/O-maps (having a bounded inverse) are consid-ered in Proposition 37. The I/O-map D of an I/O stable and J-coercive DLSis the subject of Proposition 38; it is remarkable that we need the bound-ary traces and separability of the Hilbert spaces to get a bounded, generallynoncausal inverse for such D. The Hilbert�Schmidt class of compact opera-tors is introduced in De�nition 39. In Lemma 41 and Corollary 42, we usethe Hilbert-Schmidt property of the input operator B to make the transferfunction of an output stable DLS � = ( A BC D ) to be of bounded type. Thismakes it possible to extend our main results to DLSs whose input space Ucan be in�nite dimensional, at the prize of a compactness assumption. Weremark that much of this section can be replaced by trivial arguments, if theinput space U of the DLS is �nite dimensional.We start with giving basic de�nitions. Let �(z) be an analytic L(U ;Y ))-valued function in D. The adjoint function ~�(z) is de�ned by~�(z) := �(�z)� for all z 2 D:If �(z) = Pj�0 cjzj for fcjg � L(U; Y ), then ~�(z) = Pj�0 c�jzj. It followsthat ~�(z) 2 H1(D;L(U ;Y )) if and only if �(z) 2 H1(D;L(U ;Y )). Thenontangential boundary limits behave expectedly ~�(ei�) = �(e�i�)� a.e. ei� 2T.De�nition 33. Let �(z) 2 H1(D;L(U ;Y )), where U and Y are separable.Then(i) �(z) is inner from the left if �(ei�) 2 L(U; Y ) is an isometry a.e.ei� 2 T,(ii) �(z) is inner from the right if the adjoint function ~�(z) is inner fromthe left,(iii) �(z) is inner if the nontangential limit �(eit) is unitary a.e. ei� 2 T.



39Clearly �(z) is inner from the left if and only if ~�(z) is inner from theright. The nontangential limit �(ei�) of the inner from the right functionis is co-isometric a.e. ei� 2 T. Also �(z) is inner if and only if it is innerfrom the left and right. In this case we can say, for clarity, that �(z) isinner from the both sides or two-sided inner. In [8, p. 234 and 242], �(z) isinner (�-inner) if �(ei�) is isometric (co-isometric, respectively) a.e. ei� 2 T.The same notation is used in [46, p. 190]. In [33], inner function is anelement of H1(D;L(U)) such that the nontangential boundary values arepartial isometries. In several occasions, it will be necessary to conclude thatan inner from the left function is in fact inner. If the spaces U and Y are�nite dimensional with the same dimension, it is easy to show that innerfrom the left implies inner from the both sides. This is because all isometriesin a �nite dimensional space are unitary, by a basic dimension countingargument. If the involved Hilbert spaces are in�nite dimensional, much lessit true. Fortunately, the inner from the left factors arising from the solutionsof DARE (as studied in this paper) have this special property. It is relatedto the requirement that the indicator �P for all P 2 Ric(�; J) must have abounded inverse.Proposition 34. Assume that �(z) 2 H1(D;L(U ;Y )) is inner from theleft. Then �(z) is inner if and only ifU = spanz2
frange(�(z))g;(23)where 
 � D is any subset that has an accumulation point in D. In partic-ular, if �(z0) has a dense range for some z0 2 D, then �(z) is inner.Proof. We have to show that �(z) is inner from the right if and only if (23)holds. Equivalently, we have to show that ~�(z) is inner from the left if andonly if (23) holds. By [33, Theorems 5.3A, 5.3B and 5.3C], ~�(z) is innerfrom the left if and only ifU =Min( ~�(z)) = spanz2
frange( ~�(z)�)g= spanz2
frange(�(�z))g = spanz2�
frange(�(z))gwhere 
 � D (and hence its complex conjugate set �
) is any set having anaccumulation point inside D.Clearly, if �(z0) has a bounded inverse for some z0 2 D, then �(z) is innerfrom the both sides. However, such z0 does not necessary exists. For acounter example, consider the �snake function� in H1(D;L(U))s(z) =Xj�0 Pjzjwhere fPjgj�0 are one-dimensional, mutually orthogonal projections on aseparable in�nite-dimensional separable Hilbert space such that Pj�0 Pj =I. It follows that s(z) is injective and compact with dense range for all



40z 2 D n f0g, and thus not boundedly invertible. Also s(0) = P0 is rank one.However, the boundary trace s(ei�) exists on T, and it is unitary � otherwisethe boundary behavior of s(z) is very wild. De�nitely, the convergence onthe nontangential sequences happens only in the strong operator topology,because the ideal of compact operators is closed. We remark that s(z) is anexample of an operator-valued bounded analytic function which is �as bad asit gets�, in many respects.The transfer functions of the isometric and unitary Toeplitz operators ofI/O-maps N ��+ : `2(Z+;U)! `2(Z+;Y ) are of particular interest.Proposition 35. Let N be an I/O-map of an I/O stable DLS, with U and Yseparable. Then N ��+ is an isometry on `2(Z+;Y ) (i.e. ��+N �N ��+ = ��+, orN is (I; I)-inner) if and only if the transfer function N (z) is inner from theleft. Furthermore, N ��+ is unitary if and only if N (z) is a unitary constantfunction.Proof. This is [8, part (c) of Theorem 1.1 and Corollary 1.2, Chapter IX].In De�nition 33, we have required (as usual) that the inner function �(z) isa priori in H1(D;L(U ;Y )). This makes it possible to speak about nontan-gential limits, de�ned a.e. on T. Actually, it would have been su�cient torequire that �(z) lies in H2(D;L(U ;Y )) or even in N+(D;L(U ;Y )):Proposition 36. Let T (z) 2 H2(D;L(U ;Y )), with U and Y separable. As-sume that the nontangential limit satis�es ess supei�2T jjT (ei�)jj � 1. ThenT (z) 2 H1(D;L(U ;Y )). In particular, if T (z) 2 H2(D;L(U ;Y )), with iso-metric nontangential limits T (ei�) a. e. ei� 2 T, then T (z) is inner from theleft.Proof. By the same comment that is present in the proof of Proposition 9,we need to consider only the case Y = U . In this case, [33, Theorem 4.7A]proves the claim because H2(D;L(U ;Y )) � N+(D;L(U ;Y )).Now that we have dealt with the matters concerning the boundary behaviorof the inner functions, we proceed to study the outer functions. Recall thatan I/O stable I/O-map X is outer with a bounded inverse, if the Toeplitzoperator X ��+ has a bounded inverse in `2(Z+;U), see [19, De�nition 17].Proposition 37. Let X : `2(Z;U) ! `2(Z;U) be an I/O-map of an I/Ostable DLS, which is outer with a bounded inverse. Then the following holds:(i) X�1 : `2(Z;U) ! `2(Z;U) exists boundedly, and is an I/O-map of anI/O stable DLS.(ii) X (z)�1 2 L(U) exists for all z 2 D, and X (z)�1 = X�1(z) where X�1is the I/O-map of the inverse DLS of a realization of X . Furthermore,supz2D jjX (z)�1jjL(U) <1 and thus X (z)�1 2 H1(D;L(U)).



