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1 Introduction

This is the first part of a two-part study on the input-output stable (I/O
stable) discrete time linear system (DLS) ¢ := (24 B) and the associated
algebraic Riccati equation (DARE)

A*PA— P+ C*JC = KiApKp,
(1) Ap = D*JD + B*PB,
ApKp = —D*JC — B*PA,

denoted, together with its solution set, by Ric(¢,J). The input, state and
output spaces of the DLS ¢ are separable Hilbert spaces and possibly (but
not necessarily) infinite dimensional. In this first part, the necessary techni-
cal machinery is developed. Then the (stable) spectral factorizations of the
Popov operator D*JD are parameterized by the self-adjoint solutions of the
DARE. Here D denotes the I/O map of the DLS, and J is a cost operator
on the outputs of the DLS. Many results given here do not require the cost
operator J or the solution of the DARE to be nonnegative.

The second part of this study is [27], where inner-outer type factorizations
of the I/O map are considered. These results are valid only for nonnegative
cost operators J and nonnegative solutions of the DARE. In fact, this work
and [27] provide an order-theoretic characterization of the solution set of the
infinite-dimensional operator DARE, in terms of spectral and inner-outer
factorizations. We remark that this work and [27] are written in two parts
merely for the reasons of page limitations. The section and equation numbers
of the latter work [27] start where those of this work end. Also the reference
lists of these papers are identical. The conference article [24] is a short
presentation of the main lines of [26] and [27].

Let us briefly review some of our relevant previous work on the DLSs and
their Riccati equations. In [21], the theory of (well posed) DLSs and their
feedbacks is developed; much in the style and notation of the recent contin-
uous time works by O. J. Staffans [36], [37], [38], [39], [40], [41], [42], [43],
[44], and [45]. The work [20] contains discrete time minimax control theory,
analogous to the early discrete time work [13] by J. W. Helton and parallel-
ing the continuous time works of Staffans and also [54] by M. Weiss and G.
Weiss. A considerable part of this work consists of a sharpening the results
of [20] under more restrictive assumptions. The conference paper [19] is an
abbreviated version [20]. Another direction (related to certain semigroup-
invariant subspace problems) on the description of the nonnegative solutions
of DARE is outlined in [25] and the associated conference paper [22].



1.1 Outline of the paper

We proceed to give an outline of this paper. In the preliminary Section 2
we extend the discussion of the fundamental notions of discrete time linear
systems (DLSs), initiated in [21]. Some additional structure is introduced:
transfer functions and their nontangential limit functions (boundary traces)
in the Nevanlinna class N(L(U;Y)) of analytic (transfer) functions. Some
results from Banach space -valued integration theory and Fourier transform
theory are reviewed.

By ¢ := (4 B) denote an I/O stable DLS of interest, by D, its I/O-map,
and by J = J* a cost operator. The corresponding discrete time algebraic
Riccati equation (DARE),

(2) Ap=D*JD + B*PB,
ApKp = —D*JC — B*PA,

denoted by Ric(¢,J), is introduced in Section 3. Even though the DARE
Ric(¢, J) can be written for an arbitrary DLS ¢, our interest mainly lies
in the case when the DLS ¢ is I/O stable; i.e., the transfer function Dy(z)
of ¢ satisfies Dy(2) := D + 2C(I — zA)™'B € H®(L(U;Y)). In this case,
we call equation (2) an H*DARE, and write ric(¢, J) instead of Ric(¢, J).
Furthermore, if P € L(H) is a self-adjoint solution of Ric(¢, J) (or ric(¢, J)),
we write P € Ric(¢,J). Thus Ric(¢,J) and ric(¢, J) represent both the
equations itself and their solution sets.

To each P € Ric(¢,J), we associate an indicator operator Ap and two
additional DLSs: the spectral DLS ¢p and the inner DLS ¢¥, centered at
P € Ric(¢,J) (see Definition 19). These three objects are central in this
work. They appear in a natural way in the open and closed loops DLSs
when certain state feedbacks (associated to P) are applied to ¢, as will be
seen later in [27, Section 9]. The solutions of the H*DARE ric(¢, J) are
classified in Definition 20 according to the stability properties of the spectral
DLS ¢p, and in Definition 21 according to their residual cost behavior “at
infinite time”. The smallest subset of solutions for H*DARE is denoted by
rico(¢p, J) — the set of regular H* solutions P € rico(¢, J). Our strongest
results are given in this subset.

In Theorem 27 of Section 4 we prove the equivalence of

e the solvability of a minimax cost optimization problem associated to
pair (¢, J),

e the solvability of a certain (spectral, inner-outer) factorization problem
for the I/O-map Dy, and

e the existence of a special (regular critical) solution Pi™* of H*DARE
ric(¢, J).



This result appears in a more general form in [19, Theorem 40|, and is stated
here only in the generality appropriate for this work. For similar results,
see also [13], [29], [37], [39], and [54]. We remark that the existence of such
a Pt € ricy(¢,J) is close to being a standing hypothesis in the present
study. Well known sufficient conditions (relying on the nonnegativity of J or
Dj.JDy) for this are given in Proposition 31 and Corollary 32.

In Section 5 we present some auxiliary results from the operator-valued
function theory. A result of particular importance to us is Lemma 41, which
allows us to deal with an infinite-dimensional input space U in [27], provided
that the input operator B € L(U; H) is restricted to be a compact Hilbert—
Schmidt operator. This result has some application in the following Section
6.

Section 6 contains two spectral factorization results, namely Lemma 45
(the spectral factorization of truncated Toeplitz operators) and Proposition
46 (the spectral factorization of the Popov function Dy(e®)*JDy4(e?), con-
structed from the nontangential boundary trace of the H? transfer function
Dy(e?)). Despite of this, our main interest here lies in the output stabil-
ity and I/O stability question of the spectral DLS ¢p, for various solutions
P € Ric(¢,J). The output stability of ¢p is easier, and it is treated in
Propoposition 43 by nonnegativity techniques. The I/O stability of ¢p is
considered in Corollary 47 and the remarks following it. The section in con-
cluded by Lemma 49, which is an inertia result for the indicator operators
Ap, P € Ric(¢,J) in a indefinite metric.

In Section 7, a spectral factorization of the Popov operator

(3) D}JDs = D}, ApDy,

is associated to each solution of the Riccati equation P € ricy(¢, J) satisfying
a certain residual cost condition. We say that the operator Dy, is a stable
spectral factor of the Popov operator D3.JD,. Also the converse it true: each

such factorization induces a solution of the DARE ric(¢, J), if range(B,) = H
where By is the controllability map of ¢. This is the content of Theorem 50,
one of the main results of this paper. We remark that the factorization of
the Popov operator does not necessarily require the cost operator J to be
nonnegative, if we have an a prior: knowledge that ¢p is output stable and
I/O stable. For nonnegative cost, this follows as in previous Section 6, under
the indicated technical assumption.

If P = Pg"i* is the regular critical solution in the sense of Theorem 27, then
this factorization is the Apeic-spectral factorization DyJDy = X*Apaic X,
where the spectral factor X is stable and outer, with a bounded causal inverse
X~ This leads to the (J, A perit)-inner-outer factorization of the I/O-map
Dy = NX with X = Dye, see [20, Proposition 20]. We remark that if
P # P then we do not always obtain an analogous factorization of Dy, as
a composition of two stable I/O-maps. The circumstances when we get such
stable factors, are considered in the second part of this work [27]. Inertia
results, concerning the positivity of the indicator Ap for all P € ricy(¢, J),



are given in Lemma 53 and Corollary 54. These are variants of Lemma
49, which depends on the restrictive assumption that the input operator
B € L(U; H) of ¢ is Hilbert—Schmidt.

In Proposition 55, the spectral factor Dy, (i.e. the I/O-map of the spec-
tral ¢p) appearing in equation (3) is (Ap, Apgn:)-inner-outer factorized as
Dy, = NpX, under the assumption that the original DARE ric(¢, J) has
a regular critical solution P§"*. Quite expectedly, the outer part of Dy,
does not depend on the choice of the solution P € ric,,(¢, J). Realizations
for the factors are computed. Section 7 is concluded with Proposition 56,
where a realization algebra is considered for the inner factors ANp. This lays
foundation to the second part [27] of this work.

1.2 Connections to earlier works

We now briefly consider the appropriate references to earlier works by other
authors. The general idea of using the (matrix) Riccati equations for the
canonical and spectral factorization of rational transfer functions is quite old.
Both the continuous and discrete time case is considered in [15, Chapters 10
and 19] (P. Lancaster and L. Rodman). At the end of both chapters, a short
account for the history of such factorizations is given.

The discrete time result [13, Theorem 4.6] (J. W. Helton) is closely re-
lated to our Theorem 50 on the spectral factorization, but the information
structure of the system and DARE is that of a LQDARE

4 A*PA— P+ C*JC = A*PB-A;' - B*PA,
(4) Ap=D*JD + B*PB,

where the input is penalized by direct cost. The reasons why we discuss the
more general DARE (2) instead of DARE (4) will be discussed in [27, Section
8]. In [13, Theorem 4.6], a “nonvanishing residual cost” has been included
in the Popov function, whose spectral factor is to be calculated. A similar
modification can be done to Theorem 50.

The related results in [10] (P. A. Fuhrmann; continuous time, infinite-
dimensional) and [11] (P. A. Fuhrmann and J. Hoffman; discrete time, matrix-
valued, a state space factorization of rational inner functions) seem to be most
complete. A reference to an earlier work [7] (L. Finesso and G. Picci) is also
given there.  Unfortunately, there is a considerable overlap between our
results and those given in [10] and [11]; we learned about these references
at MTNS98 conference (Padova, July 1998), after the present work (in its
original form) was completed. In style and basic assumptions these works are
quite different from ours, which makes is a hard (but nevertheless a feasible)
task to compare the (continuous time) results of [10] to our (discrete time)
results. It appears that all the results are in harmony to each other in a
beautiful way.

Fuhrmann approaches the general structure from the minimal spectral
factorization point of view, rather that from the Riccati equation point of



view that we have adopted. In [10], unstable systems and spectral factors are
parameterized by solutions of a Riccati equation of a quite special kind. We
can roughly say that our generality is in the Riccati equations and classes of
stable systems, whereas more general spectral factors and unstable systems
are considered in [10]. The work [10] is written under the standing hypothesis
of strict noncyclicity of the spectral function (corresponding the Popov func-
tion in our work). In [10, Theorem 2.1|, this assumption is associated to the
existence of Douglas—Shapiro—Shields factorization of the spectral function,
see [8] and [9].

We remark that many results such as [10, Theorem 6.1], (analogous to
our Lemma 45, Proposition 46 and Theorem 50) are genuinely two-directional
where our results are not. By this we mean that in Theorem 50, we do not
prove that all spectral factors of DjJD, can be associated to a solution
of DARE. Only those spectral factors are parameterized by the solution in
rico(@, J) that can be realized in a particular way, with the original semigroup
generator A and the input operator B of DLS ¢ = (&4 B). The full param-
eterization of spectral factors in [10] comes from the additional minimality
assumption of the used realization, and the use of a state space isomorphism
result that does not hold in the full generality in our setting. We return
to this matters in a later work. It is true that the general lack of a state
space isomorphism is quite dissappointing, and it makes the state space idea
somewhat “too good to be true” for general infinite-dimensional systems, see
[9, Chapter 3].



1.3 Notations

We use the following notations throughout the paper: Z is the set of integers.
Z,:={j€Z | j>0}yZ :={j€Z | j<O0} Tisthe unitcircleand
D is the open unit disk of the complex plane C. If H is a Hilbert space, then
L(H) denotes the bounded and LC(H) the compact linear operators in H.
Elements of a Hilbert space are denoted by upper case letters; for example
u € U. Sequences in Hilbert spaces are denoted by @ = {u;};c; C U, where
I is the index set. Usually I = Z or I = Z,. Given a Hilbert space Z, we
define the sequence spaces

Seq(Z) := {{zi}tiez |2 € Z and 3I€Z Vi<I:z =0},
Seqi(Z) == {{zitiez | % € Z and Vi< O0:z =0},

Seq (Z) := {{zi}icz € Seq(Z) | z; € Z and Vi>0:2 =0},
*(Z;Z) == {{zi}icz C Z | Z 2]l < oo} for 1<p< oo,

i€Z

(245 Z) = {{zi}icz, C Z | Z ||zl < 00} for 1< p< oo,

i€Zy
0°(2; 2) := {{zi}icz C Z | sup||zil|z < oo}
i€Z
The following linear operators are defined for Z € Seq(Z):
e the projections for j,k € Z U {£oo}

mikZ = {w;}; wi=z for j<i<k, w;=0 otherwise,
7'('] = Tr[]v]}’ 7T+ = 71-[1100]’ T = 71-[_007_1]’

Ty =T+ Ty, T_:=Tmy+T_,

e the bilateral forward time shift 7 and its inverse, the backward time
shift 7*

78 := {w;} where w;=u;_q,

"% = {w;} where w; = u;1.

Other notations are introduced when they are needed.



2 A crash course of DLSs

2.1 Notion of causality and shift-invariance

Our basic object is a fixed state space realization of a (well-posed) transfer
function analytic in some neighborhood of the origin. We call this realization
a discrete time linear system (DLS), given by a system of difference equations
(5) Tijy1 = A.’l?j + BUj,

yj :C.Tj+DUj, ] 2 0,

where u; € U, z; € H, y; € Y, and A, B, C and D are bounded linear
operators between appropriate Hilbert spaces. We call the ordered quadruple
¢ = (& B)a DLS in difference equation form. The operators are as follows:
the semigroup generator A, input operator B, output operator C' and the
feed-through operator D of ¢. The three Hilbert spaces are as follows: U is
the input space, H is the state space and Y is the output space of ¢. It is
well known that equations (5) are a state space model for a unique causal
shift-invariant operator D = Dy : Seq(U) — Seq(Y), called the I/O-map of
0.

There is also another equivalent form for the same DLS, called DLS in
I/O-form (see [21, Theorem 11]). It consists of four linear operators in the
ordered quadruple

- . {fg ng} |

Note that ¢ stands for the DLS in difference equation form, and the capital
® is the same DLS written in I/O-form. The operator A € L(H) is called
the semigroup generator, and the family {A7};5¢ is called the semigroup of
®. It is the same operator A that appears in the corresponding DLS ¢ in
difference equation form. B : Seq (U) — H is called the controllability map
that maps the past input into present state. C : H — Seq.(Y) is called
the observability map that maps the present state into future outputs. The
operator D : Seq(U) — Seq(Y) in (6) is the I/O-map of ® that maps the
input into output in a causal and shift-invariant way. The DLS & is called a
(state space) realization of its I/O-map D.

By using the bilateral shift operator 7 defined on Seq(U), a formula for
the I/O-map can be given

(7) Dyii = Dii+ Y  CA'Brii.

i>0

The above converges pointwise: for all k € Z, & € Seq(U), we have only
finitely many nonzero terms in the sum m (3,., CA'B7'*14), by the def-
inition of Seq(U). We remark that the vector spaces Seq(U), Seq(Y) are
now given the topology of componentwise (pointwise) convergence. Several
DLSs can be realizations for the same I/O-map because formula (7) depends
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only on the operators {C'A*B};~o, and not on the operators A, B and C sep-
arately. We remark that each well-posed causal shift-invariant operator of
form (7) can be written as an I/O-map of a DLS, see [21, Lemma §|.

Consider again the two forms ® = [4' 577 ] and ¢ = (4 B) of the same
DLS. The operators appearing in ¢ and ® connected by straightforward al-
gebraic relations (see [21, Lemma 7 and Definition 9]):

e B:Seq_(U) — H,C:H — Seq(Y) and D : Seq(U) — Seq(Y).
e D, B and C are causal; i.e. they satisfy
W_Dﬁ+ = 0, Bﬁ+ = 0, 7T_C =0.

e 3 satisfies

Br* = AB+ Br*m,
j—1

Briii= A Bii+ Y A'Buj_; i,
=0

B=Br_; € £(U, H),
where U is identified with range(m_1) on Seq(U) in the natural way.

o (C satisfies

ﬁ+T*C = CA,
C = mC € L(H,Y),

where Y is identified with range(my) on Seq(Y') in the natural way.
e D satisfies

7Tr+D7T_ = CB,
Dr=1D, Dr*=71"D
D= 7TOD7T0 € ﬁ(U, Y),
where U, Y are identified with range(m) in the natural way.

For the input, output and state sequences the following notation is used:

e The state of ¢ at time j > 0 is denoted by (o, @), and it is defined

by
j—1

(8) zj(wo, @) = Alzo + Z A'Buj_; = Alzy + Byra.
i=0

e The output sequence (o, %) := {y;(®o, @) }jez, of ¢ is defined by

j—1
(9) yj(:vo, ’lj) = CAj.TO + Z CAzBUJ_Z + DUj =Ty (C¢I0 + D¢ﬁ),

1=0
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where zy € H denotes the initial state at time j = 0, and @ € Seq, (U) is an
input sequence. We remark that the verification of these relations essentially

gives the correspondence between DLSs in difference equation form and in
I/O-form.

Definition 1. Let ¢; = (é{ f;i ), P2 = (é; g;) be two DLSs. Assume that
the input space of ¢ is U, the output space of ¢o and the input space of P,
18 W, and the output space of ¢1 isY.

(i) If Di* € L(Y;U) exists, then define

bl = Ay — B,D;{'Cy BD;!
v -D;'Cy D!

This DLS is called the inverse DLS of ¢;.

(ii) Define

Al B]_Cg BlD2:|

P12 = [0 Ay By
|C1 D1Cs| DiDs

provided ¢ and ¢o as such that all the proposed operator compositions
are sensible. This DLS is called the product DLS of ¢1 and ¢».

(1ii) Define

G = Ar CF
1= \B: pi)
This DLS is called the adjoint DLS of ¢1.

Proposition 2. Let ¢, ¢2 be as in Definition 1.

(1) Dy, : Seq(W) — Seq(Y') is invertible and its inverse is a I/O-maps of
a DLS if and only if D;* € L(Y;W) exists. In this case, the inverse
D;ll : Seq(Y) — Seq(W) is given by D;ll =Dy

(i1) The composition of the I/O-maps Dy, and Dy, satisfies Dy, Dy, =
Dd)ld)z.

- —~—

(iii) The adjoint DLSs satisfy (gzi) = ¢1, and (¢7") = (qi)_l. Furthermore,
Dis. = Do
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Proof. Consider first the “if” part of claim (i). Assume § € Seq(Y), @ €
Seq(W) satisfy § = Dy, i, such that D' is bounded. Then

{xjﬂ = Az + Bug, forall 7>0

= Clxj + D1Uj,

rj1 = Arxj + Byuy,

{ =—D; Clx]+D1 Yjs

3

for all 5 >0,

xﬁl *101)3:, + B, D; 'y,
= —D Clx] + D1 Yjs
D

3

for all 5 >0,

3

where the initial value is x; = 0 for so large J that both @, § have no nonzero
components with index less than J. This gives Dy-1Dy, = I on Seq(U). By

using (¢, 1)~! = ¢4, also Dy, Dy-1 = I. So Dy-1 is a two-sided inverse of D, .

To prove the “only if” part of claim (i), assume that D_l is an I/O-
map of some DLS ¢'. Then because 7 = D, D¢,1 = D¢1D¢1 we have
Ty = 7T0D¢_)llp¢1ﬂ'0 = 7T0D 5 70 * moDgy, mo, by causahty of both D o and Dy, .
Now, myDy,m9 = D, and I = D'D, where D' = 7T0D(;117T0. Similarly, I = DD'.
It follows that D is a bounded bijection between Hilbert spaces U, Y. It thus
has a bounded inverse D! = D'. This completes the proof of claim (i).

For the second claim (ii), recall formula (7) for the I/O-map of a DLS.
Use this to obtain a formula for Dy, Dy,

(10) Dy, Dy, = D1Dy + Y Tir*,

E>1
where

(11)

Ty, := D1CoAS ™' By + C1AY 'BiDy + Y C1A] ' B1CrA; 7 'By, k> 2
j=1
T1 = D102BQ + ClBlD2

and all T, € L(U;Y). Sum (10) converges in the same sense as formula (7).
We then calculate the similar formula for the I/O-map of the DLS ¢;¢,. For
this end, note that the powers of an upper triangular (block) matrix can be
calculated by

a ] [a* Zf;;ajcbk_j_l B> 1
10 b T
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An application of this gives for £ > 1

k
i A]_ Blcz B]_D2
C¢1¢2A2>1¢2B¢1¢2 = [Cl ch2] [O A, :| |: B, :|

Ak S LAt B o, ALY [BLD
= [0 DiCy) lol R s H%;]

k-1
= ClAlchlDQ + chgAng + Cl (Z A‘i 3102 A‘;11> Bl.

=0
But this equals T} of equation (11). The case k = 0 gives

B, D,

¢, DiCy] { iy

:| = ClBlDQ + D102B2 =Ti.

Because also the static parts of Dy, Dy, and Dy, 4, are both Dy D, equations
(10) and (11) give also the I/O-map of ¢ @». The last claim (iii) is immediate.
This completes the proof. O

We remark the there is no uniqueness in the realization ¢;¢, for the causal
shift-invariant operator Dy, Dy,. Furthermore, generally ¢1¢2 # @201 but
the state spaces of these product DLSs are unitarily isomorphic. Given an
I/O-map Dy, its adjoint I/O-map Dy is defined by Dy := Dz. It is easy
to show, by using formula (7), that 23; is independent of the choise of the
realization ¢.

2.2 Notion of feedback

The notion of state feedback is central in this work. In difference equation
form, we realize the state feedback by first adding still another equation
v; = Kz; + Fu; to equations (5), where K € L(U). This gives us an
extended DLS ¢°**. We get the closed loop DLS ¢** in difference equation
form by simple manipulation. The same structure written in I/O-form is
somewhat more complicated but nevertheless useful. In I/O-form, the new
output signal given by K provides a new output (*(Z,;U) 3 © = Kzy + Fi
to @, thus giving an (open loop) extended DLS ®°** := [® [K, F]]. This is a
Cartesian product of two DLSs with the same input and semigroup structure,
as presented in the following picture:

"

z; (2o, @) A By

een ] (5 ()
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The ordered pair of operators [IC, F] is called a feedback pair of ®. Here K
is a valid observability map and F is a valid I/O-map for the system with
semigroup generator A and controllability map B

The operator (Z — F)~! : Seq(U) — Seq(U) is required to be an I/O-
map of a DLS (well-posed, causal and shift invariant), to ensure that the
closed loop is well defined. From an I/O stable feedback pair we require
that dom(C) C dom(K), and both F and (Z — F)~' are bounded in the
{*>-topology. If, in addition, K : H — (?(Z;U) is bounded, then we say
that [IC, F] is stable. The closed loop extended DLS ®** is the DLS that we
obtain when we close the following state feedback connection:

"

ﬂjj(ﬂ?olﬁ) A B
e, | ) ()
I — ..

Here 4°*" = {u$*'} is an external (disturbance) signal, so that v; = K; +
F(v; + u$*") holds in the closed loop. The formulae for the closed loop
system in terms of the open loop operators can be easily calculated (see [21,
Definition 18]). Thus we have two different notions of state feedback; one
for DLSs in difference equation form, the other for DLSs in I/O-form. It
follows that these feedback notions are equivalent in the same way than the
two notions of the DLS are equivalent (see [21, Section 5]). The stability
properties of the open and closed loop feedback systems are discussed in [21,
Section 9].

N

2.3 Notion of energy

As proposed earlier, the sequence spaces Seq(Z), for Z Hilbert space, can
be given the topology of componentwise convergence. This is a rather weak
topology; so weak that it does not admit a useful energy notion. To fix
this, we introduce a smaller vector subspace (*(Z,;Z) C Seq(Z), which
is a Hilbert space of square summable sequences. The norm of (*(Z,;Z)
is regarded as the energy of the signal. A DLS is called I/O stable if the
Toeplitz operator of the I/O-map D, : (*(Z;U) — (*(Z,;Y) is bounded.
Then the Toeplitz operator has a unique bounded extension, by continuity
and shift invariance, to the whole of ¢2(Z; U). This extension is also denoted
by D.

For the study of the operators B and C, a suitable definition is needed for
their domains (|21, Definition 24]). We define dom(B) := Seq_(U), equipped
with the ¢%(Z; U)-inner product. If dom(B) = H, we say that ® is (infinite
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time) approzimately controllable. The domain of C is given by
(12) dom(C) := {xy € H|Cx € *(Z,;Y)},

equipped with the inner product topology of H. Neither of the operators B, C
are assumed to be bounded in their domains. The domains for the operators
D7, and Dmy (the impulse response operator) are defined similarly (see [21,
Definition 24]). This makes all the operators D7, D and C closed (see
[21, Lemma 27]). The case for the observability map is given below:

Lemma 3. Let & = [*‘g Bg’j] be a DLS. Define the domain of the observ-
ability map as above. Then C : dom(C) — (*(Z;Y) is closed.

Proof. Let dom(C) > z; — xy € H be a convergent sequence in H such that
Cr; = §€P(ZY)

in the norm of (?(Z,;Y). We shall show that zy € dom(C) and Czy = 7,
which proves the closed graph property for C. For each & > 0 we have

(13) (Cxj) = CAFz; — CAFzy as j — oo

in the norm of Y, because both A and C are bounded. On the other hand,
because Cz; — § in the norm of ¢*(Z,;Y), for all k& > 0:

(14) (Cxj)k —yr as j— oo

in the norm of Y. Now equations (13) and (14) imply, by the uniqueness
of the limit, that CA*zy = g for all k& > 0, or equivalently § = Cxy for
the algebraic observability map. But then, because § € (*(Z,;Y), we have
zo € dom(C) and § = Cxy. This completes the proof of this lemma. [J

If B or C is bounded, we say that ® is input stable or output stable, respec-
tively. There is one more important stability condition used in this paper,
namely the strong H?2-stability. We say that ¢ is strongly H? stable if its im-
pulse response operator Dy is bounded from U = range(m,) to (*(Z,;Y).
This implies that Dy7, : (1(Z,;U) — (*(Z1;Y) boundedly. I/O stability
and output stability are sufficient conditions for the strong H?2-stability. We
note that the strong H?2-stability is characterized by the following proposition

Proposition 4. Let ® = [fg Bg‘j] = (A B) be a DLS. Then the following
are equivalent:

(i) BU C dom(C),
(i1) range(B) C dom(C),

(111) ® is strongly H* stable.
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Proof. The equivalence of (i) and (ii) is [21, Lemma 39|. Assume (i). Because
BU C dom(C), then CBu € (*(Z;Y) for all w € U. But then Dmya =
Dyt + 7CBug € (*(Z1;Y) for all @ = {u;};>o such that ug = 0. Because
u € U is arbitrary, it follows that dom(Dmy) = U. But now Dmy : U —
¢*(Z,;Y) maps boundedly by the Closed Graph Theorem, because Dy is
closed with a complete domain. Claim (iii) follows. The implication (iii) =
(i) is from [21, Lemma 40]. O

The inclusion range(B) C dom(C) is known as the compatibility condition in
[21, Lemma 39]). Unfortunately, the description of the strong H? stability
remained incomplete there.

For an I/O stable (and even strongly H? stable) DLSs, we can restrict
the state space H to dom(C) without essentially changing the I/O-properties,
by Proposition 4. The observability map C|dom(C) of the restricted state
space DLS is now densely defined and closed. For this reason, we assume
throughout this paper that dom(C) = H. By introducing the graph norm of
C, we can make the vector space dom(C) into a Hilbert space. In fact, the
strenghtening the topology of the state space in this manner gives us another,
output stable DLS whose properties are roughly the same as those of the
original DLS, see [21, Theorem 46]. We conclude that any non-output stable,
I/0O stable DLS ¢ can always be made output stable, and the lack of output
stability tells us that the state space of ¢ is “too large” or “inconveniently
normed”. For this reason, we do not regard it as a grave sin to assume that
our I/O stable DLSs are, in addition, output stable — provided that one such
fixed topology of the state space H of ¢ is “good” for the full description of
the essential structure of ¢, seen as a realixation of its I/O-map. Fortunately,
this is the case, as the present papers [26] and [27] show.

The stability notions associated to the semigroup generator A of the DLS
® are the following (see [21, Definition 21]): A is power (or exponentially)
stable, if p(A) < 1; A is strongly stable, if A7zy — 0 as j — oo; A is power
bounded, if sup;. ||A’||z < co. All these imply that p(A) < 1. The power
bounded behaviour is discussed in [31] and the references therein. So as to
the strongly stable operators with a 7 growth bound, [48] is an interesting
reference.

We say that @ is stable if it is I/O stable, input stable, output stable and
its A semigroup generator is power bounded. If ® is stable and A is strongly
stable, then ® is strongly stable. The relations between various stability
conditions of open and closed loops systems are discussed in [21, Section 6].

The following notions are from [20, Definition 17]:

Definition 5. Let J € L(Y) be self-adjoint, and let S € L(U) self-adjoint
and invertible. Let D, N and X be I/O-maps of I1/0 stable DLSs.

(i) The operator E € L(U) is S-unitary, if it is boundedly invertible and
E*SE =S.

(i) N € L(C3(Z;U), (*(Z;Y)) is (J,S)-inner, if N*JN = 8S.
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(1ii) X € L(*(Z;U)) is outer, if range(X7,) = (>(Z;U).

(iv) X € L(Z;U)) is S-spectral factor of D*JD, if X has a bounded
causal shift invariant inverse X' € L(¢*(Z;U)) and D*JD = X*SX.

Spectral factors of D*JD and coercive outer factors of D have one-to-one
correspondence, by [20, Proposition 20].

2.4 Notion of the transfer function

For the I/O-map D of a DLS ® = ¢ := (4 8), formula (7) is given. The
bilateral shift operator can be formally replaced by a complex variable z, and
the formal sum is obtained:

(15) D+ CABz.

i>0

Because A is bounded by the definition of the DLS, this sum converges
for |z| < ||JA7Y|7!, thus defining an analytic £(U;Y)-valued function D(z)
in a neighborhood of the origin. In fact, D(2) = D + z2C(I — 2A)~! for
|z] < ||A7Y||7!. The analytic function D(z) is called the transfer function of
®. Because all I/O-maps of DLSs have transfer functions analytic in a neigh-
borhood of origin, we say that the the DLS is a well-posed linear system. The
well-posedness makes it possible to add and multiply two transfer functions
of appropriate type in a common neighborhood of the origin where both are
analytic. We remark that the corresponding continuous time notion of well-
posedness is deeper, see [45]. Because the power series coefficient (centered
at the origin) of an analytic function are unique, we have one-to-one cor-
respondence between the I/O-maps of DLSs and operator-valued functions,
analytic in a neighborhood of the origin of the complex plane, see [21, Lemma
8].
In the following definition, we consider signals instead of systems.

Definition 6. Let Z be a Hilbert space.