41(iii) If, in addition, U is separable, then the nontangential boundary limitX (ei�) exists and is boundedly invertible a.e. ei� 2 T. We haveX (ei�)�1 = X�1(ei�) a.e. ei� 2 T and, in particular, X (ei�)�1 2H1(T;L(U)).Proof. The proof of claim (i) is the matter of [19, Chapter 4], with slightadditions. To prove claim (ii), we show that X (z)�1 = X�1(z) for all z 2D. Let �0 be a realization: X = D�0 . Then X�1 = D�1�0 = D(�0)�1 , byProposition 2, and I = D(�0)�1D�0 . By Corollary 8, I = D(�0)�1(z)D�0(z) andI = D�0(z)D(�0)�1(z) for all z 2 D. It follows that D�0(z) = X (z) : U ! Uis a bounded bijection and has a bounded inverse X (z)�1, for all z 2 D.Also X (z)�1 = D�1�0 (z) = X�1(z) 2 H1(D;L(U)), by claim (i). The lastclaim (iii) follows now from the theory of nontangential boundary limits ofH1-functions, see the discussion following De�nition 12 or [33, p. 88].An an important application, we consider the noncausal shift-invariant in-verse of the I/O-map. This result is used in Lemma 53.Proposition 38. Let J 2 L(Y ) be self-adjoint. Let � = � Aj B��jC D � be an I/Ostable and J-coercive DLS, with input space U and output space Y . Then(i) both the Toeplitz operator D��+ : `2(Z+;U) ! `2(Z+;Y ) and the I/O-map D : `2(Z;U)! `2(Z;Y ) are coercive.(ii) Assume, in addition, that U and Y are separable, and the feed-throughoperator D 2 L(U ;Y ) of � is injective with a dense range. Thenrange(D) = `2(Z;Y ). In this case D�1 : `2(Z;Y ) ! `2(Z;U) exists, isbounded and shift-invariant. (D�1 is not causal, unless D is outer witha bounded inverse.)Proof. The claim about Toeplitz operator D��+ is [19, Proposition 6]. It iseasy to see, by a density argument and shift invariance of D, that D��+ andD are simultaneously coercive in the indicated spaces.Consider now claim (ii). Because of the separability of the spaces U andY , we can study the problem in terms of multiplication operators on thenontangential boundary limits. Because D��+ is coercive, it follows that thePopov operator ��+D�D��+ � ���+ > 0. Now Corollary 32 implies that wehave the factorization D = N 0X 0, where N 0 is (I; I)-inner and X 0 is outerwith a bounded inverse. On the boundary, this meansD(ei�) = N 0(ei�)X 0(ei�)(24)a.e. ei� 2 T. The boundary trace of the inner (from the left) factor N 0(ei�) 2L(U ;Y ) is isometric almost everywhere: N 0(ei�)�N 0(ei�) = IU a.e. ei� 2 T.The outer factor X 0(ei�) 2 L(U) has a a bounded inverse for almost allei� 2 T. By Proposition 37, X 0(ei�)�1 2 H1(T;L(U)).We now consider the static part N := N (0) 2 L(U ;Y ) of the inner factor.By causality, D = �0NX�0 = �0N�0 � �0X�0 = NX, where X = X (0) 2L(U) is the feed-through operator of the outer factor X . By Proposition



4237, X�1 2 L(U) and N = DX�1. It now follows that range(N) is dense,and N (ei�) is inner from both sides, by Proposition 34. This means thatN 0(ei�)N 0(ei�)� = IY a.e. ei� 2 T. In particular, N 0(ei�)� 2 L1(T;L(Y ;U)).Now we can attack the claim about the density of range(D). Let ~y(ei�) 2L2(T;Y ) be arbitrary. De�ne ~w(ei�) := N 0(ei�)�~y(ei�) away from a set ofmeasure zero. Because N 0(ei�)� 2 L1(T;L(Y ;U)) and ~y(ei�) 2 L2(T;Y ),[8, part (a) of Theorem 1.1, Chapter IX] implies that ~w(ei�) 2 L2(T;U). Sim-ilarly, ~u(ei�) := X 0(ei�)�1 ~w(ei�) 2 L2(T;U). But now, D(ei�)~u(ei�) = ~y(ei�)almost everywhere. Because ~y(ei�) is arbitrary, this means in the time domainthat range(D) = `2(Z;Y ) because the Fourier transform is an isometric iso-morphism. The shift invariance of D�1 follows from [8, part (a) of Theorem1.1, Chapter IX], too.As we have stated earlier, functions in the Nevanlinna class N(D;X) canbe adequately described by their nontangential boundary limit functions forX = U , X = L(U) or X = L(U ;Y ), when U and Y are separable Hilbertspaces. Unfortunately, a general sH2(D;L(U ;Y )) function need not be inN(D;L(U ;Y )) if dimU = 1. It is even more unfortunate that the strongH2-stability of the transfer function is an important notion because outputstability of its realization implies it. From the state space representation ofa transfer function, output stability of the realization is often best we canachieve by Liapunov type methods. The I/O stability is not �built� into thestate space model as conveniently as the output stability.So, in order to work with the nontangential limit function D�(ei�), wehave to make a extra assumption on the output stable DLS �, as will bedone in Lemma 41. The question is about a compactness assumption ofthe input operator B which, in a sense, forbids the DLS � = ( A BC D ) tobe �too� in�nite-dimensional. With this restriction, we can conclude thatD�(z) 2 H2(D;L(U ;Y )) � N+(D;L(U ;Y )), by Lemma 41.De�nition 39. Let H1, H2 be separable Hilbert spaces, and T 2 L(H1; H2).Let fejgj�0 be an orthonormal base for H1. T is a Hilbert�Schmidt operatorif jjT jj2HS :=Xj�0 jjTejjj2H2is �nite. In this case we write T 2 HS = HS(H1;H2). The number jjT jjHSis called the Hilbert�Schmidt -norm of T .It can be shown that the class HS is well de�ned, and the norm jj � jjHSis independent of the choice of the basis fejgj�0. All Hilbert�Schmidt oper-ators are compact, and each �nite dimensional operator is trivially Hilbert�Schmidt. In the matrix case, HS-norm is the familiar Frobenius matrixnorm. The set HS is a vector space, and the norm jj � jjHS makes it a Ba-nach algebra where the involution � satis�es jjT jjHS = jjT �jjHS, providedH1 = H2. HS is also a Hilbert space under the inner product[T1; T2]HS :=Xj�0 hT1ej; T �2 eji:



43The Hilbert�Schmidt operators are exactly those compact operators T whosesingular values satisfyPj�0 �j(T )2 <1. A good general reference here is [5,Chapter XI.6]. However, the following fact is important enough to be statedseparately:Proposition 40. Let T 2 HS(H1;H2) and S 2 L(H2;H3). Then ST 2HS(H1;H2) and jjST jjHS(H2;H3) � jjSjjL(H2;H3) jjT jjHS(H1;H2).Proof. The following calculation proves the claim:jjST jjHS(H2;H3) =Xj�0 jjSTejjj2H3�Xj�0 jjSjjL(H2;H3) jjTejjj2H2 = jjSjjL(H2;H3) Xj�0 jjTejjj2H2 :Lemma 41. Let �(z) 2 sH2(D;L(U ;Y )), with U and Y separable. Assumethat the linear mapping U 3 u 7! �(z)u 2 H2(D;Y )(25)is a Hilbert�Schmidt operator. Then �(z) 2 H2(D;L(U ;Y )).Proof. Let fejgj�0 be an countable orthonormal basis for the separable U .De�ne the analytic functions�j(z) := �(z)ej. Each�j(z) belongs toH2(D;Y )because �(z) 2 sH2(D;L(U ;Y )). The Hilbert�Schmidt assumption meansthat Xj�0 jj�j(z)jj2H2(D;Y ) <1;(26)where jj�j(z)jj2H2(D;Y ) := sup0<r<1 12� 2�Z0 jj�j(rei�)jj2Y d�:For all z 2 D, �(z) 2 L(U ;Y ). Let u = Pj�0 cjej 2 U be arbitrary, suchthat only a �nite number of cj's are nonzero. Then for all z 2 D we havejj�(z)ujj2Y = jjXj�0 cj �j(z)jj2Y �Xj�0 jcjj2Xj�0 jj�j(z)jj2Y = jjujj2U �Xj�0 jj�j(z)jj2YBecause above the set of u's is dense in U , it followsjj�(z)jj2L(U ;Y ) �Xj�0 jj�j(z)jj2Y(27)for all z 2 D.



44 Now, let 0 < r < 1 be arbitrary. Then each function ei� 7! jj�j(rei�)jj2Y isa smooth (and thus a measurable) function, by the analyticity of �j(z) in D.The function ei� 7!Pj�0 jj�j(rei�)jj2Y is measurable because the partial sumsare increasing, and the supremum of a countable collection of measurablefunctions is measurable, by [34, Theorem 1.14]. Similarly, because �(z) isanalytic inside D, the function ei� 7! jj�(rei�)jj2Y is measurable, too. Nowequation (27) gives for all 0 < r < 112� 2�Z0 jj�(rei�)jj2L(U ;Y ) d� � 12� 2�Z0  Xj�0 jj�j(rei�)jj2Y! d�(28) =Xj�0 0@ 12� 2�Z0 jj�j(rei�)jj2Y d�1A;where the latter equality is by the Lebesque's Monotone Convergence the-orem [34, Theorem 1.26] implies (or its immediate corollary [34, Theorem1.27]), because the partial sums are nondecreasing. Taking supremum overr, gives jj�(z)jj2H2(D;L(U ;Y )) �Xj�0 0@ sup0<r<1 12� 2�Z0 jj�j(rei�)jj2Y d�1A=Xj�0 jj�j(z)jj2H2(D;Y ):Using the Hilbert�Schmidt assumption in the form of equation (26) showsthat �(z) 2 H2(D;L(U ;Y )). The proof is now complete.Corollary 42. Let � = ( A BC D ) be an output stable DLS, such that the spacesU and Y are separable. Assume that the input operator B 2 L(U ;H) isHilbert�Schmidt. Then D�(z) 2 H2(D;L(U ;Y )).Proof. Because � is output stable, D�(z)�D 2 sH2(D;L(U ;Y )), by Proposi-tion 11. We also have (D�(z)�D)u0 =Pj�1CAj�1Bu0zj = z�(FzC�Bu0)(z),where Fz denotes the unitary z-transform from `2(Z+;Y ) onto H2(D;Y ). Byoutput stability, the composition FzC� : H ! H2(D;Y ) is well de�ned andbounded. It follows from Proposition 40 that the mappingU 3 u0 7! (FzC�Bu0)(z) 2 H2(Y )is Hilbert�Schmidt because the input operator B is. Because the multiplica-tion of the variable z in H2(D;Y ) is isometric, the mappingU 3 u0 7! (D�(z)�D)u0 2 H2(Y )is Hilbert�Schmidt. Lemma 41 implies now thatD�(z)�D 2 H2(D;L(U ;Y )).This completes the proof.The same conclusion can be made, if AjB is Hilbert�Schmidt, for some j � 0.