(i) The sequence @t = {u;}jcz, € Seq(Z) is well posed, if the power series

o0
(z) = Z w2
=0

converge to an analytic function in some neighborhood of the origin.
(ii) The mapping F, : @+ u(z) is called the z-transform.

The set W Seq, (Z) of well-posed sequences is a vector subspace of Seq, (7).
It is a matter of taste whether z-transform should be defined to be analytic in
a neighborhood of the origin or of the infinity. It seems that in the function
theory the former alternative is used, and in the control theory the latter is
preferred.
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Proposition 7. Let D be an I/O-map of a DLS, and D(z) its transfer func-
tion. Let & € WSeqy(U) and u(z) its z-transform. Let § € Seq,(Y'). Then
the following are equivalent:

(i) §="Di

(1) § is well-posed, and §(z) = D(z)u(z) in some neighborhood of the ori-
gin.

Proof. Assume claim (i). Because both D(z) and @(z) are analytic in a some
common neighborhood of the origin, so is the Y-valued function f(z) :=
D(z)d(z). Identify the unilateral shift 7 by the multiplication by the complex
variable z. By comparing the expression of both Du and D(z)a(z) it is clear
that the power series coefficients f; of f equal y;. So § € WSeq,(Y) is well
posed and (ii) follows. The converse direction is similar. O

Corollary 8. Let ¢; and ¢o be DLSs with compatible input and output spaces.
Then D¢1¢2 (Z) = (D¢1D¢2)(Z) = D¢1 (Z)D(i’z (Z)

Proof. Let & € WSeq(U) be arbitrary. Then Dy, 4,% and Dy, % are well posed
by Proposition 7, and

(D14, )(2) = Dy, (2)i(2) = (D, (D, ))(2)
= Dy, (2)(Dy,1)(2) = Dy, (2)Dg, (2)u(2),

where all the equalities are by Proposition 7, except the second which is by
claim (ii) of Proposition 2. Because @ is arbitrary, the claim follows. O

We conclude that the algebraic structure of corresponding I/O-maps and
transfer functions is equivalent, when the well-posed inputs are considered. In
particular, because I/O-map is known if its action on sequences @ € W Seq(U)
satisfying 7;4 = 0 for j # 0, no uniqueness problems can arise if we restrict
to well posed inputs. We have (*(Z,;U) C WSeq,(U). This is trivially
true because @ € (*(Z,;U) is a bounded sequence, and thus the power series
Zj>0 u;z? converge for all z € D by a simple argument.

At this point, it is necessary to introduce the Hardy spaces H?(D; L(U;Y))
(operator-valued) and H?(D; U) (Hilbert space -valued) for each 1 < p < co.
They are defined as the Banach spaces of analytic functions in D with the
norms

HD(MMpnﬁUY::sma——/HD [~

r<1 2m

= sup — [ ||a(re®)|[? db.
1) Ogg%/m gl
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Out of these, the cases p = 2 are most important to us. The space H?(D;U)
is Hilbert, with the inner product

2w
- ~ . 1 0\ ~ 10
(@), 5 ey = Jim 5 [ (e, a(re), ds
0
and the Parseval identity
(16) <a(z)’ﬁ(z)>H2(D;U) = <aa1~’>42(z+;U)-

The interpretation of equation (16) is that the z-transform F, : @ — (2)
is an isometric isomorphism of the Hilbert spaces ¢*(Z,;U) and H?*(D;U).
For further information, see [33, Section 1.15] and [14, Chapter III].

Now that we have identified the z-transforms of finite energy signals, we
identify the transfer functions of I/O stable DLSs. For this end, we meet
one more Hardy space, namely the celebrated H*(D; L(U;Y")). We say that
D(z) € H*(D; L(U;Y)) ifit is L(U;Y)-valued analytic function in the whole
of D, and

D ()| m=Dicwiyy) = sup 1D ()| ey < oo

Proposition 9. Let D be a I/O-map of a DLS, such that all the Hilbert
spaces U, H andY are separable. Then D is I/0 stable if and only if D(z) €
H>*(D; L(U;Y)). Furthermore, ||D(2)||gem;cw;y)) = ||P||e@,v)—ez, v

Proof. This is the contents of [33, Theorem 1.15B]), or [8, Theorem 1.1,
Section IX, p. 235|, to mention few possible references. In [33], the input
and output spaces are written to be the same space. However, by using
the Cartesian product Hilbert space W = U x Y as both input and output
space, and extending the operators T € L(U;Y) toT" = (3 9), the notational
inconvenience is resolved. O

For the representation of bounded causal shift-invariant operators by H*°functions,
see also [47] and [49]. Related to the operator-valued H?(D; L(U,Y))-space,
another less known variant, called the strong H?(D; £L(U,Y)) is defined as
follows:

Definition 10. The strong H?(D; L(U,Y)) (briefly: sH*(D;L(U;Y))) is
the set of L(U;Y )-valued analytic functions D(z) in D, such that D(z)uy €
H?*(D;Y), for all ug € U.

Clearly sH?(D; L(U;Y)) is a vector space. The following proposition gives
a hint why sH?(D; £L(U;Y')) is important to us.

Proposition 11. If the DLS ¢ := (4 B) is output stable or, more generally,
strongly H? stable, then the transfer function Dy(z) € sH?*(D; L(U;Y)).
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Proof. We first show that the transfer function Dy(2) is analytic in the whole
of D. If ¢ is output stable, then

1Csm0l |72z, vy = I{C A o} jz0l 22z, vy = D [IC A o[} < 00

J=0

for all zp € H. Then, in particular sup,., ||[CA7zo|ly < oo for all zo €
H. Now Banach—Steinhaus Theorem implies that the family {C'A7},5 is
uniformly bounded, and then easily the power series Z;’io C A B2’ converges

for all z € D. The power series expansion of transfer function Dy(z) is given
by

Dy(z) =D + Z CA™'B

iz

By output stability, {C' A7 Bug}j>o C (*(Z;Y) for any ug € U. The Parseval
identity implies now that Dy(z)up € H*(D;Y) for each uy € U. So Dy(z) €
sH?(D; L(U;Y)). The case of the strong H?-stability is similar. O

2.5 Nontangential limits of transfer functions

We have seen that the I/O-maps of DLSs and well-posed signals have a
one-to-one correspondence to their transfer functions and z-transforms, re-
spectively. Furthermore, the I/O stability and finite signal energy notions
are well behaved under the z-transform. The following question arises: what
essentially new does the replacement of the bilateral shift 7 by the complex
variable z bring us? A (partial) answer is: point evaluations of the transfer
function D(z) at all points of analyticity z. This gives us the notion of zeroes
and poles of the transfer function, at least in the case when all the Hilbert
spaces U, H and Y are finite dimensional.

The notions of zeroes and poles are not central in our work, and if it was
only for this reason, we would not need to define the transfer functions in the
first place. However, there is another reason to introduce transfer functions
that is important to us. Namely, there are classes of (transfer) functions
D(z) and (signals) @(z), analytic for z € D, that can be evaluated in a useful
sense at the boundary points e € T = 0D, too. In these classes, the notion
of the nontangential limit functions or, equivalently, boundary traces D(e®)
and @(e?) can be defined by

D(e®)ug = lim D(zj)uy for all wy € T,

zj—reif
i(e?) = lim (z;),
zj—eif
for all such e € T, where the limit exists for all uy € U and all sequences
D > z; — € € T lying inside some nontangential approach region, as defined

in [6, p. 6], [34, Theorem 11.18], or any other book of basic function theory.
We remark that the operator limit D(e) is taken pointwise, in the strong
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operator topology. If D(z) is matrix-valued, then the strong nontangential
limit is actually a nontangential norm limit, because in a finite dimensional
space pointwise convergence implies norm convergence. We proceed to define
the classes where boundary traces i(e?) and D(e') are available in a practical
sense.

Suppose now that 4(z) € HP(D;U) for 1 < p < oo, and D(z) €
H?(D; L(U;Y)) for 1 < p < co. By [33, Theorem 4.6A], if U, Y are sepa-
rable, the nontangential limit functions, denoted by 7i(e®) and D(e¥), exist
a.e. €? € T modulo the Lebesgue measure of the unit circle T. Actu-
ally this is true in much larger classes N(D;U), N(D; L(U;Y)), N, (D;U),
N, (D; L(U;Y)), defined in the following.

Definition 12. Let X be U or L(U;Y).
(i) Then N(D; X) is the set of analytic X -valued functions f(z), such that

2T

sup /log+||f(reio)||X df < oo.

0<r<1
0
The set N(D; X) is called the Nevanlinna class, and its elements are
called the functions of bounded type.

(11) Hqe(D; X) is the set of analytic X -valued functions f(z), such that

2T

sup / g(log,||f(re®)x) 6 < oo,

0<r<1
0
where g is a strongly convex function. The space H,(D; X) is called
the Hardy-Orlicz class.

(111) Ny (D; X) := UH,(D; X), where the union is taken over all strongly
convez functions g.

A function g : R — R, is strongly convex (in the sense of [33, p. 135])
if it is convex, nondecreasing, satisfies lim; ,,, g(t)/t = oo, and for some
¢ > 0 there exists M > 0 and a € R such that g(t + ¢) < Mg(t) for all
t > a. All the sets Hy(D; X), N, (D; X), N(D; X) are vector spaces, and
H,(D; X) C Ny(D;X) C N(D;X). For additional information, see [33,
Chapter 4]. In particular, choosing g(t) = eP* gives the H?(D; X)) space, for
0 < p < oo. Because H*(D; X) C H?*(D;X), also the bounded analytic
functions are of bounded type.

These spaces are introduced because for f(z) € N(D; X), the boundary
trace function f(e®) exists almost everywhere on T. The set of the cor-
responding boundary traces is denoted, quite naturally, by N(T;X). The
mapping N(D;X) > f(z) — f(¢?) € N(T;X) is one-to-one and linear.
Furthermore, the operator products of such functions are well behaved: If
F(e?) € N(T;L(U;Y)) and G(e?) € N(T;L(U)), then F(e)G(e?) €
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N(T; L(U;Y)). If f(e?®) € N(T;U), then F(e?)f(e?) € N(T;L(Y)). Not
only the sensible products of bounded type functions are of bounded type,
but also the boundary trace of the product is always the product of the
boundary traces. In the infinite-dimensional cases these are nontrivial facts
because the operator multiplication is not continuous in the strong operator
topology; or in the poetic words of [33, p. 88|: “there is more here than meets
the eye”. The proofs of these results are based on the powerful representation
for the Nevanlinna class functions as a fraction of two H* functions, with a
scalar zero-free denominator. The H* case can then be handled more easily.
For further information, see [33, Theorem 4.2D and Theorem 4.5A].

Let us return to discuss the special case of HP(D; X )-spaces and the corre-
sponding boundary trace spaces H?(T; X ). Ultimately, the spaces HP(T; X)
are identified with subspaces of certain Lebesque spaces LP(T;L(U;Y))
(operator-valued) and LP(T;U) (Hilbert space -valued), for each 1 < p < co.
In order to introduce the operator and vector Lebesque spaces, it is necessary
to remind some notions of measure theory.

Definition 13. Let U, Y be separable Hilbert spaces. Let the measure space
(T, B,df) be the usual (Lebesque completion of the) Borel o-algebra of the
unit circle T, where df denotes the Lebesque measure of T.

(i) The U-valued function f(e?), defined df-almost everywhere on e € T,
is weakly (Lebesque) measurable, if for allu € U, the C-valued function
fu(€®) := (f(e), u>U is (T, B, df)-measurable.

(ii) The L(U;Y)-valued function F(e%), defined df-almost everywhere on
e € T, is weakly (Lebesque) measurable, if for allu € U, y € Y, the
C-valued function F, (") := (F(e®)u,y), is (T, B, df)-measurable.

If f(e?), g(e?), F(e?),G(e?) are weakly measurable, then so are
F(e) f(e?) and F(e?)G(e?), if the products make sense. Furthermore,
the following scalar functions are measurable: (f(e®), g(e®)) , I|f(e?)||v

and ||F(e")||zwyy). If r(e?) is a measurable scalar function and u € U,
A€ L(U;Y), then r(e?)u and r(e®?) A are weakly measurable, see [5, Part I,
Chapter II1]), [14, Chapter III, p. 74|, [33, comment on p. 81], and [47].

Definition 14. Let 1 < p < co. The Lebesque spaces are defined as follows:

(i) LP(T;U) is the vector space of weakly measurable U-valued functions
f(e?), defined a.e. € € T, such that

1 ENE ) = /||f )| d8 < oo.

(i) LP(T; L(U;Y)) is the vector space of weakly measurable L(U;Y )-valued
functions F(e®), defined a.e. € € T, such that

[EE R —/|| ) e 49 < o
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(1ii) L*°(T; L(U;Y)) is the vector space of weakly measurable L(U;Y )-valued
functions F(e?), such that

||F(6i0)||Loo(T;£(U;Y)) ‘= ess supeweTHF(eieHl;(U;y) < 0.

Note that the scalar integrals appearing in Definition 14 are well defined,
by the assumed weak measurability. All the Lebesque spaces are Banach
spaces. L?(T;U) is a Hilbert space with the inner product

(F(€9),9()) oy = % / (£(e), g(?)),, db.

Because of the nice properties of the weak measurability, much of the scalar
Lebesque space theory can be carried over to the corresponding vector-valued
theory, by quite straightforward arguments. For example, because T is of
the finite Lebesque measure, the Holder inequality implies that if 1 < p; <
p2 < 00, then LP2(T; X) C LP*(T; X).

For 1 < p < oo, HP(T;X) can be regarded as a closed subspace of
L*(T; X), such that the Fourier coefficients of f(e?) (to be introduced in
next Subsection 2.6) satisfy f; = 0 for all j < 0, see [33, Theorem 4.7C].
Furthermore, f(z) can be recovered from f(e®) by both Poisson and Cauchy
integrals. Finally, the H?(D; X )-functions f(z) and their boundary traces
f(e??) € HP(T; X) can be and usually are identified by an isometry, see [33,
Theorem 4.7D].

2.6  Vector-valued integration and Fourier transform

Let U and Y be separable Hilbert spaces. In order to define the Fourier trans-
form in the Lebesque spaces LP(T; L(U;Y)) and LP(T;U) for p > 1, we must
have an integration theory for these Banach space -valued functions. Note
that in Subsection 2.5, only a scalar Lebesque integration theory, together
with a characterization of weakly measurable Banach space -valued func-
tions, was required to define the spaces LP(T; L(U;Y)) and LP(T;U). Also
recall that if 1 < p; < py < oo, then LP*(T; L(U;Y)) C LP*(T; L(U;Y))
and LP*(T;U) C LP(T;U). It is well known that in the largest classes
LY(T; L(U;Y)) and L'(T; U), a vector-valued integration theory (and in fact
many of those) can be developed:

Proposition 15. Let U and Y be separable Hilbert spaces. Let f(e¥) €
LY(T;U) and F(e) € LY(T; L(U;Y)).
(i) There is a unique ¢ € U such that for allu € U
2T

(e, u)y :/<f(ei9),u>U de.

0

We call ¢ the weak Lebesque (Pettis) integral of f(e¥) and write
fo% f(e®)df = c.
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(ii) There is a unique C € L(U;Y) such that for allu e U, y € Y

2T

(Cu,y)y = / <F(ei0)u,y>y de.

0

We call C the weak Lebesque (Pettis) integral of F(e¥) and write
[P F(e) df = C.