456 Factorization of the truncated Popov oper-atorOur main interest is in the H1DARE, associated to an output stable andI/O stable DLS �. As we have seen, this stability requirement makes somesolution of DARE more interesting than others. In Section 3 we have sortedout the more interesting solutions from the less interesting.In this section, we consider additional conditions that make the spectralDLS �P is either output stable, or I/O stable, or both, for a particularP 2 Ric(�; J)). More speci�cally, we introduce additional assumptions thatallow us to conclude P 2 Ric(�; J)) P 2 ric(�; J);when � is known to be output stable and I/O stable. The basic tool toobtain the most general of these results is the factorization of the truncatedPopov operator, as given in Lemma 45.Let us �rst discuss the trivial cases. If � itself is power stable, then so are�P for all P 2 Ric(�; J) because they have a common semigroup generator A.More generally, if the Wiener class type conditionP jjAjBjj <1 holds, thenD�P is I/O stable for all P 2 Ric(�; J). Now the common input structure(i.e. the common operators A and B) determine the I/O stability of both thesystems � and �P . In the case when � is output stable and I/O stable, it iseasy to see that �P is I/O stable (output stable) if and only if �0 = ( A BB�P 0 )is I/O stable (output stable, respectively) but this is just a restatement thatis impossible to use in practice.More general results are obtained by Liapunov type methods that requiresome type of nonnegativity, either in the cost operator J , the Popov operatorD�JD , or indicator �P of the solution P . We start with discussing the caseof output stability.Proposition 43. Let � = � Aj B��jC D � be an output stable DLS and J 2 L(Y )be a self-adjoint operator. Let P 2 Ric(�; J) such that �P > 0. Then(i) �P is output stable if and only if the strong limit LA;P :=s� limj!1A�jPAj exists as a bounded operator. When this equiva-lence holds, we haveLA;P � P = C��P�PC�P � C�JC:(29)(ii) In particular, if A is strongly stable, then �P is output stable.(iii) If P � 0 and LA;P = 0, we haveC�JC � C�JC � P = C��P�PC�P



46Proof. We prove one direction of claim (i). Assume that �P > 0 and LA;P =s� limj!1A�jPAj exists. We can iterate on the Riccati equation (19) andobtain for all j � 0A�(j+1)PAj+1 � A�jPAj = A�jK�P�PKPAj � A�jC�JCAj:Telescope summing this up to n � 0 gives for all x0 2 Hhx0; (A�nPAn � P )x0i(30) = *x0; n�1Xj=0 A�jK�P�PKPAjx0+�*x0; n�1Xj=0 A�jC�JCAjx0+By assumption, the left hand side of the previous equation converges to a�nite limit hx0; (LA;P � P )x0i. On the right hand side, we have*x0; n�1Xj=0 A�jC�JCAjx0+ = n�1Xj=0 
CAjx0; JCAjx0�= 
�[0;n�1]Cx0; J�[0;n�1]Cx0�`2(Z+;Y )which converges absolutely to a bounded limit hx0; C�JCx0i as n ! 1, bythe assumed output stability of �.Because everything else in (30) converges to a �nite limit and �P > 0, itfollows that remaining term*x0; n�1Xj=0 A�jK�P�PKPAjx0+ = n�1Xj=0 
KPAjx0;�PKPAjx0�= jj� 12P�[0;n�1]C�P x0gjj2̀2(Z+;U)converges (increases) to a �nite limit, equalling jjf� 12PKPAjx0gj�0jj2̀2(Z+;U),as n!1. Because ��1P is bounded and x0 2 H arbitrary, this is equivalentto the output stability of �P . This completes the proof of the �rst direction.The converse part in contained in the proof of Proposition 23 where alsoequation (29) is given. Claim (ii) follows trivially from the fact that stronglystable A implies that the strong limit operator LA;P always exists and equals0. Claim (iii) is a trivial consequence of equation (29).Corollary 44. Let J 2 L(Y ) be self-adjoint. Assume that � is a I/O sta-ble and output stable DLS, such that range(B) = H. Then ricuw(�; J) =ric0(�; J).Proof. Trivially ric0(�; J) � ricuw(�; J), and the converse inclusion is shownbelow. Because P 2 ricuw(�; J), both � and �P are output stable. We havefor all j � 1 A�jPAj � P = C��P�P�[0;j�1]C�P � C�J�[0;j�1]C;



47as in equation (22) of Proposition 23. By the output stabilities, both�[0;j�1]C ! C and �[0;j�1]C�P ! C�P strongly. It follows that LA;P existsand P 2 Ric00(�; J). Now claim (iv) of Proposition 22, together with theassumed approximate controllability, shows that P 2 Ric0(�; J).We proceed to study the I/O stability of the spectral DLS �P . For solutionssuch that limj!1 hPB� �j~u;B� �j ~ui = 0 for all ~u 2 `2(Z+;U), a necessary andsu�cient condition for �P to be I/O stable is the following speed estimateXj�0 j hxj; Pxji � hxj+1; Pxj+1i j <1for all trajectories xj = B� �j ~u where ~u 2 `2(Z+;U) is arbitrary, see [19,Proposition 41 with a slight modi�cation]. The good thing in this conditionis that is does not require nonnegativity of any kind, and that it has a gametheoretic interpretation. Unfortunately, this condition is not practical for ourpurposes.We continue by giving an unsuccessful attempt that, however, revealssomething about the nature of the problem. Assume that � is input stableand I/O stable, and J � 0. Suppose we already know �P to be output stable.Claim (iii) of Proposition 43 implies that1 > jj��D�JD��jj � B�C�JCB � B��P C��P�PC�PB�P ;if P � 0 and LA;P = 0, because B�P = B. So the Hankel operator C�PB�P =��+D�P�� is bounded in `2(Z;U), but this does not allow us directly concludethe I/O stability of D�P .We are not far from having �P I/O stable, provided that we have the apriori knowledge that D�P (z) 2 N(D;L(U)) so that the nontangential limitfunctionD�P (ei�)makes sense. More precisely, denote by � the bounded Han-kel operator C�PB�P , and assume, for simplicity that everything is complex-valued, i.e. U = Y = C. By [8, Theorem 3.3, Chapter IX], � = �(Q),where Q(ei�) 2 L1(T; d�) is a bounded symbol for � (we have omittedone unitary �ip operator in the de�nition of the Hankel operator but thisis immaterial). Write Q(ei�) as the Fourier series Q(ei�) � Pj2Z qj eij�.Now qj = �KPAj�1B for j � 1 because D�P (ei�) is also a (possibly un-bounded) symbol for �. It is well known that L1(T; d�) � Lp(T; d�) forall 1 < p < 1, and that the Szegö projection � : Lp ! Hp (zeroingthe negatively indexed Fourier coe�cients) is bounded for 1 < p < 1.But now D�P (ei�) = �Q(ei�) 2 \1<p<1Hp(T;C). Unfortunately, the in-clusion H1(T;C) � \1<p<1Hp(T;C) is strict, and we cannot concludeD�P (ei�) 2 H1(T;C).After one impractical and another unsuccessful attempt, we approach theI/O stability problem of �P from a third direction. We begin with factor-ization lemma of the truncated Popov operator for strongly H2 stable DLSs.Recall that impulse response operator D�0 : U ! `2(Z+;Y ) of a strongly H2stable DLS is bounded, by de�nition. It then immediately follows, by the



48shift invariance, that the truncated Toeplitz operators D�[0;m] are bounded,for all m � 0.Lemma 45. Let J 2 L(Y ) be a self-adjoint cost operator, and � = � Aj B��jC D �strongly H2 stable. Let P 2 Ricuw(�; J); i.e.
PAjx0; Ajx0�! 0 for all x0 2 range(B)(31)as j !1. Assume also that the spectral DLS �P is strongly H2 stable.Then D�[0;m] : `2(Z;U) ! `2(Z;Y ) and D�P�[0;m] : `2(Z;U) ! `2(Z;U)are bounded, and the truncated Popov operator has the factorization(D�[0;m])�JD�[0;m] = (D�P�[0;m])��PD�P�[0;m](32)for all m � 0.Proof. Let x0 2 H and fujgj�0 = ~u 2 `2(Z+;U) be arbitrary. Denotexj = xj(x0; ~u) = Ajx0 + B� �j ~u the trajectory of � with this given initialstate and input. We have in [19, claim (i) of Proposition 36] for all n > 0hPx0; x0i � hPxn; xni(33)= n�1Xj=0 hJ(Cxj +Duj); Cxj +Duji � n�1Xj=0 h�P (�KPxj + uj);�KPxj + uj)i:Consider now the special case when the input is otherwise arbitrary, but ofform ~u = �[0;m]~u, for m � 0. Then, for n > m,xn = xn(x0; �[0;m]~u) = An�m�1 � xm+1(x0; �[0;m]~u);xm+1(x0; �[0;m]~u) = Am+1x0 + B� �(m+1)�[0;m]~u:Let x0 = 0. Because now xm+1(0; �[0;m]~u) 2 range(B), it follows from theresidual cost condition (31) that hPxn; xni ! 0 as n ! 1. It follows thatthe left hand side of (33) vanishes as n!1.We must now consider the right hand side of (33). Because both theoperators D�[0;m] and D�P�[0;m] are bounded, by the H2-stability assumptionof �P , it is not di�cult to see that the limit of the left hand side of (33) isactually
JD�[0;m]~u;D�[0;m]~u�`2(Z+;Y ) � 
�PD�P �[0;m]~u;D�P�[0;m]~u�`2(Z+;Y ) ;as n!1. Adjoining this gives
~u; �(D�[0;m])�JD�[0;m] � (D�P�[0;m])��PD�P�[0;m]� ~u�`2(Z+;Y ) = 0for all ~u 2 `2(Z;U). Now an application of [35, Theorem 12.7] completes theproof.



49The result of the previous lemma can be translated to the frequency planeby Corollary 42, provided that the input operator is Hilbert�Schmidt. Withthis additional structure, further conclusions can be drawn.Proposition 46. Let J be a self-adjoint cost operator. Let � = � Aj B��jC D �output stable, such that the input operator B is Hilbert�Schmidt and the inputspace U is separable. Let P 2 Ricuw(�; J) be such that �P is output stable.Then the adjoints of the boundary traces D(ei�)� and D�P (ei�)� exists a.e.ei� 2 T, and belong to L2(T;L(U ;Y )), L2(T;L(U)), respectively. Both theself-adjoint operator-valued functionsT 3 ei� 7! D(ei�)�JD(ei�) 2 L(U); andT 3 ei� 7! D�P (ei�)��PD�P (ei�) 2 L(U)are in L1(T;L(U)). We have the factorizationD(ei�)�JD(ei�) = D�P (ei�)��PD�P (ei�) a.e. ei� 2 T:Proof. Recall that the output stability implies strong H2-stability. So wecan apply Lemma 45. Equation (32) implies for all ~u1; ~u2 2 `2(Z+;U)
D�[0;m]~u1; JD�[0;m]~u2�`2(Z+;Y ) = 
D�P�[0;m]~u1;�PD�P�[0;m]~u2�`2(Z+;Y ) :Because both � and �P are output stable, the transfer functions D(z) andD�P (z) are analytic in the whole of D, by Proposition 11. We have alsoD(z)~p(z) 2 H2(D;Y ), D�P (z)~p(z) 2 H2(D;U) for all U -valued trigonometricpolynomials p(z) 2 H1(D;U). Now we can put the factorization in formhD(z)p1(z); JD(z)p2(z)iH2(D;Y ) = hD�P (z)p1(z);�PD�P (z)p2(z)iH2(D;U)where p1(z); p2(z) are polynomials as above. This is as far as we get withoutassuming that B is Hilbert�Schmidt.Because B is Hilbert�Schmidt, we can state the factorization in terms ofthe boundary traces D(ei�) 2 H2(T;L(U ;Y )) and D�P (ei�) 2 H2(T;L(U)),by Corollary 42. By choosing the trigonometric polynomials p1(ei�) = eip1�u1and p2(ei�) = eip2�u2, p1; p2 2 Z, u1; u2 2 U , we obtain12� 2�Z0 
u1;D(ei�)�JD(ei�)eip�u2�U d�= 12� 2�Z0 
D(ei�)eip1�u1; JD(ei�)eip2�u2�Y d�



50 = 
D(ei�)eip1�u1; JD(ei�)eip2�u2�H2(T;Y )= 
D�P (ei�)eip1�u1;�PD�P (ei�)eip2�u2�H2(T;U)= 12� 2�Z0 
D(ei�)eip1�u1; JD(ei�)eip2�u2�Y d�= 12� 2�Z0 
u1;D�P (ei�)��PD�P (ei�)eip�u2�U d�;where p = p2 � p1. Let us stop for a moment to see that previous is trueintegration theoretically. The functions T 3 ei� 7! D(ei�)� 2 L(Y ;U),T 3 ei� 7! D�P (ei�)� 2 L(U) are weakly measurable and also in the re-spective L2-spaces, by a trivial argument involving adjoining. Now the prod-ucts D(ei�)�JD(ei�) and D�P (ei�)��PD�P (ei�) are weakly measurable, andthey both are in L1(T;U), by the Hölder inequality; some of this detail andfurther references have been discussed immediately after De�nition 13.We can now calculate the weak Fourier coe�cients of the di�erence ofthese two functions (which lies in L1(T;L(U))) as follows:*u1;0@ 2�Z0 �D(ei�)�JD(ei�)�D�P (ei�)��PD�P (ei�)� eip� d�1Au2+U= 2�Z0 
u1; �D(ei�)�JD(ei�)�D�P (ei�)��PD�P (ei�)� eip�u2�U d� = 0for all u1; u2 2 U and p 2 Z. Proposition 17 implies that�D(ei�)�JD(ei�)�D�P (ei�)��PD�P (ei�)�u = 0;for all u 2 U and ei� 2 T n Eu, where mEu = 0. Choose a countabledense subsequence fujg 2 U , and de�ne the exceptional set E := [jEuj ofmeasure zero. Because D(ei�)�JD(ei�)�D�P (ei�)��PD�P (ei�) 2 L(U) for allei� 2 T n E 0, mE 0 = 0, we conclude now thatD(ei�)�JD(ei�)�D�P (ei�)��PD�P (ei�) = 0ei� 2 T n (E 0 [ E), by the density of the sequence fujg. This completes theproof.Corollary 47. Let J be a self-adjoint cost operator. Let � = � Aj B��jC D � bean output stable and I/O stable DLS. Furthermore, assume that the inputoperator B is Hilbert�Schmidt and the input space U is separable. Let P 2Ricuw(�; J) be such that �P is output stable.If �P > 0 then �P is I/O stable, and we can write P 2 ric(�; J). Fur-thermore, we have the inclusionfP 2 Ric0(�; J) j �P > 0g � ric0(�; J)(34)