0

Proof. For claim (i), see [14, Definition 3.7.1 and Theorem 3.7.1], and note
that U, as a Hilbert space, is reflexive. We outline the proof how claim
(ii) follows from claim (i). Let u € U. Then F(e?)u is a Y-valued weakly
measurable function, and by claim (i) there is a unique ¢, € Y such that

2w

(Curs ¥)y :/<F(ei0)u,y>y do

0

for all y € Y. It is easy to show that the mapping U 3 u — ¢, € Y is linear,
and we write C : U — Y by Cu := ¢,. It remains to be shown that C is
bounded. Let now v € U and y € Y be arbitrary. Then

2w 2w
| (Cu, y)y | §/|<F(6w)u,y>yld9§ IIUIIU-IIyIIY-/IIF(ei")IId@,
0 0

where the first estimate holds by the property of scalar Lebesque integral,
and second by the Schwartz inequality. Because F(e?) € LY(T;L(U;Y)),
the integral of its norm is finite, and it the follows that

Tl cwyy = sup  [(Cu,p)y | < IF(E)]|n(micwsyy) < oo

llullo=llylly=1
We regard this proposition as proved. O

Now that we can integrate, we are prepared to consider the Fourier trans-
forms. Let f(e??) € L'(T;U) and F(e?) € L'(T;L(U;Y)). Trivially, the
functions ¥ — €0 f(e?) € LY(T;U) and € — e F(e?) € LY(T; L(U;Y))
for all j € Z, and we can uniquely define the weak integrals

2T 2T
1 T 1 / o o
L= ¢ k F..=— | F(é 4 Y.
fii= g /f(e e #db e U, Fyi= o [ F(e)e W db € LU Y)
0 0

These integrals are called the Fourier coefficients of the respective functions.
We call the formal series

f(eie) ~ ijeijG’ F(ew) ~ ZFjez‘jG
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the Fourier series of the respective functions. Two Fourier series are identical
if all their respective coefficients f; or F} are identical. The mappings

F(e®) = {fitiez CU, F(e®) = {Fj}jez C LU;Y)

are called the Fourier transforms of the respective spaces. It is easy to show
that the Fourier transform is a linear mapping, and the Fourier coefficient
are uniformly bounded: ||f;]| < ||f(e")||r1(r0y) < \/ﬂ||f(ei9)||Lz(T;U) and
1F5] < ||F(ei0)||L1(T;£(U;Y)) < \/ﬂHF(eio)HL?(T;z:(U;Y))- The questions of
convergence of the Fourier series (in various topologies) are generally highly
nontrivial. In this paper, the classes L?*(T;U) and L*(T;L(U;Y)) are of
particular interest. The case of the Hilbert space is well known:

Proposition 16. The Fourier transform f(e¥) — {f;}jcz is an isometric
isomorphism of the Hilbert space L*(T;U) onto the Hilbert space (*(Z;U).
The Fourier series > fie®® converges to f(e') in L*(T;U). The Parseval
identity holds

<f(6i0), g(€i0)>Lz(T;U) = <{f]}v {gj}>£2(Z;U) :

The closed subspace H*(U) C L*(T;U) is mapped onto the closed subspace
(2(Z;U) C 2(Z;U).

However, we need the following result on the operator-valued L*(T; L(U;Y)).

Proposition 17. Let U and Y be separable Hilbert spaces, and u € U arbi-
trary. Let F(e) € LY(T; L(U;Y)). Define the Y -valued function F,(e?) :=
F(e®)u. Then

(i) Fy(e?) € LN(T;Y),

(i3) the Fourier coefficients {F;}jcz of F(e?) and {(F,);}jcz of Fu(e?)
satisfy

Fyu = (F,); forall je€Z,

(iii) the Fourier series Y. .., (Fyu) e’ converges in L*(T;Y) to F(e")u.

jez

Proof. Claim (i) is trivial. To prove claim (ii), fix v € U, j € Z, and let
y € Y be arbitrary. By the definition of weak integral, the Fourier coefficient
F; € L(U;Y) is an operator such that

(17)

2

1 iy —ij 1 i —ij

(Fju,y)y = o / (F(e®)e ]ou,y>y dp = 5 / (F(e t"’)u,y>y e 0 dg.
0 0
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for all y € Y. By the definition of the weak Hilbert space -valued integral,
the Fourier coefficient (Fy,); € Y is an element such that

(18)

((Fu);, /<F ey, df = —/<F PV, y), e db.

for all y € Y. Comparing the right hand sides of equations (17) and (18)
implies that (Fju,y)y = ((Fu);,y)y for all y, or equivalently Fju = (F,);.
Because u and j are arbitrary, this proves claim (ii). The last claim (iii)
follows from the previous claim and Proposition 16. 0

2.7 Discussion

We conclude this section with a general discussion. In this section we have
introduced three (essentially) equivalent formalisms (DLS in difference equa-
tion form, DLS in I/O-form and transfer function formalism) to realize and
describe the same class of objects (well posed, causal shift-invariant linear
operators in discrete time). At first sight, this might seem a little superfluous,
and we try to defend ourselves in the following.

We note that all the operators A, B, C, D, B, C and D appearing in
quadruples (4 Z) and [AJ BT”] are separate functional blocks, present in
any linear state space model. From the control theoretic point of view, the
interaction between controllability-, observability- and I/O-maps can be con-
veniently described because these operators constitute the DLS in I/O form
in our formalism. What we have actually done, it to collect the operator of
the same kind into two different structures: DLS in I/O-form and in difference
equation form. In this notational framework, also nonlinear generalizations
are admitted.

Notationally our DLS-formalism is very similar to the formalism used in
[37], [39], [40], and [45] for continuous time stable well-posed linear systems.
In continuous time, however, the notions corresponding to our “difference
equation form” and “I/O-form” are not equivalent because generally the feed-
through operator D cannot be separated from the I/O-map D without an
extra regularity assumption, see [45], [50], and [51].

So as to the transfer function representation, we also remark that the op-
erator theoretic study of these linear systems becomes notationally clumsy, if
the basic operators are always stated as multiplications by transfer functions.
In monographs [33] and [46], the basic objects are the unilateral shift opera-
tors and the Toeplitz operators — the complex analysis results are presented
more or less as an important application. The only reason for us to intro-
duce the transfer functions is to get the additional structure associated to the
boundary trace algebra of the functions in the Nevanlinna class N(D; £(U)).
We remark that this is only possible under stronger assumptions, requiring
e.g. the separability of all the Hilbert spaces involved.
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3 H* Riccati equation

In this section we give basic definitions of the discrete time algebraic Riccati
equation, associated to an output stable and I/O stable DLS ® and a pos-
sibly indefinite cost operator J € L(U). The solutions P of such equation
are classified according to stability properties of an associated DLS ¢p, see
Definitions 19 and 20. An additional classification is done according to the
residual cost properties, as introduced in Definition 21. After that, inclusions
of the various solution sets are considered.

Definition 18. Let J € L(Y) be self-adjoint, and ® = [4 557 ] = (4 B) be

a DLS. Then the following system of operator equations

(19) Ap=D*JD + B*PB
ApKp = —-D*JC — B*PA

is called the discrete time algebraic Riccati equation (DARE) and denoted by
Ric(®,J). The linear operators are required to satisfy Ap, Ap' € L(U) and
Kp € L(H;U). Here P is a unknown self-adjoint operator to be solved. If
P € L(H) satisfies (19), we write P € Ric(®, J).

We use the same symbol Ric(®, J) both for the solution set of a DARE,
and the DARE itself. This should not cause confusion. Clearly the equations
(19) can be put into form

(20) A*PA—-P+C*JC
= (D*JC + B*PA)* (D*JD + B*PB) ' (D*JC + B*PA).

This is the usual form of the DARE in the literature. Because Ap and
Kp are quite fundamental objects in our treatment, the system (19) is used
instead. For a given P € Ric(®,J), the operator Ap is called the indicator
of P, and the operator Kp is called the (state) feedback operator of solution
P. The operators Ap := A+ BKp and Cp = C + DKp are the closed
loop semigroup generator and the closed loop output operator, respectively.
Sometimes DARE (20) has a trivial solution; if we can write (D*JD) ! =
D=tJ71(D71)*, then clearly 0 € Ric(®, J).
To each solution P € Ric(®, J), two additional DLSs are associated:

Definition 19. Let J € L(Y) be self-adjoint, and ® = [4 557 ] = (4 B) be
a DLS. Let Kp, Ap and Cp be as above.

(i) For P € Ric(®,J), the DLS

A B
Op = <—Kp I)

is the spectral DLS, associated to the pair (®,.J) and centered at P.
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(i) For P € Ric(®,J), the DLS

¢P — AP B
) Cp D
is called the inner DLS, associated to the pair (®,J) and centered at
P.

In this work, we consider DAREs Ric(®, J), such that ® is output stable
and I/O stable. These are called H*DAREs, and defined as follows:

Definition 20. Let the objects ®, J, Ric(®,J), P € Ric(®,J), and ¢p be
as in Definitions 18 and 19. Assume that ® is, in addition, 1/0 stable and
output stable.

(i) We denote the DARE (19) by ric(®,J) instead of Ric(®,J). The
DARE ric(®,J) is called H°DARE.

(ii) If P € Ric(®,J) is such that the spectral DLS ¢p is I/0O stable and
output stable, then we say that P € ric(®,J). We say that such P is
an H™ solution of a H* DARE.

When we write inclusions and equalities like Ric(®,J) C Ric(®',J'),
Ric(®,J) = Ric(®',J'), then these symbols refer to the solution sets of
the respective DAREs. We remark that a H*DARE ric(®, J) could have
a non-H* solution P. This this case we write P € Ric(®,J) instead of
P € ric(®,J).

A number of residual cost conditions are required in our work.

Definition 21. Let the objects ®, J, Ric(®,J), P € Ric(®,J), and ¢p be
as in Definitions 18 and 19.

(i) If the residual cost operator

Lap:=s—lim A¥PAI

j—oo
exists as a bounded operator in L(H), we write P € Ricgy(®, J).

(11) If Lap = 0, we write P € Ricy(®,J). Such P satisfies the strong
residual cost condition.

(1ii) If (PAizy, Alzg) — 0 for all zy € H, we write P € Ricopo(®, J). Such
P satisfies the weak residual cost condition.

(iv) If (PAizy, Alzg) — 0 for all zy € range(B), we write P € Ricy,(®, J).
Such P satisfies the ultra weak residual cost condition.

We also define the solution sets rico(®,J) := Rico(®,J) N ric(®,J),
rico(®, J) := Ricoo(®, J)Nric(®, J), rico (P, J) := Ricooo(®, J) Nric(P, J)
and ricyy(®, J) = Ricy,(®,J) N ric(®,J). The elements of rico(®,J) are
called reqular H*™ solutions.
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We remark that the residual cost conditions (i), (ii), and (iii) depend
on the structure of the solution P in the whole state space H. The ul-
tra weak residual cost condition (iii) imposes only requirements on P re-
stricted to the (possibly nonclosed) controllable vector subspace range(B).
Recall that range(B) = B(dom(B)) where dom(B) := Seq (U) consists of
sequences in (?(Z_;U) with only finitely many nonzero components. Equiv-
alently, P € Ricy,(®,J) if and only if lim; ., (PBT* @, Br*i) = 0 for all
{u;}j50 = @ € (*(Z;U) having only finitely many nonzero components ;.
Solutions P € Ricy,(®, J) are of particular interest in the factorization the-
ory of Theorem 27 and Theorem 50. The residual cost conditions (i) and (ii)
of Definition 21 are convenient for the Liapunov equation techniques. The
following inclusions are basic:

Proposition 22. Let the objects ®, J, Ric(®,J), P € Ric(®,J), and ¢p be
as in Definitions 18 and 21. Then the following holds

(i) If A is strongly stable, then Ric(®,J) = Rico(®, J).
(ii) {P € Ricopo(®,J) | P >0} C Rico(®, ) C Ricooo(®, J).
(7,7,7,) RY;CO(@, J) U RY:COOO(@, J) C R?;Cuw(q), J)

(iv) Ricoo(®,J) N Ricopo(®,J) C Rico(®,J). If range(B) = H, then
Ricoo(®, J) N Ricyw(®, J) C Rico(®, J).

(v) Ifrange(B) = H and A is power bounded, then Ric,.,(®, J) C Ricyoo(®P, J)
and {P € Ricy,(®,J) | P > 0} C Rico(®,J).

(vi) We have the inclusion:
{P € Ric(®,J) | lergo (PBr¥a,Br*/a) =0 for all @i € (*(Z,;U)}
C Ricyw (P, J).
If ® 1is, in addition, input stable, then the inclusion is equality.
Proof. If A is strongly stable, then for all zyp € H we have
|4 PATzo|| < [|A%]| - [|P[] - || A%zo|| forall j > 1.

By the strong stability of A, ||47zy|| — 0 as j — oo. Furthermore, by
Banach-Steinhaus Theorem, sup;, ||A’|| < co and thus also sup;., [|A¥|| <
co. Thus ||A*¥ PAizy|| — 0 for all zp and Lap := s — lim; o, A¥ PAJ = 0.
This verifies claim (i).

Assume that P € Ricoo(®P, J) is nonnegative. Then it follows that
(PAizy, Aizg) = ||P2Aizg||> — 0 for all zp € H. Again, by Banach-
Steinhaus Theorem, C' := supj21||A*jP%|| < oo. It now follows that
|A* P Aizg|| < C - ||P2Alzy|| — 0, and thus P € Rico(®, J). Now claim (ii)
follows. Claim (iii) is trivial.
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Let P € Ricyo(®, J) N Ricopo(®, J). Thus L4 p exists, and for all g € H
we have

0= lim <PAja:0,Aja:0> = lim <A*jPAja:0,x0> = (La pxo,To) -
J—00 J—00
Now, [35, Theorem 12.7] implies that L4 p = 0, and the first part of claim
(iv) follows. Because range(B) = H and P € Ricy,(®,J), it follows that
lim; o (PAizg, Aizg) = 0 for all 7y in a dense set. Thus Lapze = 0 in a
dense set, and vanishes, by continuity. Now claim (iv) follows.

To prove claim (v), assume that range(B) = H and sup,, ||47]| < oco.
Because P € Ricy,(®,J), we have (PAJx, A’z) — 0 for all z € range(B).
Let xy € H be arbitrary, and let range(B) 3 x; — x in the norm of H, as
k — oco. Then

|<PAjI0,AjI’0>|
S | <A*jPAj$k,£Bk> | —+ | <A*jPAjCBk, (CBO - 33k)> | + | <A*jPAj($0 — xk),$0> |
< [(AYPAw, a) | +sup 1A PAT|| - [lwo — will - ([lzx]] + o)

12

Because {z;} is a convergent sequence, it is a bounded set. Because A is
power bounded, sup;.q||[A* PA7|| < oco. Then, by first increasing k suf-
ficiently the latter term get arbitrarily small, and the former term gets
small as j is increased. Now (PA’xq, Azg) — 0 for all zy € H, not just
zo € range(B); or P € Ricgoo(®, J). The additional claim for P > 0 follows
from claim (ii) of this Proposition.