51Proof. By Proposition 46, D(ei�)�JD(ei�) = D�P (ei�)��PD�P (ei�) a.e. ei� 2T. By the assumed I/O stability of �, ess supei�2T jjD(ei�)jj < 1. We con-clude that ess supei�2T jj� 12PD�P (ei�)jj < 1. The output stability of �P andthe Hilbert�Schmidt compactness ofB imply that � 12PD�P (ei�) 2 H2(T;L(U)),by Corollary 42. Now [33, Theorem 4.7A], as used in Lemma 36, implies that� 12PD�P (ei�) 2 H1(T;L(U)). Because �P has a bounded inverse, D�P (ei�) 2H1(T;L(U)).To verify inclusion (34), note that Proposition 43 implies that �P is outputstable. Because LA;P = 0, then P 2 Ricuw(�; J). Now the �rst part of thisCorollary implies that �P is I/O stable, and so P 2 ric(�; J). The proof isnow complete.A slight modi�cation of the proof veri�es alsofP 2 Ric00(�; J) \Ricuw(�; J) j �P > 0g � ric00(�; J) \ ricuw(�; J)(35)under the assumptions of the previous corollary. If range(B) = H, then thisreduces to inclusion (34), by claim (iv) of Proposition 22. We also have:Corollary 48. Let J � 0 be a cost operator, and � = � Aj B��jC D � be an outputstable and I/O stable DLS. Furthermore, assume that the input operator B 2L(U ;H) is Hilbert�Schmidt, and the input space U is separable.(i) The set ric0(�; J) of regular H1 solutions is downward complete in thesense that if ~P 2 Ric0(�; J), ~P � 0, thenfP 2 Ric(�; J) j 0 � P � ~Pg � ric0(�; J):(ii) In particular, if a regular critical solution P crit0 2 ric0(�; J) exists, thenfP 2 Ric(�; J) j 0 � P � P crit0 g � ric0(�; J):(36)Proof. To prove claim (i), let ~P 2 Ric0(�; J), P � 0 be arbitrary. But thenfor any P 2 Ric(�; J) such that 0 � P � ~P and x0 2 H we havejjP 12Ajx0jj2H = 
PAjx0; Ajx0� � DA�j ~PAjx0; x0E � jjA�j ~PAjx0jjH � jjx0jjH;which approaches zero as j ! 1, because LA; ~P = 0 by assumption. ThusLA;P exists and vanishes. Because J � 0, it follows that �P > 0 for allnonnegative P 2 Ric(�; J). An application of Corollary 47 proves now claim(i). The other claim (ii) is just a particular case.In [27, Theorem 96], we consider the converse inclusion of formula (36). Thisgives us a full order-theoretic characterization of nonnegative regular H1solutions, under the indicated technical assumptions. Another result in thisdirection is [27, Lemma 99], showing that the set ric0(�; J) is order-convex.We complete this section by the following lemma about the �inertia� ofthe indicators �P .



52Lemma 49. Let J be a self-adjoint cost operator. Let � = � Aj B��jC D � I/O sta-ble and output stable, such that the input operator B is Hilbert�Schmidt andthe input space U is separable. Assume that the H1 solution set ricuw(�; J)is nonempty, and let P 2 Ricuw(�; J) be such that �P is output stable.Then there is a decomposition of U as a orthogonal direct sum U =U+ � U� such that for each P 2 Ricuw(�; J), there is a boundedly invertibleoperator VP 2 L(U) such that�P = V �P �I+ 00 �I��VP ;where I+, (I�) is the identity of U+, (U�, respectively). If particular, if�P0 > 0 for some P0 2 ricuw(�; J), then �P > 0 for all P 2 Ricuw(�; J)with an output stable �P .Proof. Let P0 2 ricuw(�; J) be �xed, and P0 2 Ricuw(�; J) be arbitrary,such that �P0 is output stable. Because �P0 is self-adjoint and invertible,we can work with the spectral projections of �P0, on the disjoint spectralsets on negative and positive real axes. This gives �P0 = �+ � ��, where�+ 2 L(U+), �� 2 L(U�), and both are positive invertible operators in theirrespective spectral subspaces that are reducing. Now�P0 = V � �I+ 00 �I��V;where V � := h� 12+ � 12�i : U+ � U� ! U has a bounded inverse. By Lemma45, we can choose ei�0 2 T from a set of full Lebesque measure, such thatD�P0 (ei�0)��P0D�P0 (ei�0) = D�P (ei�0)��PD�P (ei�0):By claim (ii) of Proposition 38 and the fact that D�P0 (0) = I has a boundedinverse, D�P0 (ei�)�1 exists a.e. ei� 2 T, and in factD�P0 (ei�)�1 2 L1(T;L(U)).Thus we can assume that D�P0 (ei�0) has a bounded inverse, andV � �I+ 00 �I��V = �D�P (ei�0)D�P0 (ei�0)�1�� � �P � �D�P (ei�0)D�P0 (ei�0)�1� :This proves the claim, with VP = D�P (ei�0)D�P0 (ei�0)�1V �1.By dimension counting, we immediately see that if either of the spaces U+,U� is �nite dimensional, then the dimension will be an invariant of all thesolutions P 2 Ricuw(�; J), whose spectral DLS �P is output stable. If theindicators �P are positive, the output stability requirement of �P could bereplaced by the requiring P 2 Ric00(�; J), see Proposition 43. The specialcase of positive indicators is discussed in Lemma 53 where the input operatoris not required to be Hilbert�Schmidt, and the proof is not based upon thestudy of nontangential boundary traces. For an analogous matrix result, see[15, Corollary 12.2.4].



537 Factorization of the Popov operatorLet � be an output stable and I/O stable DLS, and J a self-adjoint costoperator. In this section we show that there is a one-to-one correspondencebetween certain factorizations of the Popov operator D�JD and certain solu-tions of the H1DARE ric(�; J). It is worth noting that these factorizationsdo not depend on the nonnegativity of the cost operator J .The factorizations of the Popov operator have a number of useful con-sequences. In Lemma 53 and its Corollary 54, we show that sometimesall interesting solutions of DARE have a positive indicator. Proposition 55gives results of the (�P ;�P crit)-inner-outer factorization for the I/O-map ofthe spectral DLS �P .In De�nition 26, the Popov operator was de�ned to be the Toeplitz oper-ator ��+D�JD��+. We call the bounded shift-invariant (but noncausal) opera-tor D�JD (the symbol of the Toeplitz operator ��+D�JD��+) Popov operator,too.Theorem 50. Let � = � Aj B��jC D � = ( A BC D ) be an I/O stable and output stableDLS. Let J 2 L(Y ) be a self-adjoint operator(i) To each solution P 2 ricuw(�; J), we can associate the following fac-torization of the Popov operatorD�JD = D��P�PD�P ;(37)where �P is the spectral DLS (of � and J), centered at P .(ii) Assume, in addition that range(B) = H. Assume that the Popov oper-ator has a factorization of formD�JD = D��0�D�0;(38)where �0 := � A B�K I � ; K 2 L(H;U); � = ��;��1 2 L(U);is an I/O stable and output stable DLS. Then �0 = �P and � = �P fora P 2 ric0(�; J).Proof. We prove claim (i). Let P 2 ricuw(�; J). By Lemma 45, we have forall m � 0 �[0;m]D�JD�[0;m] = �[0;m]D��P�PD�P�[0;m];(39)where using the adjoints is legal because both D and D�P are assumed to bebounded. Let ~u 2 `2(Z+;U) be arbitrary. Thenjj�[0;m]D�JD�[0;m]~u� ��+D�JD��+~ujj� jj�[0;m]D�JD(�[0;m]~u� ��+~u)jj+ jj(�[0;m] � ��+)D�JD�[0;m]��+~ujj� jj�[0;m]D�JDjj � jj�[m+1;1]~ujj+ jj�[m+1;1] � ��+D�JD��+~ujj



54Because both ~u and ��+D�JD��+~u are in `2(Z+;U), it follows thats� limm!1 �[0;m]D�JD�[0;m] = ��+D�JD��+. Similarly we obtain the limits� limm!1 �[0;m]D��PJD�P�[0;m] = ��+D��PJD�P ��+. The uniqueness of thestrong limit, together with equation (39), gives now factorization (37).To prove the other claim (ii), we show that there is a conjugate symmetricsesquilinear form P ( ; ) such that for all ~u 2 `2(Z+;U), x0 2 HJ(x0; ~u) = P (x0; x0) + h�(C�0x0 +D�0��+~u); (�; ;�)i ;(40)assuming that the factorization (38) exists. Here J(x0; ~u) :=hJ(Cx0 +D��+~u); (�; ;�)i is a cost functional, see [19, Section 3]. Supposethat such a sesquilinear form P ( ; ) exists and try to �nd an expression forit. By expanding (40) we obtainhC�JCx0; x0i+ (i)z }| {2Re h��+D�JCx0; ~ui+ (ii)z }| {h��+D�JD��+~u; ~ui(41) = P (x0; x0) + 
C��0�C�0x0; x0�+(iii)z }| {2Re 
��+D��0�C�0x0; ~u�+ (iv)z }| {
��+D��0�D�0��+~u; ~u�for all ~u 2 `2(Z+;U) and x0 2 H because both � and �0 are I/O stable andoutput stable. By equation (38), parts (ii) and (iv) are equal. To compareparts (i) and (iii), note that for x := B ~w, ~w 2 dom(B), we have, becauseB = B�0 ��+D�JCx� ��+D��0�C�0x = ��+D�J��+D�� ~w � ��+D��0���+D�0�� ~w(42) = ��+(D�JD �D��0�D�0)�� ~w = 0by (38), and the anticausality of D� and D��0 . Because range(B) = H itfollows that ��+D�JCx� ��+D��0�C�0x = 0, for all x 2 H, by I/O stability andoutput stability of � and �0.So the parts (i), (ii), (iii) and (iv) cancel each other out in equation (41).What remains allows us to conclude that the sesquilinear form of equation(40) exists and equalsP (x0; x0) = 
�C�JC � C��0�C�0� x0; x0� =: hPx0; x0i ;which gives us a unique self-adjoint operator P 2 L(H). We note that forall x0 2 H
A�jPAjx0; x0� = 
JCAjx0; CAjx0�� 
�C�0Ajx0; C�0Ajx0�= 
J�[j;1]Cx0; �[j;1]Cx0�� 
��[j;1]C�0x0; �[j;1]C�0x0� :By the output stabilities of � and �0, both �[j;1]Cx0 ! 0 and �[j;1]C�0x0 ! 0in `2(Z+;Y ), `2(Z+;U), respectively. Thus hPAjx0; Ajx0i ! 0 for all x0 2 H,by the boundedness of ��1.