The inclusion part of claim (vi) is trivial. For the rest, let € > 0, @ €
(*(Z,;U) and P € Ricy,(®,J) be arbitrary. Let K > 0 so large that
|| Tik,00)@|| < €/]|B]| for all k > K, where the input stability is used. Then for
j>k>K,

(21) | (PBra, Bra) |
<| <PBT*j7T[07k,1}’l~L, BT*jW[O,k,l]@> | + | <PBT*j7T[07k,1}’l~L, BT*jﬂ'[k,OO]ﬁ> |
+ | <PBT*j7T[k,Oo]1~I,, BT*jﬂ'[g’k,H’[O | + | <PBT*j7T[k,Oo]’l~L, BT*jﬂ'[k,OO]’[L> |

< 2||P||-[|B|| - l|al| - e+ ||P]| - € + | (PBT* myo j—yt, Br*imyo oy ) |.
Now we estimate the latter term. Because j > k, Br*imy 1 = A7 Fx,
where 2o = Br**m)y;_1)i € range(B). But because P € Ricy,(®,J) by as-
sumption,
(PAI kgo, A Fzg) — 0 as j — oo. So there is J > K such that the
latter term satisfies | (PBT*myq 1)@, Br*imy . 1i) | < € for all j > J. Now
the claim follows from estimate (21). O

The residual cost condition lim; o, (PB4, Br*/a) = 0 for all @ € (3(Z,; U)
was used in [20]. For Riccati equation theory of I/O stable DLSs, this

residual cost condition is “too strong”, and it can be replaced by requiring
P € Ricy,(®,J).
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We proceed to consider the H® solutions. The symbols ric(¢, J) and
ricoo(¢, J) can be used synonymously, as far as they refer to the solution
sets.

Proposition 23. Let ® be an output stable and I/0 stable DLS. Let J be a
cost operator. Then ric(®, J) = rice(®, J), and we have

P—Lyp=C"JC— C;‘,PJC¢P.
Proof. By iterating on DARE (19), we obtain for all j > 0:
(22) P — (A*)j+1PAj+1 = (71'[0,]']6)* J (7'('[07]'}6) — (W[g,j]cd,},)* Ap (W[g,j]cd,},)
= C*J . 7T[07]'}C — C;PJ . 7T[0,j]6¢P,

where we have written the adjoints by the assumed output stabilities. Clearly
C*JC = C*Jmp ;1C + C* JT[j11,00)C. Now s — lim; o 7[j11,00)C = 0 because C :
H — (*(Z,;Y). Because C*J is bounded, s — lim;_, o, C*J7j41,00C = 0 and
thus s — 111’1’1‘7%00 C*JW[OJ}C = C*JC. Slmllarly S — 111’1’1‘7%00 C;PAPW[O,j}C(j)p =
C;,ApCs,. Now we see from (22) that the strong limit Lyp :=

s — lim; o (A*)7T1PAI*1 on the left hand side exists, and the claim follows.
Also the identity immediately follows. O

Note that the I/O stability of ¢ and ¢p played no part in the proof of previous
proposition.

The question to what extent the operators Ap, Kp (or, equivalently the
indicator Ap and the spectral DLS ¢p in case range(By) = H) uniquely
define a solution P € Ric(¢, J), is discussed in the following.

Proposition 24. Let ¢ = (4 5) be an I/0 stable output stable DLS. Let J
be a self-adjoint operator. Let Py, Py € Ric(¢,J) be such that Ap, = Ap, and
Kp, = Kp,.

(i) If either Py or Py € Ricgo(¢, J), then they both are in Ricoo(¢, J). In
this case, Py — Py = L p, — Lap,.

(1) If, in addition, Py, Py € Ricy(¢,J), then P = P,. This is, in particu-
lar, always the case when A is strongly stable.

Proof. 1t follows from equation (19) that A*PLA — P, = A*P,A — P, and
immediately P1 — P2 = A*](Pl — P2)A‘7 = A*]P1A‘7 — A*]PQA] for &11] 2 1.
Now, if A¥P,A7 — Lap, € L(H) in the strong operator topology, A* P A’
converges in the strong operator topology, too. Now L4 p, —Lap, = Pi — P,
and claim (i) follows. The other claim is trivial. O

Proposition 25. Let ¢ = (4 8) be a DLS and J € L(Y) a cost operator.
Let P € Ricgo(¢) be arbitrary. If B*LypB = 0 and B*LspA = 0 then
P =P— LA,p € RZC((ﬁ, J), and Ap = Apl, Kp = Kpr.

Proof. The claim immediately follows, by noting that A*LypA — Lap =
0. O

Under stronger assumptions, it in fact follows that L4 p = 0 and then P’ = P,
see Lemma 52. In this case, the indicator Ap and the spectral DLS ¢p
uniquely determine P € ric(¢, J).
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4  Critical solutions of the Riccati equation

There are fundamental connections between a feedback solution of a certain
minimax problem, the existence of a certain factorization of the I/O-map, and
the existence of a critical solution of the DARE, as defined in Definition 28.
This connection is the equivalence of Theorem 27, and it has been discussed
in [20] under more general assumptions. We remark that it is practically a
standing hypothesis of this work that the equivalence of Theorem 27 holds.
Before going to this theorem, one more basic notion must be introduced:

Definition 26. Let & = [4' 7] be an 1/O stable DLS, and J € L(Y)
a self-adjoint operator. The self-adjoint and shift invariant linear operator
D*JD € L((*(Z;U)) is called the Popov operator (of ® and J).

The Popov operator is clearly bounded, self-adjoint and shift invariant.
Its causal Toeplitz operator 7, D*JD7, is also called Popov operator, and
the Fourier transform is called the Popov function. A fair amount of control
theory has recently been written around the Popov operator, see [52], [53]
and the references therein. In this respect, our approach is not different.

Theorem 27. Let & = [*‘(‘:j ng] be an I/0 stable and output stable DLS,
and J € L(Y') be self-adjoint. Then the following conditions (1), (ii) and (iii)
are equivalent:

(i) a) ® is J-coercive; i.e. the Popov operator 7. D*JD7, has a bounded
inverse.

b) There is an I/O stable feedback pair [K,F] for ® such that the
critical control of ® is of feedback form with the critical feedback
pair [, F].

(1i) There is a boundedly invertible operator S € L(U) such that D has a
(J, S)-inner-outer factorization D = N'X where the outer part X has
a bounded inverse.

(iii) There is a (critical) solution P™ € Ricy,(®,J) of DARE (19), such
that the spectral DLS ¢pene is I/O stable, and its I/O-map Dpesic 18
outer with a bounded inverse.

Proof. The equivalence of claims (i) and (ii) is a particular case of [20, The-
orem 27|, applied to an output stable DLS ®. Note that the assumed output
stability trivializes the condition myN*JC € L(H;U) present in [20, Theorem
27).

To study condition (iii), assume that the equivalent conditions (i) and (ii)
of this theorem hold. We first note that the critical (closed loop) observability
map

c*:= (I — 7,D(7,D*JD7,) ‘7. D*J)C

is bounded, because all its operators are bounded. The Popov operator
(7. D*JD#r,)~" is bounded because ® is J-coercive, by condition (i). The
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observability map C is bounded because ® is assumed to be output stable.
By [20, Lemma 35], the conjugate symmetric sesquilinear form

P()Crit(xo,xl) — <Ccrit$0, Jccrit331>

for all (zg,z1) € dom(C) x dom(C) = H x H, satisfies the Riccati equa-
tion system of [20, Definition 33]. Because C®** is bounded, the sesquilinear
form Pg™(, ) can be written P§"(zg,21) = (P§"zg, 1), where Pt :=
(Ct)* JC* is a bounded self-adjoint operator. Now P§"t satisfies the Ric-
cati equation system of Definition 18 because P{™(, ) satisfies the Riccati
equation system of [20, Definition 33].

The spectral DLS ¢Pgm is I/O stable and outer with a bounded inverse,
by [20, Lemma 35]. Because C"'* = (Z — #D(7,D*JD#,) &, D*J)C =1IIC,
xo € H, we have

||A*jP0critAjI’0|| — ||A*]C*H*HC$0|| < ||C*|| . ||H*H|| . ||7T+T*CI’0|| — 0.

It now follows that L, pee = 0, and in particular, Prit € ricy(®,J) C
Ricy,(®, J). Claim (iii) immediately follows.

For the converse direction, assume that (iii) holds. We indicate how
condition (ii) follows. The solution P™® € Ricy,(¢,J) defines a conjugate
symmetric sesquilinear form P°Ti( ) as above. Slight modifications ! of [20,
Lemma 37] and [20, Corollary 38] show that D = N'D, .., N := DD, | is

d’pcrit ’
a (J, Apeic)-inner-outer factorization, with the outer part having a bounded

inverse. But this is condition (ii), thus completing the proof. O

For analogous results, see [13, Theorem 2.1] for equivalence of type (i) <
(ii), and [13, Theorem 4.1] for equivalence of type (ii) < (iii). In continuous
time, we refer to [29], [39], [41], and [54]. We remark that the approximate
controllability assumption range(B) = H is not needed in the proof of The-
orem 27. This condition was needed in [20, Theorem 40] only as a technical
tool to prove the implication of type (iii) = (ii) in Theorem 27.

Definition 28. Let & = [/g ng} be an I/0 stable and output stable DLS,
and J € L(Y) be self-adjoint. The solution P € Ricy,(®,.J) is critical, if
it satisfies the condition (iii) of Theorem 27. If a critical solution P lies
in rico(®, J), we call it a reqular critical solution.

Note that Theorem 27 takes no position whether a critical solution Pc"it
is unique in the set Ricy, (P, J). We remark that the spectral DLS ¢peric at
a critical P! is not required to be output stable, and so it is not required
to be a H* solution. However, the proof of Theorem 27 shows that if a
critical Pt € Ric(®,.J) exists, then also a regular critical solution Pg"*
exists, and it can even be given by an explicit formula Pt := (Cerit)* JCerit,

1'We need not consider all zy(zg,%) for zo € dom(C) and @ € ¢2(Z,;U) as has been
done in [20, Lemma 37]. It is sufficient to consider only zp = 0 and @ with a finite
number of nonzero components. But this is equivalent with considering only z;, = A*zq
for zo € range(B). Also the normalization of the outer factor is different there.
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If follows that a critical solution P € Ricy, (®,J) exists if and only if a
regular critical solution P exists. Note that C®™* does not make sense as a
bounded operator, if the conditions of Theorem 27 do not hold. The special
regular critical solution is considered in the following.

Proposition 29. Let & = [4'527] be an I/O stable and output stable
DLS, and J € L(Y) be self-adjoint. Assume that a critical solution P €
Ricyy,(®, J) exists. Then

(i) P&t .= (Cerit)* JCTt € rico(®, J) is a critical solution, and

(ii) the residual cost operator L yer perie exists and vanishes, where Actit =
A + BKCI‘it = A + BKPSrit.

Proof. It has been shown in the proof of Theorem 27 that Pg™* satisfies the
strong residual cost condition L4 p = 0. We already know that the spectral
DLS ¢penic is I/0O stable because its I/O-map is, by Definition 28, the unique
(properly normalized) outer factor of X' of D, as in Theorem 27. To show
that Pt is an H™ solution, it remains to consider the output stability of

¢Pocrit .
Define

Kcrit — 7T0’Ccrit
= —m(7,D*JD7,) ' 7. D*JC = —meX AL T N IC.
0

This is the critical (one step, state) feedback operator that we can calculate
by minimax method without solving any DARE; for details see [20, Definition
7 and Lemma 22]. We have K™ € L(H,U), because ® is assumed to be
output stable. From [20, Lemma 31, Eq. (48)] it follows that Apng“it =
—D*JC — B*FP{"* A in the whole of dom(C) = H, by the assumed output
stability. By continuity, K = K perit 1N the whole of H. The fact that we

know this in the whole of H, and not only in range(B), is a speciality of
this particular critical solution P§"*. We now conclude that the observability
map C¢pgrit = {—KpeuAl} oo = {—K“"Al};>0 =: —K is bounded. This is
because K = —Apeu7 N*JC, where N is the (J, Apent)-inner factor of D,
see [20, Lemma 25, Eq. (37)]. It follows that P&t € ric(®, J).

The proof of claim (ii) is analogous to the proof of L4 p = 0. Because
Cerit ATt = 7, 7*CMi® by [20, Lemma 11], we have

||(Acrit*)jPOcrit(Acrit)jx0|| — ||(Acrit*)j(ccrit)*JCcrit(Acrit)jx0||
<) TN (79 || = 0
as j — oo. It now follows that L4 peie = 0. O

Without the approximate controllability assumption range(B,) = H, we can-
not conclude that a regular critical solution is unique in the set ricy(®,.J).
However, the following uniqueness result is basic:
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Corollary 30. Let J € L(Y) be self-adjoint. Let ® = [4 Br7 ] be an I/0

stable and output stable DLS, such that range(B) = H. Assume that a critical
solution P € Ricy, (®,J) exists.

(i) Then P§™ is the unique critical solution in the set Ricoo(®,J). If A is
strongly stable, then Pt is the unique critical solution.

(ii) Assume, in addition, that P > 0. If P™' & Ricy(®,.J), then
Sup;>g |[(Per)2 A7 || = oo.

Proof. Let P be as in Proposition 29. Because both P¢fit, P are critical,
the I/O-maps Dy ..., Dp,..;, are outer factors in the (J, Apesic), (J, Aperit)-

0
inner-outer factorizations that they induce, respectively. Using [19, Proposi-

tion 21|, we conclude that there is E € L(U) having a bounded inverse, such
that
— EilD(ﬁpcrit’ and Apézrit — E*ApcritE.

¢P§rit

Because the feed-through operators of both Dy ., and Dy ., are identity
0

operators, it follows that £ = I and Apocrit = Apeit. Also the restrictions
K peic|range(B) = Kpeit [range(B) because the controllability map B is same

for both spectral DLSs in question. Because range(B) = H, it follows K perie =
K peri.

By the definition of a critical solution, P™* € Ricy,(®, J), see claim (vi)
of Proposition 22. Now, if P™® € Ricyo(®, J), then P™® € Ricy(®,.J), by
claim (iv) of Proposition 22 and the approximate controllability assumption
range(B) = H. Proposition 24 implies that P € Ricy(®, J) satisfies

crit __ crit . L crit
P _PO +LA,Pcr1t _LA,Poc“t _PO 5

because P¢Mt € ricy(®, J), by Proposition 29. Now claim (i) follows.

By the definition of a critical solution, P € Ric,,(®,J). Because
Perit > 0, it follows that ||(P*)z Aiz|| — 0 for all € range(B). Assume
that sup;- ||(Prit)z A7|| < oo. Let range(B) 3 x;, — = € H \ range(B).
Then,

crit\L 4j crit\L 4j crit\1 4j
(P t)zAJa:Hgsggll(P DEA] |z — || 4 |[(P) 7 Al ]
1=z

The first term on the right can be made small by increasing k, and the
latter by increasing j. It follows that lim; o ||(P™%)2 Aiz|| = 0 and then
Pt € Ricy(®,J), by the Banach-Steinhaus theorem. This completes the
proof. O

For a fixed J, the I/O-map D may have (.J, S)-inner-outer factorization D =
NX for several different S = S* € L(U). All these are parameterized by
[19, Proposition 21]. Given a critical P*** € Ricyy(®,J), D = NDy__, is
a (J, Apeni)-inner-outer factorization, where N := DD;;M by definition. In
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this case, the feed-through operator of the outer factor X = Dy . is the
identity operator in U. This normalization is used throughout this paper.
The rest of this section is devoted to the study of sufficient conditions that
quarantee that (one and hence all of) the equivalent conditions of Theorem
27 hold. We remark that this is practically a standing hypothesis in this
work.
Proposition 31. Let ® = [*‘g Bg’j] be an I/0 stable DLS whose input space
U is separable, and J € L(Y) be self-adjoint. If 7, D*JD7, > em, > 0 for
some € > 0, then the equivalent conditions of 27 hold. In particular, this
is true if ® is J-coercive and J > 0, or there is P € 1icy,(®,J) such that
Ap > 0.

Proof. m,D*JDw, is a nonnegative self-adjoint Toeplitz operator with a
bounded inverse. By [33, Theorem 3.7|, there is an I/O stable I/O-map
G € L(¢*(Z;U)) such that 7, D*JD7, = ©,G*GT,. By this trick we get rid
of the output space Y.