55We complete the proof by showing that P 2 Ric(�; J), and thatK = KP ,� = �P . We have for �P�P = D�JD +B�PB= (D�JD + (CB)�J(CB))� (I��I + (C�0B)��(C�0B)) + �= (D�0 + �CB)�J(D�0 + �CB)� (�0 + �C�0B)��(�0 + �C�0B) + �= ��+D�JD�0 � ��+D��0�D�0�0 + � = �;where the second to the last equality has been written with the identi�cationof spaces U and range(�0), allowing us to write D�0 = D�0 + �CB. The lastidentity follows directly from the factorization (38), and so �P = �.For KP = ��1P (�D�JC �B�PA) we calculate similarly�D�JC � B�PA(43) = � (D�JC + (CB)�JCA) + (�I��K + (C�0B)��C�0A) + �KNow D�JC + (CB)�JCA = (D�0 + �CB)�JC = (D�0)�JC = �0D�JC. Quitesimilarly ��K + (C�0B)����+� �C�0 = (D�0�0)��C�0 = �0D��0�C�0 . Then weobtain from (43)�D�JC �B�PA = ��0(D�JC � D��0�C�0) + �K;(44)with the identi�cation of spaces U and range(�0).For all x = B ~w = B�0 ~w, ~w 2 dom(B) = dom(B�0), we have�0(D�JC � D��0�C�0)x = �0(D�JD �D��0�D�0)�� ~w = 0;by the factorization (38). Because range(B) = H, and �0(D�JC � D��0�C�0)is continuous in H, it follows that vanishes in the whole of H. From (44) itnow follows that K = ��1(�D�JC�B�PA) = ��1P (�D�JC�B�PA) = KPbecause � = �P has been shown earlier.It is now straightforward to show that P 2 Ric(�; J):P (Ax0; Ax0)� P (x0; x0)= h�+Cx0; J�+Ci � h�+C�0x0;��+C�0i � hCx0; JCi+ hC�0x0;�C�0i= h�Kx0;�� Kx0i � hCx0; JCx0i = hK�P�PKPx0; x0i � hC�JCx0; x0i :Because �0 is output stable and I/O stable, by assumption, and �P = �0, itfollows that P is a H1 solution: P 2 ric(�; J).It remains to prove the �nal claim about the residual cost operator. Be-cause � and �0 are output stable by assumption, we haveA�jPAj = A�jC�JCAj � A�jC��0�C�0Aj= (��+� �jC)�J(��+� �jC)� (��+� �jC�0)��(��+� �jC�0)= C�J�[j;1]C � C��0��[j;1]C�0 :Now s� limj!1 �[j;1]C = s� limj!1 �[j;1]C�0 = 0, and immediatelyLA;P = s� limj!1A�jPAj = 0. This completes the proof.



56For analogous spectral factorization results, see [15, Chapter 19], [13, Theo-rem 4.6] and [10] together with its references. In claim (ii) of Theorem 50, arequirement has been imposed on the spectral factor D�0 of the Popov oper-ator: it must be realizable by using the same input structure as the originalDLS � and all the spectral DLSs �P . It is necessary to make such an apriorirequirement explicitly. To see this, consider the trivial case when D = I, theidentity operator of `2(Z;U). Then the Popov operator satis�es D�JD = I,if J = I, the identity operator of U . Each inner from the left operator N 0 is,by de�nition, a spectral factor of the Popov operator I. There is a multitudeof such inner operators; if U = C, then these are parameterized by sequencesin D satisfying the Blaschke condition and the singular positive measures onT. However, the DLS � = � can be very trivial, say � = ( 0 00 I ). The DARERic(�; I) is trivially I = I, and all (self-adjoint) operators P 2 L(H) are itssolution. However, each of the spectral DLSs equal �P = ( 0 00 I ), and only onespectral factor of the Popov operator is covered by a solution of the DARE.In the proof of Theorem 50, we never wrote down a state space realizationfor the Popov function D(ei�)�JD(ei�). Suppose D(z) 2 H1(D;L(U)) wouldbe analytic in an open set 
 � C, such that D � 
 and T n (T \ 
) is, say,a �nite set of points. Then the Popov function D(ei�)�JD(ei�) would havean analytic continuation to a neighbourhood of each ei�0 2 T \ 
. Thisanalytic continuation is given by eD(z�1)JD(z), and its realization �Popovcan be formed by using the formula for the product realization. Now, theconnection between the DARE and the spectral factorization of the Popovfunction can be studied by using �Popov, even for certain classes of unstabletransfer functions D(z). However, a general D(z) 2 H1(D;L(U)) does notallow this approach; there is a function in the complex-valued disk algebraf(z) 2 A(D) that does not allow analytic continuation to any set larger thanD, and in fact the boundary trace f(ei�) can be smooth. Such a functionis constructed in [34, Example 16.7]. Then f(z) and ef(z�1) are boundedanalytic functions in open sets D and (D)c, with an empty intersection.In a later result [27, Lemma 101], we shall need a di�erent spectral fac-torization result, associated to solutions P 2 ric(�; J) that need not satisfythe strong residual cost condition. The nonvanishing residual cost is includedin the Popov operator. To achieve this, we must �rst de�ne analogues (inI/O-form) to the residual cost operator LA;P := s� limj!1A�jPAj.De�nition 51. Let J 2 L(Y ) be a cost operator. Let � = � Aj B��jC D � = ( A BC D )be a DLS, and P 2 Ric(�; J). Let n;m � 0 be arbitrary. De�ne the linearoperators in `2(Z+;U)L(m;n)�;P := �B� �n�[0;m]�� P �B� �n�[0;m]� ;and L(m)�;P := s� limn!1 L(m;n)�;P ; L�;P := s� limm!1 L(m)�;P ;provided that the strong limits exists. The operator L�;P is the residual costoperator (in I/O-form), and the operator L(n)�;P is the truncated residual costoperator (in I/O-form).



57The operator B� �n�[0;m] : `2(Z+;U) ! H is a �nite sum of products ofthe bounded operators A, B, the orthogonal projections �j, and the unitaryshift � � in `2(Z+;U). Thus it is bounded for all m;n � 0, and it follows thatL(m;n)�;P always exists as a bounded operator.Lemma 52. Let J 2 L(Y ) be a cost operator. Let � = � Aj B��jC D � = ( A BC D )be an output stable and I/O stable DLS, and P 2 ric(�; J). Then(i) Both the residual cost operators LA;P 2 L(H) and L�;P 2 L(`2(Z+;U))exist.(ii) We have the spectral factorization identityL�;P + ��+D�JD��+ = ��+D��P�PD�P ��+:The residual cost operator L�;P is a self-adjoint Toeplitz operator.(iii) Assume, in addition, that range(B) = H. Then both B�LA;PA = 0 andB�LA;PB = 0 if and only if L�;P = 0 if and only if LA;P = 0.Proof. Because P 2 ric(�; J), the residual cost operator LA;P exists byProposition 23. We prove the rest of claim (i) and claim (ii) simultane-ously. Let x0 2 H and fujgj�0 = ~u 2 `2(Z+;U) be arbitrary. Denotexj = xj(x0; ~u) = Ajx0 + B� �j ~u the trajectory of the DLS � with this giveninitial state and input. We have in [19, claim (i) of Proposition 36] for alln > 0 hPx0; x0i � hPxn; xni(45) = n�1Xj=0 hJ(Cxj +Duj); Cxj +Duji� n�1Xj=0 h�P (�KPxj + uj);�KPxj + uj)i:We now set x0 = 0 and assume that the inputs are of form �[0;m]~u for some�xed m � 0 and arbitrary ~u 2 `2(Z+;U). In this case, hPx0; x0i = 0 andequation (45) takes now the form
PB� �n�[0;m]~u;B� �n�[0;m]~u�+ 
JD�[0;m]~u; �[0;n�1]D�[0;m]~u�`2(Z+;Y )= 
�PD�P�[0;m]~u; �[0;n�1]D�P �[0;m]~u�`2(Z+;Y ) ;because xn = B� �n�[0;m]~u.Both the operators D�[0;m] and D�P�[0;m] are bounded, because � and�P are I/O stable DLSs by assumptions. Also the operators B� �n�[0;m]are bounded, as has been discussed after De�nition 51. So the adjoints�B� �n�[0;m]��, D� and D��P make sense, and we can writeDL(m;n)�;P ~u; ~uE+ 
�[0;m]D�J�[0;n�1]D�[0;m]~u; ~u�`2(Z+;Y )= 
�[0;m]D��P�P�[0;n�1]D�P�[0;m]~u; ~u�`2(Z+;Y ) ;