By [33, Theorem 3.4|, 7#,D*JD7, = 7,.G*Gn, = T, H*H7T,, where
‘H is outer having possibly a nonclosed range. Two problems are present.
Firstly, range(# ) must be closed, so that the outer factor has a bounded
inverse. Secondly, [33, Definition 1.6] of outer operator does not require
that range(H7,) should be even dense in ¢*(Z,;U), only that its closure
reduces the shift and is thus of form ¢2(Z;U’) for some Hilbert subspace
U’ C U. The first of these problems is easy to resolve. The coercivity
T H*H7, > emy > 0 implies that the Toeplitz operator Ha, has a closed
range, and thus a bounded (pseudo) inverse.

To attack the second problem, note that U’ C U implies dimU’ < dim U.
Also dimU’ > dimU holds because for all z € D, ker(H(z)) = {0}, by
a lengthy calculation omitted here. Because dimU’ = dim U, there is a
unitary E € L(U';U) such that E*E = I. Define X = EH. This is the
I-spectral factor X of the Popov operator 7, D*JD7, such that (X7,)~! €
L((*(Z;U)), or equivalently X~! is bounded . This is also the outer factor
(with a bounded inverse) in the (J, I)-inner-outer factorization D = N X, see
[19, Proposition 20]. Now condition (ii) of Theorem 27 holds.

If there is a solution in P € 7icy, (®, J) such that Ap > 0, then we obtain
the factorization of the Popov operator 7, D*JD7, = 7,Dj JDy, Ty, by
[19, Lemma 37| or claim (i) of Theorem 50 of this paper. By definition,
Dy(0) = I has a bounded inverse. We can now proceed as above, with D
replaced by Dy, O

For a further comment on the condition Ap > 0, see Lemma 53. The following
equivalence is now an immediate corollary:

Corollary 32. Let & = [fg Bg’j} be an I/O stable and output stable DLS,
such that the input space U 1is separable. Let the self-adjoint cost operator
J € L(Y). Then the following are equivalent:

(i) 7. D*JD7w, > en, for some e > 0.
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(i) The Popov operator T, D* JDT, is nonnegative, and the equivalent con-
ditions of Theorem 27 hold.

Proof. The implication (i) = (ii) is in Proposition 31. The converse direction
is claim (i) of Theorem 27. O

The case when the Popov operator 7, D*JDw, > €L > 0 occurs in appli-
cations. Such Popov operators arise e.g. in the study of linear quadratic
optimal control problems and in the factorization versions of Bounded and
Positive Real Lemmas, see [41, Section 8§].
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5 Function theoretic definitions and tools

In this section, we present some relevant results from the operator-valued
function theory. We work in terms of the nontangential boundary limits
(boundary traces) Dy(e®) of transfer functions Dy(e®) that must now be of
bounded type Dy(z) € N(D;L(U)). This requires the separability of the
Hilbert spaces U and Y, and a compactness assumption of an input operator
B of ¢ = (A B), as we shall later see. Then various factorization problems,
initially formulated in terms of the I/O-maps (or equivalently: transfer func-
tions) of DLSs, are stated in the language of the boundary trace vector spaces
and algebras. These function spaces contain additional structure that gives
us stronger results.

Inner and outer transfer functions are defined and investigated. In Propo-
sition 34, we give a sufficient condition for an inner from the left analytic
function to be inner (from both sides). In Proposition 36, the inner func-
tions are characterized in the set H?(D;L(U;Y)). Transfer functions and
boundary traces of outer I/O-maps (having a bounded inverse) are consid-
ered in Proposition 37. The I/O-map D of an I/O stable and J-coercive DLS
is the subject of Proposition 38; it is remarkable that we need the bound-
ary traces and separability of the Hilbert spaces to get a bounded, generally
noncausal inverse for such D. The Hilbert—Schmidt class of compact opera-
tors is introduced in Definition 39. In Lemma 41 and Corollary 42, we use
the Hilbert-Schmidt property of the input operator B to make the transfer
function of an output stable DLS ¢ = (4 B) to be of bounded type. This
makes it possible to extend our main results to DLSs whose input space U
can be infinite dimensional, at the prize of a compactness assumption. We
remark that much of this section can be replaced by trivial arguments, if the
input space U of the DLS is finite dimensional.

We start with giving basic definitions. Let ©(z) be an analytic L(U;Y))-
valued function in D. The adjoint function ©(z) is defined by

O(z) :==0(2)* forall zeD.

If ©(z) = 3,67 for {¢;} C L(U,Y), then O(z) = >0 C;20. It follows
that ©(z) € H®(D; L(U;Y)) if and only if O(z z) € H*(D; L ( Y)). The
nontangential boundary limits behave expectedly ©(e?) = ©(e~ ) a.e. e €

T.

Definition 33. Let O(z) € H*(D; L(U;Y)), where U and Y are separable.
Then

(i) ©(z) is inner from the left if O(e?) € L(U,Y) is an isometry a.e.
e € T,

(i) ©(z) is inner from the right if the adjoint function ©(z) is inner from
the left,

(iii) ©(2) is inner if the nontangential limit ©(e®) is unitary a.e. ¢ € T.
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Clearly ©(z) is inner from the left if and only if ©(2) is inner from the
right. The nontangential limit ©(e?) of the inner from the right function
is is co-isometric a.e. e € T. Also ©(z) is inner if and only if it is inner
from the left and right. In this case we can say, for clarity, that ©(z) is
inner from the both sides or two-sided inner. In [8, p. 234 and 242], ©(z) is
inner (*-inner) if ©(e®) is isometric (co-isometric, respectively) a.e. ¢ € T.
The same notation is used in [46, p. 190]. In [33], inner function is an
element of H*°(D; L(U)) such that the nontangential boundary values are
partial isometries. In several occasions, it will be necessary to conclude that
an inner from the left function is in fact inner. If the spaces U and Y are
finite dimensional with the same dimension, it is easy to show that inner
from the left implies inner from the both sides. This is because all isometries
in a finite dimensional space are unitary, by a basic dimension counting
argument. If the involved Hilbert spaces are infinite dimensional, much less
it true. Fortunately, the inner from the left factors arising from the solutions
of DARE (as studied in this paper) have this special property. It is related
to the requirement that the indicator Ap for all P € Ric(®,J) must have a
bounded inverse.

Proposition 34. Assume that ©(z) € H®(D; L(U;Y)) is inner from the
left. Then O(z) is inner if and only if

(23) U = span,cq{range(0(z))},

where Q C D is any subset that has an accumulation point in D. In partic-
ular, if ©(zy) has a dense range for some zy € D, then ©(z) is inner.

Proof. We have to show that ©(z) is inner from the right if and only if (23)
holds. Equivalently, we have to show that ©(z) is inner from the left if and
only if (23) holds. By [33, Theorems 5.3A, 5.3B and 5.3C|, ©(z) is inner
from the left if and only if

U = Min(6(2)) = span,cq{range(©(2)*)}
= span,cq{range(©(2))} = span,cq{range(0(2))}

where Q C D (and hence its complex conjugate set ) is any set having an
accumulation point inside D. O

Clearly, if ©(zy) has a bounded inverse for some zy € D, then ©(z) is inner
from the both sides. However, such z; does not necessary exists. For a
counter example, consider the “snake function” in H*(D; L(U))

s(z) = Z P;z
320

where {P;};>o are one-dimensional, mutually orthogonal projections on a
separable infinite-dimensional separable Hilbert space such that Zj>0 P; =
I. Tt follows that s(z) is injective and compact with dense range for all
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z € D\ {0}, and thus not boundedly invertible. Also s(0) = P, is rank one.
However, the boundary trace s(e®) exists on T, and it is unitary — otherwise
the boundary behavior of s(z) is very wild. Definitely, the convergence on
the nontangential sequences happens only in the strong operator topology,
because the ideal of compact operators is closed. We remark that s(z) is an
example of an operator-valued bounded analytic function which is “as bad as
it gets”, in many respects.

The transfer functions of the isometric and unitary Toeplitz operators of
I/O-maps N7, : (2(Z;U) — (*(Z;Y) are of particular interest.

Proposition 35. Let N be an I/O-map of an I/0 stable DLS, with U and Y
separable. Then N7, is an isometry on (*(Z.;Y) (i.e. A N*N7, =T, or
N is (I, I)-inner) if and only if the transfer function N (z) is inner from the
left. Furthermore, N7, is unitary if and only if N'(2) is a unitary constant
function.

Proof. Thisis [8, part (c) of Theorem 1.1 and Corollary 1.2, Chapter IX]. O

In Definition 33, we have required (as usual) that the inner function ©(z) is
a priori in H*(D; L(U;Y')). This makes it possible to speak about nontan-
gential limits, defined a.e. on T. Actually, it would have been sufficient to
require that ©(z) lies in H*(D; L(U;Y)) or even in N, (D; L(U;Y)):

Proposition 36. Let T(z) € H*(D; L(U;Y)), with U and Y separable. As-
sume that the nontangential limit satisfies esssupi.p ||T(e?)|| < co. Then
T(z) € H®(D; L(U;Y)). In particular, if T(z) € H*(D; L(U;Y)), with iso-
metric nontangential limits T'(e®) a. e. € € T, then T(2) is inner from the

left.

Proof. By the same comment that is present in the proof of Proposition 9,
we need to consider only the case Y = U. In this case, [33, Theorem 4.7A]
proves the claim because H*(D; L(U;Y)) C N.(D; L(U;Y)). O

Now that we have dealt with the matters concerning the boundary behavior
of the inner functions, we proceed to study the outer functions. Recall that
an I/O stable I/O-map X is outer with a bounded inverse, if the Toeplitz
operator X7, has a bounded inverse in (*>(Z;U), see [19, Definition 17].

Proposition 37. Let X : (*(Z;U) — (*(Z;U) be an I/O-map of an I/0
stable DLS, which is outer with a bounded inverse. Then the following holds:

(1) X1 : 03(Z;U) — (3(Z;U) exists boundedly, and is an I/O-map of an
I/0 stable DLS.

(ii) X(2)"' € L(U) exists for all z € D, and X(z) * = X () where X!
is the I/O-map of the inverse DLS of a realization of X. Furthermore,
sup,cp ||X(2) 7 |zw) < 0o and thus X(z)~' € H®(D; L(U)).
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(#ii) If, in addition, U is separable, then the nontangential boundary limit
X (e¥) exists and is boundedly invertible a.e. e € T. We have
X(e®) L = X e?) ae €? € T and, in particular, X(e®)™! €
H>(T; L(U)).

Proof. The proof of claim (i) is the matter of [19, Chapter 4], with slight
additions. To prove claim (ii), we show that X(z)™!' = X~(2) for all 2 €
D. Let ¢’ be a realization: X = Dy. Then X' = D;,l = Dy)-1, by
Proposition 2, and Z = D4)-1Dy. By Corollary 8, I = Dy)-1(2)Dy (2) and
I = Dy (2)D(g)-1(z) for all z € D. It follows that Dy (z) = X(z) : U = U
is a bounded bijection and has a bounded inverse X(z)7!, for all z € D.
Also X(2)7" = D,'(2) = X7'(2) € H®(D;L(U)), by claim (i). The last
claim (iii) follows now from the theory of nontangential boundary limits of
H>-functions, see the discussion following Definition 12 or [33, p. 88]. O

An an important application, we consider the noncausal shift-invariant in-
verse of the I/O-map. This result is used in Lemma 53.

Proposition 38. Let J € L(Y) be self-adjoint. Let ® = [4) 577 ] be an I/0

stable and J-coercive DLS, with input space U and output space Y. Then

(i) both the Toeplitz operator D7y : (*(Z,;U) — (*(Z;Y) and the I/O-
map D : (3(Z;U) — (*(Z;Y) are coercive.

(1i) Assume, in addition, that U and Y are separable, and the feed-through
operator D € L(U;Y) of ® is injective with a dense range. Then
range(D) = (*(Z;Y). In this case D' : (*(Z;Y) — (*(Z;U) exists, is
bounded and shift-invariant. (D~' is not causal, unless D is outer with
a bounded inverse.)

Proof. The claim about Toeplitz operator D7, is [19, Proposition 6]. It is
easy to see, by a density argument and shift invariance of D, that D7, and
D are simultaneously coercive in the indicated spaces.

Consider now claim (ii). Because of the separability of the spaces U and
Y, we can study the problem in terms of multiplication operators on the
nontangential boundary limits. Because D, is coercive, it follows that the
Popov operator 7, D*D7y > em; > 0. Now Corollary 32 implies that we
have the factorization D = N'X”’, where A" is (I,I)-inner and X’ is outer
with a bounded inverse. On the boundary, this means

(24) D(eit‘)) :Nl(eiG)Xl(eiG)

a.e. € € T. The boundary trace of the inner (from the left) factor N’ (e?) €
L(U;Y) is isometric almost everywhere: N'(e??)*N'(e?) = Iy a.e. ¢ € T.
The outer factor X'(e®?) € L(U) has a a bounded inverse for almost all
e € T. By Proposition 37, X'(e?)"1 € H®(T; L(U)).

We now consider the static part N := N (0) € L(U;Y) of the inner factor.
By causality, D = mpN Xmy = mN 7o - mpXme = NX, where X = X(0) €
L(U) is the feed-through operator of the outer factor X. By Proposition
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37, X7' € L(U) and N = DX~'. Tt now follows that range(N) is dense,
and N (e?) is inner from both sides, by Proposition 34. This means that
N'(e?)N'(e?)* = Iy a.e. € € T. In particular, N'(e?)* € L®(T; L(Y;U)).

Now we can attack the claim about the density of range(D). Let §i(e') €
L*(T;Y) be arbitrary. Define w(e) := N'(e?)*5(e??) away from a set of
measure zero. Because N'(e??)* € L®(T;L(Y;U)) and §(e®) € L*(T;Y),
8, part (a) of Theorem 1.1, Chapter IX] implies that w(e?) € L?(T;U). Sim-
ilarly, @(e®) := X'(e®) 1w (e?®) € L2(T;U). But now, D(e?)i(e??) = §(e'?)
almost everywhere. Because §j(e') is arbitrary, this means in the time domain
that range(D) = (*(Z;Y") because the Fourier transform is an isometric iso-
morphism. The shift invariance of D~! follows from [8, part (a) of Theorem
1.1, Chapter IX], too. a

As we have stated earlier, functions in the Nevanlinna class N(D; X) can
be adequately described by their nontangential boundary limit functions for
X =U,X=LU)or X =L(U;Y), when U and Y are separable Hilbert
spaces. Unfortunately, a general sH?(D; £(U;Y)) function need not be in
N(D; L(U;Y)) if dimU = oco. It is even more unfortunate that the strong
H?-stability of the transfer function is an important notion because output
stability of its realization implies it. From the state space representation of
a transfer function, output stability of the realization is often best we can
achieve by Liapunov type methods. The I/O stability is not “built” into the
state space model as conveniently as the output stability.

So, in order to work with the nontangential limit function Dy(e®), we
have to make a extra assumption on the output stable DLS ¢, as will be
done in Lemma 41. The question is about a compactness assumption of
the input operator B which, in a sense, forbids the DLS ¢ = (4 5) to
be “too” infinite-dimensional. With this restriction, we can conclude that
Dy(z) € H*(D; L(U;Y)) C No(D; L(U;Y)), by Lemma 41.

Definition 39. Let H,, H, be separable Hilbert spaces, and T € L(Hy, H).
Let {ej};>0 be an orthonormal base for Hy. T is a Hilbert-Schmidt operator

if
1T Izs = D |ITejll,

j20
is finite. In this case we write T € HS = HS(Hy; Hy). The number ||T||gs
15 called the Hilbert-Schmidt -norm of T'.

It can be shown that the class HS is well defined, and the norm || - ||gs
is independent of the choice of the basis {e;};>o. All Hilbert-Schmidt oper-
ators are compact, and each finite dimensional operator is trivially Hilbert—
Schmidt. In the matrix case, HS-norm is the familiar Frobenius matrix
norm. The set HS is a vector space, and the norm || - ||gs makes it a Ba-
nach algebra where the involution * satisfies ||T'||gs = ||T*||xs, provided
H, = H,. HS is also a Hilbert space under the inner product

[Tl, TQ]HS = Z <T16j, T2*€j>.

j=0
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The Hilbert—Schmidt operators are exactly those compact operators T" whose
singular values satisfy > .., 0;(T)* < co. A good general reference here is [5,
Chapter XI.6]. However, the following fact is important enough to be stated
separately:

Proposition 40. Let T € HS(Hy; Hs) and S € L(Hs; Hs). Then ST €
HS(Hy; Hy) and ||ST||as () < |51 1T || ms () -

Proof. The following calculation proves the claim:

ST || mseziare) = ) 15T 5113,

i>0

<D ISIletrsims) Tes 5, = 1S eqmim) D 11T,

3=0 j=0
U

Lemma 41. Let ©(z2) € sH?*(D; L(U;Y)), with U and Y separable. Assume
that the linear mapping

(25) U3sur O(2)u € H*(D;Y)
is a Hilbert-Schmidt operator. Then ©(z) € H*(D; L(U;Y)).

Proof. Let {e;};>o be an countable orthonormal basis for the separable U.
Define the analytic functions ©;(z) := ©(z)e;. Each ©;(z) belongs to H*(D;Y)
because ©(z) € sH*(D; L(U;Y)). The Hilbert—Schmidt assumption means
that

(26) > 118 remeyy < o0,

j>0

where
2 1 NI
19|z iyy = sup o= [ [10;(re”)|[y do.
0<r<12ﬂ
0

For all 2 € D, ©(z) € L(U;Y). Let u =} . ocje; € U be arbitrary, such
that only a finite number of ¢;’s are nonzero. Then for all z € D we have

10(=)ully = 11 e; O < D lei? Y 118515 = lluller - Y 1105(2)I1

7>0 7>0 7>0 7>0

Because above the set of u’s is dense in U, it follows

(27) 10wy < D 1105113

7>0

for all z € D.
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Now, let 0 < r < 1 be arbitrary. Then each function e  ||©;(re)||? is
a smooth (and thus a measurable) function, by the analyticity of ©;(z) in D.
The function e — Y ||©;(re®)||3 is measurable because the partial sums
are increasing, and the supremum of a countable collection of measurable
functions is measurable, by [34, Theorem 1.14]. Similarly, because O(z) is
analytic inside D, the function ¢ — ||O(re)||2 is measurable, too. Now
equation (27) gives for all0 < r < 1

21 21
1 i 1 i
(28) %/H@(Te 0)||%(U;Y) df < %/ (ZH@J‘(Te 9)||%’) do
0 0 Jj>0

2

1 i

3 [ lestre e ).
0

where the latter equality is by the Lebesque’s Monotone Convergence the-
orem [34, Theorem 1.26] implies (or its immediate corollary [34, Theorem
1.27]), because the partial sums are nondecreasing. Taking supremum over
r, gives

0@ < X | 20, 52 / 16(re®) | ds
>0
= Z ||® ||H2 D;Y)"
7>0

Using the Hilbert—Schmidt assumption in the form of equation (26) shows
that ©(z) € H*(D; L(U;Y)). The proof is now complete. O

Corollary 42. Let ¢ = (4 B) be an output stable DLS, such that the spaces
U and Y are separable. Assume that the input operator B € L(U; H) is
Hilbert-Schmidt. Then Dy(z) € H*(D; L(U;Y)).

Proof. Because ¢ is output stable, Dy(z)—D € sH?*(D; L(U;Y')), by Proposi-
tion 11. We also have (Dy(2) —D)ug = >, CA™'Bugz’ = 2-(F.C4Buy)(2),
where F, denotes the unitary z-transform from ¢2(Z,;Y) onto H?(D;Y). By

output stability, the composition F,Cy : H — H?*(D;Y) is well defined and
bounded. It follows from Proposition 40 that the mapping

U > up — (F.C4Buy)(z) € H*(Y)

is Hilbert—Schmidt because the input operator B is. Because the multiplica-
tion of the variable z in H?(D;Y) is isometric, the mapping

U > ug — (Dy(2) — D)ug € H*(Y)

is Hilbert—Schmidt. Lemma 41 implies now that Dy(2)—D € H*(D; L(U;Y)).
This completes the proof. O

The same conclusion can be made, if A’ B is Hilbert-Schmidt, for some j > 0.
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6 Factorization of the truncated Popov oper-
ator

Our main interest is in the H*DARE, associated to an output stable and
I/O stable DLS ®. As we have seen, this stability requirement makes some
solution of DARE more interesting than others. In Section 3 we have sorted
out the more interesting solutions from the less interesting.

In this section, we consider additional conditions that make the spectral
DLS ¢p is either output stable, or I/O stable, or both, for a particular
P € Ric(®,J)). More specifically, we introduce additional assumptions that
allow us to conclude

P € Ric(®,J) = P € ric(®, J),

when @ is known to be output stable and I/O stable. The basic tool to
obtain the most general of these results is the factorization of the truncated
Popov operator, as given in Lemma 45.

Let us first discuss the trivial cases. If ® itself is power stable, then so are
¢p for all P € Ric(®, J) because they have a common semigroup generator A.
More generally, if the Wiener class type condition > ||A? B|| < oo holds, then
Dy, is I/O stable for all P € Ric(®,J). Now the common input structure
(i.e. the common operators A and B) determine the I/O stability of both the
systems ® and ¢p. In the case when ® is output stable and I/O stable, it is
easy to see that ¢p is I/O stable (output stable) if and only if ¢' = ( 585 &)
is I/O stable (output stable, respectively) but this is just a restatement that
is impossible to use in practice.

More general results are obtained by Liapunov type methods that require
some type of nonnegativity, either in the cost operator J, the Popov operator
D*JD , or indicator Ap of the solution P. We start with discussing the case
of output stability.

Proposition 43. Let ® = [4/ 577 | be an output stable DLS and J € L(Y)

be a self-adjoint operator. Let P € Ric(®,J) such that Ap > 0. Then
(i) ¢p is output stable if and only if the strong limit Lap =

s —lim; .o AMPAJ exists as a bounded operator. When this equiva-
lence holds, we have

(29) Lap — P =C;, ApCy, — C*JC.

(ii) In particular, if A is strongly stable, then ¢p is output stable.
(i5i) If P > 0 and L4 p = 0, we have

C*JC > C"JC — P =Cy, ApCyp
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Proof. We prove one direction of claim (i). Assume that Ap > 0 and Ly p =
s — lim;_,,, A¥PAJ exists. We can iterate on the Riccati equation (19) and
obtain for all j >0

A UFD P ATHL _ AY P AT = AKEApKpAl — AYC* JC A,
Telescope summing this up to n > 0 gives for all zyp € H

(30) (xg, (A" PA™ — P)xyp)

n—1 n—1
= <a:0, ZA*jK;APKijx0> - <x0, ZA*jC’*JCAjm0>

Jj=0 Jj=0

By assumption, the left hand side of the previous equation converges to a
finite limit (xo, (L4,p — P)xo). On the right hand side, we have

n—1 n—1
<:1:0, ZA*jC*JCij0> = (CAizy, JCA o)

j=0 j=0

— <7T[0,n71]cx0a Jﬂ-[O,nfl}Cl’O>lz(Z+;Y)

which converges absolutely to a bounded limit (zq,C*JCzq) as n — oo, by
the assumed output stability of ®.

Because everything else in (30) converges to a finite limit and Ap > 0, it
follows that remaining term

n—1 n—1
<a:0, > A*f’K;APKPAfxO> = (KpAizg, ApKpAiz,)

J=0 J=0

1
= [[Apm0.0-11Cop 0} (2,0

converges (increases) to a finite limit, equalling ||{A}513Kij330}j20||§2(z+;U),
as n — 0o. Because A;l is bounded and zy € H arbitrary, this is equivalent
to the output stability of ¢p. This completes the proof of the first direction.
The converse part in contained in the proof of Proposition 23 where also
equation (29) is given. Claim (ii) follows trivially from the fact that strongly
stable A implies that the strong limit operator L4 p always exists and equals
0. Claim (iii) is a trivial consequence of equation (29). O

Corollary 44. Let J € L(Y) be self-adjoint. Assume that ¢ is a I/0 sta-
ble and output stable DLS, such that range(B) = H. Then ricy,(¢,J) =

rico(¢, J).

Proof. Trivially rico(¢, J) C ricy,(d, J), and the converse inclusion is shown
below. Because P € ricy,(d, J), both ¢ and ¢p are output stable. We have
forall j > 1

14*‘7P14‘7 —P= C;PAPW[O,j—l]C(bP — C*Jﬂ'[o,j_l]c,
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as in equation (22) of Proposition 23. By the output stabilities, both
m0,j—1)1C — C and m;j_1)Cy, — Cg4, strongly. It follows that L, p exists
and P € Ricoo(¢,J). Now claim (iv) of Proposition 22, together with the
assumed approximate controllability, shows that P € Ricy(¢, J). O

We proceed to study the I/0 stability of the spectral DLS ¢p. For solutions
such that lim; ,, (PBr*a, Br*a) = 0 for all i € ¢*(Z;U), a necessary and
sufficient condition for ¢p to be I/O stable is the following speed estimate

> (s, Prj) — (241, Prjia) | < o0

>0

for all trajectories z; = Br* @ where 4 € (*(Z,;U) is arbitrary, see [19,
Proposition 41 with a slight modification]. The good thing in this condition
is that is does not require nonnegativity of any kind, and that it has a game
theoretic interpretation. Unfortunately, this condition is not practical for our
purposes.

We continue by giving an unsuccessful attempt that, however, reveals
something about the nature of the problem. Assume that ® is input stable
and I/O stable, and J > 0. Suppose we already know ¢p to be output stable.
Claim (iii) of Proposition 43 implies that

00 > [|m_D*JDr || > B*C*JCB > B, C; ApCyp By,

if P> 0and Lsp =0, because By, = B. So the Hankel operator C4, By, =
T+ Dypm_ is bounded in ¢*(Z; U), but this does not allow us directly conclude
the I/O stability of Dy,.

We are not far from having ¢p I/O stable, provided that we have the a
priori knowledge that Dy, (2) € N(D; L(U)) so that the nontangential limit
function Dy, (€%) makes sense. More precisely, denote by I' the bounded Han-
kel operator Cy,By,, and assume, for simplicity that everything is complex-
valued, i.e. U =Y = C. By [8, Theorem 3.3, Chapter IX], I' = I'(Q),
where Q(e??) € L*®(T;df) is a bounded symbol for I' (we have omitted
one unitary flip operator in the definition of the Hankel operator but this
is immaterial). Write Q(e") as the Fourier series Q(e*) ~ 3., q; €7’
Now g; = —KpA’ 1B for j > 1 because Dy, (e) is also a (possibly un-
bounded) symbol for T'. It is well known that L°°(T;df) C LP(T;d6f) for
all 1 < p < oo, and that the Szegd projection II : LP — HP (zeroing
the negatively indexed Fourier coefficients) is bounded for 1 < p < oc.
But now Dy, (e?) = NQ(e?) € Ni<pcooHP(T; C). Unfortunately, the in-
clusion H®(T;C) C NicpccoHP(T;C) is strict, and we cannot conclude
Dy, (e?) € H*(T; C).

After one impractical and another unsuccessful attempt, we approach the
I/O stability problem of ¢p from a third direction. We begin with factor-
ization lemma, of the truncated Popov operator for strongly H? stable DLSs.
Recall that impulse response operator Dy : U — (*(Z,;Y) of a strongly H?
stable DLS is bounded, by definition. It then immediately follows, by the
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shift invariance, that the truncated Toeplitz operators Dy, are bounded,
for all m > 0.

Lemma 45. Let J € L(Y) be a self-adjoint cost operator, and ® = [fg BTD*"]
strongly H? stable. Let P € Ricy,(®,J); i.e

(31) <PAja:0,Aja:0> — 0 for all zy € range(B)

as j — 0o. Assume also that the spectral DLS ¢p is strongly H? stable.
Then Drjom) : *(Z;U) — (*(Z;Y) and Dypmiom : (Z;U) — *(Z;U)
are bounded, and the truncated Popov operator has the factorization

(32) (DT(Om) JDTo,m) = (Dypm Om) ApDy,mo,m)
for all m > 0.

Proof. Let g € H and {uj};>0 = @ € (*(Zy;U) be arbitrary. Denote
z; = xj(xo, ) = Alzg + B4 the trajectory of & with this given initial
state and input. We have in [19, claim (i) of Proposition 36] for all n > 0

(33)

<PI’0,I’0> - <P-Tnaxn>
= <J(CCIJ] +DUj),CZBj+DUj> — <Ap(—Kle?j—|—Uj),—Kp£Bj —|—u])>
J

H
i
L

<.
Il

<)
Il

<)

Consider now the special case when the input is otherwise arbitrary, but of
form @& = 7 ), for m > 0. Then, for n > m,

Tn = Tn(To, Tio,m@) = A"+ Tpi1 (2o, Tio,m) @),

Tt (330, W[O,m}a) _ Am+1:l?0 + BT*(erl)ﬂ'[O,m}a-

Let 29 = 0. Because now my1(0, o, %) € range(B), it follows from the
residual cost condition (31) that (Pz,,z,) — 0 as n — oco. It follows that
the left hand side of (33) vanishes as n — co.

We must now consider the right hand side of (33). Because both the
operators D ;] and Dy, o, m) are bounded, by the H 2_stability assumption
of ¢p, it is not difficult to see that the limit of the left hand side of (33) is
actually

<JD7T[01m}/&’ DT([Ovm]{L>Z2(Z+;Y) - <APD¢P7T[01m}a’ D¢PW[07m]a>Z2(Z+;Y) )
as n — 00. Adjoining this gives
<u ( Dﬂ'gm JDT('Om (D¢P7T[0’m})*APD¢P7T[0’m}) a>lz(z+;Y) =0

for all 4 € ¢*(Z;U). Now an application of [35, Theorem 12.7] completes the
proof. O
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The result of the previous lemma can be translated to the frequency plane
by Corollary 42, provided that the input operator is Hilbert—Schmidt. With
this additional structure, further conclusions can be drawn.

Proposition 46. Let J be a self-adjoint cost operator. Let & = [fg Bg’j]

output stable, such that the input operator B is Hilbert—Schmidt and the input
space U is separable. Let P € Ricy,(®,J) be such that ¢p is output stable.
Then the adjoints of the boundary traces D(e®)* and Dy, (e®)* ezists a.e.

e? € T, and belong to L*(T; L(U;Y)), L*(T; L(U)), respectively. Both the
self-adjoint operator-valued functions

T 5 ¢ — D(?)* JD(e") € L(U), and

T 2 € = Dy, (€?)* ApDy, (e?) € L(U)

are in L'(T; L(U)). We have the factorization
D(e®)*JD(e®) = Dy, () ApDy, (€?) a.e. € cT.