58by De�nition 51. Because ~u is arbitrary, and all the operators L(m;n)�;P , D andD�P are bounded, [35, Theorem 12.7] implies thatL(m;n)�;P = ��[0;m]D�J � �[0;n�1]D�[0;m] + �[0;m]D��P�P � �[0;n]D�P�[0;m](46)for all m;n � 0. Because D is bounded, s� limn!1 �[0;n�1]D�[0;m] = D�[0;m]and s� limn!1 �[0;n�1]D�P�[0;m] = D�P�[0;m]. But then, the strong limit inthe right hand side of (46) exists, and we conclude that the residual costoperator L(m)�;P 2 L(`2(Z+;U)) exists as a bounded operator. We obtainL(m)�;P = ��[0;m]D�JD�[0;m] + �[0;m]D��P�PD�P�[0;m](47)for all m � 0. We proceed to show that s� limm!1 �[0;m]D�JD�[0;m] existsand equals the Popov operator ��+D�JD��+. For allm � 0 and ~u 2 `2(Z+;U),we havejj�[0;m]D�JD�[0;m]~u� ��+D�JD��+~ujj`2(Z+;U)� jj�[0;m]D�JD�[m+1;1]~ujj`2(Z+;U) + jj�[m+1;1]D�JD��+~ujj`2(Z+;U)� jjJ jjL(Y ) � jjDjj`2(Z;U)!`2(Z;Y ) � jj�[m+1;1]~ujj`2(Z+;U)+ jj�[m+1;1] � ��+D�JD��+~ujj`2(Z+;U):Because both ~u and ��+D�JD��+~u belong to `2(Z+;U), the right handside of the previous equation converges to zero as m ! 1.It follows that s� limm!1 �[0;m]D�JD�[0;m] = ��+D�JD��+ and similarlys� limm!1 �[0;m]D��PJD�P�[0;m] = ��+D��PJD�P ��+. Because the right handside of equation (47) converges strongly as m ! 1, we obtain the spectralfactorization L�;P = ���+D�JD��+ + ��+D��P�PD�P ��+(48)where L�;P is the residual cost operator in I/O-form, as introduced in De�-nition 51. Clearly L�;P is a self-adjoint Toeplitz operator, because the righthand side of equation (48) is such an operator. This proves claims (i) and(ii).We proceed to prove claim (iii). We �rst calculate the block matrixelements (L�;P )j1;j2 := �j2L�;P�j1 of L�;P for j1; j2 � 0. Let ~u; ~w 2 `2(Z+;U)be arbitrary. ThenD(L�;P )j1;j2 ~u; ~wE`2(Z+;U) = ��s� limm!1 L(m)�;P� � �j1 ~u; �j2 ~w�`2(Z+;U)= D limm!1�L(m)�;P�j1 ~u�; �j2 ~wE`2(Z+;U) = limm!1DL(m)�;P�j1 ~u; �j2 ~wE`2(Z+;U):But if m � j1, then L(m)�;P�j1 ~u = L(j1)�;P�j1 ~u. It follows that the sequence in theright hand side of the previous equation stabilizes, and for m � max (j1; j2)



59we getD(L�;P )j1;j2 ~u; ~wE`2(Z+;U)= DL(m)�;P�j1 ~u; �j2 ~wE`2(Z+;U) = ��s� limn!1 L(m;n)�;P � � �j1~u; �j2 ~w�`2(Z+;U)= D limn!1�L(m;n)�;P �j1~u�; �j2 ~wE`2(Z+;U) = limn!1DL(m;n)�;P �j1 ~u; �j2 ~wE`2(Z+;U)= limn!1 
PB� �(n�j1�1)��1� �(j1+1)~u;B� �(n�j2�1)��1� �(j2+1) ~w�H :But now B� �(n�j�1)��1 = B� �(n�j�1)�� � ��1 = An�j�1B��1 = An�j�1B��1,where be have used B��1 = B��1. Now, if j := max (j1; j2), thenD(L�;P )j1;j2 ~u; ~wE`2(Z+;U)= limn!1 
A�(n�j�1)PAn�j�1 �Aj�j1B��1� �(j1+1)~u;Aj�j2B��1� �(j2+1) ~w�H= ��s� limn!1 A�(n�j�1)PAn�j�1� � Aj�j1B��1� �(j1+1)~u;Aj�j2B��1� �(j2+1) ~w�H= 
LA;P � Aj�j1B��1� �(j1+1)~u;Aj�j2B��1� �(j2+1) ~w�H :This gives for the block matrix elements of L�;P the expressionD(L�;P )j1;j2 ~u; ~wE`2(Z+;U)(49) = 
�j2B�A�(j�j2)LA;PAj�j1B�j1 � ~u; ~w�`2(Z+;U) ;(50)where j = max (j1; j2) and ~u; ~w 2 `2(Z+;U) are arbitrary.If both B�LA;PA = 0 and B�LA;PB = 0, then all the block matrix el-ements (L�;P )j1;j2 vanish, by equation (49). By a straightforward densityargument, the bounded operator L�;P is seen to vanish.Assume that L�;P = 0. Then all the block matrix elements (L�;P )j1;j2for j1; j2 � 0 vanish by their de�nition, and equation (48) implies thatB�LA;PAkB = 0 for all k � 0. It follows that B�LA;PB~u = 0 for all~u 2 dom(B), and thus B�LA;Px = 0 for all x 2 range(B). Because Band LA;P are bounded, and range(B) = H, it follows that B�LA;P = 0, andalso LA;PB = 0 because LA;P is self-adjoint.It is easy to see that A�jLA;PAj = LA;P for all j � 0. Thus A�jLA;PAjB =LA;PB = 0 and immediately B�A�kLA;PAjB = B�A�(k�j) � A�jLA;PAjB = 0for all k � j. By adjoining, we see that B�A�kLA;PAjB = 0 for arbitraryj; k � 0. But this implies that hLA;BB~u;B~uiH = 0, for all ~u 2 dom(B).By the assumed approximate controllability range(B) = H, boundedness ofLA;B, and [35, Theorem 12.7], it follows that LA;B = 0.Trivially, if LA;B = 0 then both B�LA;PA = 0 and B�LA;PB = 0. Thiscompletes the proof.Recall that in Propositions 24 and 25 we asked whether the indicator �Pand the DLS �P uniquely determine the solution P 2 Ric(�; J). Under the



60indicated additional assumptions, claim (iii) of Lemma 52 provides an answerto this. Under the approximate controllability range(B) = H, it is exactlythe solutions P 2 ric0(�; J) (in the set ric(�; J)) that give us a spectralfactorization of the Popov operator ��+D�JD��+.We proceed to consider the inertia of the indicator operator. The follow-ing is another variant of Lemma 49:Lemma 53. Let J 2 L(Y ) be a self-adjoint operator. Let � = � Aj B��jC D � bean output stable, I/O stable and J-coercive DLS. Assume that that the inputspace U is separable and there exists P0 2 ricuw(�; J) such that �P0 > 0.Then for all P 2 ricuw(�; J), we have �P > 0.Proof. By Theorem 50, D�JD = D��P0�P0D�P0 = D��P�PD�P for all P 2ricuw(�; J). By Proposition 38, the noncausal inverse D�1�P : `2(Z;U) !`2(Z;U) is exists and is bounded, because D�P (0) = I has a bounded inverse.Then we have(D�1�P )�D��P0�P0D�P0D�1�P = �D�P0D�1�P �� �P0 �D�P0D�1�P � = �P ;which represents a shift-invariant, bounded and self-adjoint operator in`2(Z;U). Because �P0 > 0, it follows that �P � 0, regarded as a staticshift invariant operator on `2(Z;U). But then, quite trivially, �P > 0 as anelement of L(U).Corollary 54. Let J 2 L(Y ) be a self-adjoint operator. Let � = � Aj B��jC D �be an output stable and I/O stable DLS, with a separable input space U . Thenthe following are equivalent(i) ��+D�JD��+ � ���+ for some � > 0.(ii) The solution set ricuw(�; J) is not empty, and for all P 2 ricuw(�; J),�P > 0.When these equivalent conditions hold, the regular critical solution P crit0 :=�Ccrit�� JCcrit 2 ric0(�; J) exists.Proof. Assume (i). Corollary 32 implies that a critical P crit 2 Ricuw(�; J) ex-ists. Proposition 29 implies that we have a regular criticalH1 solution P crit0 2ric0(�; J) � ricuw(�; J). Thus the solution set ricuw(�; J) is not empty. ByTheorem 50,��+X ��P crit0 X ��+ = ��+D�JD��+ � ���+ where X := D�Pcrit0 is outer witha bounded inverse. By shift invariance, also X ��P crit0 X � �I, and then�P crit0 � �X��X�1 = � (XX �)�1 > 0, where �P crit0 is regarded as a staticmultiplication operator on `2(Z;U). Immediately, �P crit0 > 0 as an element ofL(U), too. An application of Lemma 53 gives now claim (ii). The conversedirection and the �nal comment are given in Proposition 31.There is a one-to-one correspondence between (J; S)-inner-outer factoriza-tions of D = NX (with the outer part having a bounded inverse X�1) andS-spectral factorizations of the Popov operator D�JD, see [19, Proposition20]. Applying this to the spectral DLSs gives the proposition:



61Proposition 55. Let � = � Aj B��jC D � be an I/O stable and output stable DLS.Let J be a self-adjoint operator. Assume that the equivalent conditions ofTheorem 27 hold, and by P crit0 := (Ccrit)�JCcrit 2 ric0(�; J) denote the regularcritical solution. Let P 2 ricuw(�; J) be arbitrary. Then(i) D�P has an (�P ;�P crit0 )-inner-outer factorization given byD�P = NPX ;where X = D�Pcrit0 is I/O stable, and NP := D�PD�1�Pcrit0 . The equivalentconditions of Theorem 27 hold for the DLS �P and the cost opera-tor �P . The outer factor does not depend upon the solution P . Bothrange(D�P ��+) and range(D�P ) are closed. If the input space U is sep-arable, then range(D�P ) = `2(Z;U).(ii) X (X�1) is the I/O-map of the spectral DLS �P crit0 (��1P crit0 , respectively),with the realizations�P crit0 = � A B�KP crit0 I � ; ��1P crit0 = �AP crit0 BKP crit0 I � ;and NP is the I/O-map of the DLS�P��1P crit0 = � AP crit0 BKP crit0 �KP I � ;where AP crit0 := A+BKP crit0 .Proof. To prove claim (i), we note that we have the factorization of the Popovoperator, for all P 2 ricuw(�; J)D�JD = D��P�PD�P = D��Pcrit0 �P crit0 D�Pcrit0 ;by claim (i) of Theorem 50. But then, X := D�Pcrit0 is a �P crit0 -spectralfactor of D��P�PD�P , and then, by [19, Proposition 20], D�P = NPX , whereNP := D�PX�1 is a (�P ;�P crit0 )-inner-outer factorization, and the outer parthas a bounded inverse. Both range(D�P ) and range(D�P ) are closed because�P is �P -coercive, by [19, Proposition 6]. Finally, claim (ii) of Proposition38 implies that range(D�P ) = `2(Z;U) if U is separable, because D�P (0) = Ihas a full range.To prove claim (ii), Proposition 2 is used. Only the claim concerningNP issomewhat nontrivial, and the outlines are given below. For a more completepresentation using the same technique, see the proof of (ii) of Proposition56. First, the product DLS �P��1P crit0 is written�P��1P crit0 = 0@ �A BKP crit00 AP crit0 � �BB���KP KP crit0 � I 1A :



62Its the semigroup generator is seen to satisfy�A BKP crit00 AP crit0 �j = "Aj AjP crit0 � Aj0 AjP crit0 # :Finally, looking at the Taylor coe�cients of the I/O-map, we see��KP KP crit0 � "Aj AjP crit0 � Aj0 AjP crit0 #�BB� = (KP crit0 �KP )AjP crit0 B:We consider this claim to be proved.Let P 2 ricuw(�; J) be arbitrary. To the spectral DLS �P , we can associatea minimax cost optimization problem with the cost operator �P , see [19,Section 3]. It follows from Proposition 55 and Theorem 27 that if one ofthese problems is solvable (in the sense of Theorem 27), then they all are,together with the original minimax problem associated to � and J . This istrue just because all the I/O-maps have the same outer factor X , if they havesuch factorization at all.In Proposition 55, a particular �xed regular critical solution P crit0 2ric0(�; J) was picked and the proposition was formulated relative to this so-lution. One should ask whether we would have obtained another factorizationD�P = N 0PX 0 for another critical solution, say P crit2 2 Ricuw(�; J). The an-swer in negative. In the proof of Corollary 30, we have seen that the indicatorsof the critical solutions are all the same: �P crit = �P crit2 . Then we might havetwo di�erent (�P ;�P crit) -inner-outer factorizations D�P = NPX = N 0PX 0.However, the feed-through parts of both X and X 0 are normalized to identityoperator I, and this implies by [19, Proposition 21] that X = X 0 as the I/O-maps. It now follows that the factor NP does not depend on the choice ofthe critical solution. However, the realizations �P crit, �P crit2 for X , X 0 mightbe di�erent, because the feedback operators KP crit0 , KP crit2 might di�er. How-ever, this can happen only in the orthogonal complement of range(B). So,if range(B) = H, then KP crit0 = KP crit2 as in the proof of Proposition 30, andthe possible nonuniqueness of the realizations disappears.The following proposition gives us realizations for chains of certain I/O-maps. It is instructive to compare the DLS �P1;P2 to the realization of NP ,given in claim (ii) of Proposition 55. We remark that the following tediouscalculations depend on the properties of the Riccati equation only in a veryimplicit manner, if at all.Proposition 56. Let � be an DLS, and J self-adjoint. Let P1; P2; P3 2ric(�; J) be arbitrary. De�ne the DLS�P1;P2 = � AP2 BKP2 �KP1 I �and we denote NP1;P2 := D�P1;P2 . Then



63(i) N�1P1;P2 = NP2;P1,(ii) NP1;P2NP2;P3 = NP1;P3,(iii) Assume, in addition, that the conditions of Theorem 27 hold. ThenNP1;P crit0 = NP1 is the (�P1;�P crit0 )-inner factor of D�P . Also NP1N�1P2 =NP1;P2.Proof. To prove claim (i), use claim (i) of Proposition 2. A direct calculationgives ��1P1;P2 = �AP2 � B(KP2 �KP1) B�(KP2 �KP1) I � = � AP1 BKP1 �KP2 I � = �P2;P1;proving claim (i). To verify claim (ii), claim (ii) of Proposition 2 is now used.We obtain �P1;P2�P2;P3 = � AP2 BKP2 �KP1 I �� AP3 BKP3 �KP2 I �(51) = 0@ �AP2 B(KP3 �KP2)0 AP3 � �BB��(KP2 �KP1) (KP3 �KP2)� I 1A :Now we have to consider the I/O-map of the product DLS �P1;P2�P2;P3. We�rst see that its feed-through operator I is that of D�P1;P3 . The rest is studiedby applying the Taylor series formula (7) for the I/O-map of a DLS on theright hand side of (51). The whole trick lies in noting that the semigroupgenerator satis�es h AP2 B(KP3�KP2)0 AP3 i = h AP2 AP3�AP20 AP3 i, and we have for theblock matrices of this kindAj(�P1;P2�P2;P3 ) = �AP2 AP3 � AP20 AP3 �j = �AjP2 AjP3 � AjP20 AjP3 �for all j � 0, as can easily be shown by induction. We now obtain for allj � 0 C(�P1;P2�P2;P3 )Aj(�P1;P2�P2;P3 )B(�P1;P2�P2;P3 )= �(KP2 �KP1) (KP3 �KP2)� �AjP2 AjP3 � AjP20 AjP3 � �BB�= (KP2 �KP1)AjP2B + (KP2 �KP1)(AjP3 � AjP2)B+ (KP3 �KP2)AjP3B= (KP2 �KP1)AjP3B + (KP3 �KP2)AjP3B= (KP3 �KP1)AjP3B:But these equal the corresponding coe�cients of �P1;P3, and claim (ii) isproved. Claim (iii) follows immediately from claim (ii) of Proposition 55. Thelast claim follows from the previous claims: NP1N�1P2 = NP1;P crit0 N�1P2;P crit0 =NP1;P crit0 NP crit0 ;P2 = NP1;P2.The I/O-maps of the DLSs �P1;P2 will play crucial role in [25].
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