Proof. Recall that the output stability implies strong H?-stability. So we
can apply Lemma 45. Equation (32) implies for all iy, iy € (*(Z;U)

(Do myia, JDW[o,m}@2>lz(Z+;Y) = (DypT0,m] i1, APD¢p7T[0,m}a2>e2(Z+;Y) -

Because both & and ¢p are output stable, the transfer functions D(z) and
Dy, (z) are analytic in the whole of D, by Proposition 11. We have also
D(2)p(z) € H*(D;Y), Dy, (2)p(z) € H*(D; U) for all U-valued trigonometric
polynomials p(z) € H*(D;U). Now we can put the factorization in form

(D(2)p1(2), JD(2)p2(2)) m2(piyy = (Por (2)P1(2), Ap Doy (2)P2(2)) 2oy

where p;(2), p2(z) are polynomials as above. This is as far as we get without
assuming that B is Hilbert—Schmidt.

Because B is Hilbert—Schmidt, we can state the factorization in terms of
the boundary traces D(e?) € H?(T; L(U;Y)) and Dy, (e?) € H*(T; L(U)),
by Corollary 42. By choosing the trigonometric polynomials p; (e) = 1%y,
and po(e?) = e®?uy, py,py € Z, uy,us € U, we obtain

2
1 0 * i0Y ,ipf
§/<u1,D(e ) JD(e”)e’”? u2>U de
0

27
= %/<D(e’9)e“’10u1,JD(e’o)e’p20u2>Y do
0
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= (D(e")e? Py, JD(eio)eip20u2>H2(
= <D¢P (eib")eiplé'ul, APD¢P (eio)eimo

T;Y)

u2>H2 (T;0)
21

- %/<D(e“9)e’p1‘9u1,JD(eZe)e’p20u2>Y do

0
2T
1 . o
= ﬂ/<U1,D¢P(610)*APD¢P(610)BZPOU2>U de,
0

where p = ps — p;. Let us stop for a moment to see that previous is true
integration theoretically. The functions T > e — D(e)* € L(Y;U),
T 5 e — Dy, (e?)* € L(U) are weakly measurable and also in the re-
spective L2-spaces, by a trivial argument involving adjoining. Now the prod-
ucts D(e?)*JD(e?) and Dy, (e?)*ApDy, (e??) are weakly measurable, and
they both are in L'(T;U), by the Hélder inequality; some of this detail and
further references have been discussed immediately after Definition 13.

We can now calculate the weak Fourier coefficients of the difference of
these two functions (which lies in L'(T; L(U))) as follows:

<U1, / [D(eio)*JD(ew) — Dy, (eio)*Ade,P (eio)] e’ dp u2>

0 U

2T
- / (ur, [D(e®)* TD(e) — Dy (%) ApDis, (£9)] €7us),, 6 = 0
0

for all uy,us € U and p € Z. Proposition 17 implies that
[D(eie)*JD(ew) - D¢P(ei9)*ApD¢P(ew)] u=0,

for all w € U and €? € T \ E,, where mE, = 0. Choose a countable
dense subsequence {u;} € U, and define the exceptional set E := U;E,, of
measure zero. Because D(e?)*JD(e) — Dy, (e?)*ApDy, () € L(U) for all
e’ € T\ E', mE' = 0, we conclude now that

D(e)*JD(e") — Dy, () ApDy, (€7) = 0

e € T\ (E'UE), by the density of the sequence {u;}. This completes the
proof. O

Corollary 47. Let J be a self-adjoint cost operator. Let ® = [*‘g ng] be
an output stable and I/0 stable DLS. Furthermore, assume that the input
operator B is Hilbert—Schmaidt and the input space U 1is separable. Let P €
Ricy,(®, J) be such that ¢p is output stable.

If Ap > 0 then ¢p is I/0 stable, and we can write P € ric(®,J). Fur-

thermore, we have the inclusion

(34) {P € Ricy(®,J) | Ap > 0} C rico(®, J)
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Proof. By Proposition 46, D(e®)*JD(e") = Dy, (e?)*ApDy, () ae. e? €
T. By the assumed I/O stability of ®, esssupiecr ||D(e?)|] < co. We con-

1 :
clude that esssupiscrp ||[A2Dy, (€?)|| < co. The output stability of ¢p and
1

the Hilbert—Schmidt compactness of B imply that A2Dy, (e??) € H*(T; L(U)),
by Corollary 42. Now [33, Theorem 4.7A], as used in Lemma 36, implies that
AI%DDW (e?) € H*(T; L(U)). Because Ap has a bounded inverse, Dy, (e) €
H>(T; L(U)).

To verify inclusion (34), note that Proposition 43 implies that ¢p is output
stable. Because Ly p = 0, then P € Ricy,(®, J). Now the first part of this
Corollary implies that ¢p is I/O stable, and so P € ric(®, J). The proof is
now complete. O

A slight modification of the proof verifies also

(35) {P € Ricoo(®,J) N Ricyw(®,J) | Ap > 0} C ricoo(®, J) N ricy, (P, J)

under the assumptions of the previous corollary. If range(B) = H, then this
reduces to inclusion (34), by claim (iv) of Proposition 22. We also have:

Corollary 48. Let J > 0 be a cost operator, and ® = [/}f BTD*j] be an output
stable and I1/0 stable DLS. Furthermore, assume that the input operator B €
L(U; H) is Hilbert-Schmidt, and the input space U is separable.

(i) The set rico(®, J) of reqular H* solutions is downward complete in the
sense that if P € Ricy(®,J), P >0, then

{P € Ric(®,J) | 0 < P < P} C rico(®, J).

(ii) In particular, if a regular critical solution P{" € ricy(¢, J) exists, then

(36) {P € Ric(®,J) |0 < P < P} C ricy(®, J).

Proof. To prove claim (i), let P € Rico(®,J), P > 0 be arbitrary. But then
for any P € Ric(®, J) such that 0 < P < P and xy € H we have

1P3 A ag| 3 = (P Ay, Al < (AP ATz, w0 ) < || AP Ao |1 - [[o] 1,

which approaches zero as j — oo, because L, 5 = 0 by assumption. Thus
L4 p exists and vanishes. Because J > 0, it follows that Ap > 0 for all
nonnegative P € Ric(®, J). An application of Corollary 47 proves now claim
(i). The other claim (ii) is just a particular case. O

In [27, Theorem 96|, we consider the converse inclusion of formula (36). This
gives us a full order-theoretic characterization of nonnegative regular H*
solutions, under the indicated technical assumptions. Another result in this
direction is [27, Lemma 99], showing that the set rico(¢, J) is order-convex.

We complete this section by the following lemma about the “inertia” of
the indicators Ap.
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Lemma 49. Let J be a self-adjoint cost operator. Let & = [fg Bg’j] I/0 sta-
ble and output stable, such that the input operator B is Hilbert—Schmidt and
the input space U is separable. Assume that the H® solution set ricy,(®, J)
is nonempty, and let P € Ricy,(®,J) be such that ¢p is output stable.

Then there is a decomposition of U as a orthogonal direct sum U =
U, @ U_ such that for each P € Ricy,(®,J), there is a boundedly invertible
operator Vp € L(U) such that

e 0
AP:VP[O* _I]vp,

where I, (I_) is the identity of Uy, (U_, respectively). If particular, if
Ap, > 0 for some Py € ricy,(®,J), then Ap > 0 for all P € Ricy,(®,J)
with an output stable ¢p.

Proof. Let Py € ricy,(®,J) be fixed, and Py € Ricy,(®,J) be arbitrary,
such that ¢p, is output stable. Because Ap, is self-adjoint and invertible,
we can work with the spectral projections of Ap,, on the disjoint spectral
sets on negative and positive real axes. This gives Ap, = A, — A_, where
Ay € L(Uy), A€ L(U.), and both are positive invertible operators in their
respective spectral subspaces that are reducing. Now

.o
Am =V [0+ —I_]V’

11
where V* = [Ai AE] : Uy @ U_. — U has a bounded inverse. By Lemma

45, we can choose e € T from a set of full Lebesque measure, such that
Dy, (€°) Ap, Dy, (6) = Dy, (€%)*ApDy, (€).

By claim (ii) of Proposition 38 and the fact that Dy, (0) = I has a bounded
inverse, Dy, () ! exists a.e. € € T, and in fact Dy, (¢*) ' € L®(T; L(V)).
Thus we can assume that Dy, (¢%%) has a bounded inverse, and

oL 0 i i00)—1)* i 90\
V]V = D) Dan ()Y A (g (D () ).

This proves the claim, with Vp = Dy, (e") Dy, () 7'V 1. O

By dimension counting, we immediately see that if either of the spaces U,,
U_ is finite dimensional, then the dimension will be an invariant of all the
solutions P € Ricy,(®, J), whose spectral DLS ¢p is output stable. If the
indicators Ap are positive, the output stability requirement of ¢p could be
replaced by the requiring P € Ricgy(®, J), see Proposition 43. The special
case of positive indicators is discussed in Lemma 53 where the input operator
is not required to be Hilbert—Schmidt, and the proof is not based upon the
study of nontangential boundary traces. For an analogous matrix result, see
[15, Corollary 12.2.4].
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7 Factorization of the Popov operator

Let ® be an output stable and I/O stable DLS, and J a self-adjoint cost
operator. In this section we show that there is a one-to-one correspondence
between certain factorizations of the Popov operator D*JD and certain solu-
tions of the H*DARE ric(®, J). It is worth noting that these factorizations
do not depend on the nonnegativity of the cost operator J.

The factorizations of the Popov operator have a number of useful con-
sequences. In Lemma 53 and its Corollary 54, we show that sometimes
all interesting solutions of DARE have a positive indicator. Proposition 55
gives results of the (Ap, Apenc)-inner-outer factorization for the I/O-map of
the spectral DLS ¢p.

In Definition 26, the Popov operator was defined to be the Toeplitz oper-
ator 7, D*JDw,. We call the bounded shift-invariant (but noncausal) opera-
tor D*JD (the symbol of the Toeplitz operator 7, D*JD7, ) Popov operator,
too.

Theorem 50. Let ® = [4/ B0/ | = (4 B) be an I/0 stable and output stable
DLS. Let J € L(Y) be a self-adjoint operator

(i) To each solution P € ricy,(®,J), we can associate the following fac-
torization of the Popov operator

(37) D*JD =D}, ApDy,y,
where ¢p is the spectral DLS (of ® and J), centered at P.

(ii) Assume, in addition that range(B) = H. Assume that the Popov oper-
ator has a factorization of form

(38) D*JD =D, ADy,
where

¢ = <_f}( ?) , KeLHU), A=A A"'elU),

is an I/0 stable and output stable DLS. Then ¢' = ¢p and A = Ap for
a P € rico(®,J).

Proof. We prove claim (i). Let P € ricy,(®, J). By Lemma 45, we have for
allm >0

(39) W[O’m}D*JDﬂ'[O’m} = Tr[O,m]D;PAPDq&pﬂ'[O,m},

where using the adjoints is legal because both D and Dy, are assumed to be
bounded. Let @ € ¢(*(Z;U) be arbitrary. Then

||7T[0,m}'D*JD7T[0,m}ﬁ — 7_T+D*JD7_T+1~L||

< ||7T[07m]D*JD(7T[07m]ﬁ - ﬁ'.,.ﬁ)“ + ||(7T[07m] - ﬁ'.,.)D*JDﬂ'[O’m}ﬁ'_,_’&H

< [0 D" IDI| - |71, al] + | [Fims1,1 - 74D TDF 1]
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Because both @ and 7,D*JDw,u4 are in (*(Z,;U), it follows that
s — limp, 00 To,m)D*J Do) = T D*JD7,. Similarly we obtain the limit
s — limy, oo W[O’m}D;PJD¢P7T[07m] = 7?+D;PJD¢P7T+. The uniqueness of the
strong limit, together with equation (39), gives now factorization (37).

To prove the other claim (ii), we show that there is a conjugate symmetric
sesquilinear form P(, ) such that for all @ € (*(Z,;U), o € H

(40) J('T07 ﬁ’) = P(Io, xO) + <A(C¢’x0 + D¢/ﬁ'+’lj), (_a ) _)> )
assuming that the factorization (38) exists. Here J(zo,u) =
(J(Cxo + Dmyu),(—,,—)) is a cost functional, see [19, Section 3|. Suppose

that such a sesquilinear form P(, ) exists and try to find an expression for
it. By expanding (40) we obtain

(i) (i)
(41) (C*JCxo, xo) + 2Re (7. D* JCxo, @) + (7, D* JDF 4 @i, i)
= P(.TO, .T()) + <C;:AC¢I.T0, I’0> +
(i3) (iv)

2Re <7T'+D;,AC¢I.T0, ’lj> +Z7T'+D;AD¢I7TF+ ~, ﬁ;

for all @ € (*(Z,;U) and zy € H because both ® and ¢ are I/O stable and
output stable. By equation (38), parts (ii) and (iv) are equal. To compare

parts (i) and (iii), note that for z := Bw, W € dom(B), we have, because
B =By

(42) ﬁ+D*JC$ — ﬁ+D21AC¢I$ = 7_T+D*J7?+D7T,'II) — 7?+D21A7?+D¢17T,'LD
== ﬁ+(D*JD — D;;ADW)?T_’J) =0

by (38), and the anticausality of D* and Dj,. Because range(B) = H it
follows that 7, D*JCx — T, Dy ACyx = 0, for all x € H, by I/O stability and
output stability of ® and ¢'.

So the parts (i), (ii), (iii) and (iv) cancel each other out in equation (41).
What remains allows us to conclude that the sesquilinear form of equation
(40) exists and equals

P(ZUO,ZUO) = <(C*JC - C;,ACW) 2170,2170> = <PZUO,ZUO>,

which gives us a unique self-adjoint operator P € L(H). We note that for
all zg € H

<A*jPAjZB0, 330> = <JCAjZUO,CAjCEO> — <AC¢IAjZU0,C¢IAj$0>

= (I 700 1C0, Tj0cC0) — (AT(ji001Cr o, T 00 Cor o ) -
By the output stabilities of ® and ¢', both f; .;)Cxo — 0 and 77j 5 |Cyro — 0

in (3(Z,;Y), >(Z;U), respectively. Thus (PA’z,, Azy) — 0forallzy € H,
by the boundedness of A~!.
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We complete the proof by showing that P € Ric(®, J), and that K = Kp,
A = Ap. We have for Ap

Ap=D*JD + B*PB

D*JD + (CB)*J(CB)) — (I"AI + (C4 B)*A(Cy B)) + A

Dro + 1CB)*J(Dmg + 7CB) — (my + 7Cy B)*A(my + 7Cy B) + A
=7, D*JDmy — 71 Dy ADymo + A = A,

~—~

where the second to the last equality has been written with the identification
of spaces U and range(m), allowing us to write Dmy = Dmy + 7CB. The last
identity follows directly from the factorization (38), and so Ap = A.

For Kp = A} (—D*JC — B*PA) we calculate similarly

(43) - D*JC — B*PA
= —(D*JC + (CB)*JCA) + (~I*"AK + (Cy B)*ACy A) + AK

Now D*JC + (CB)*JCA = (Dmy + 7CB)*JC = (Dmy)*JC = myD*JC. Quite
similarly —AK + (C¢IB)*A7TF+T*C¢/ = (D¢/7T0)*AC¢I = WoDé,ACQy. Then we
obtain from (43)

(44) ~D*JC — B*PA = —my(D*JC — DyACy) + AK,

with the identification of spaces U and range(m).
For all z = B = Byw, @ € dom(B) = dom(B, ), we have

Wo(D*JC - D;:AC¢I).'17 = Fo(D*JD - D;/AD¢I)7T_7:[) = 0,

by the factorization (38). Because range(B) = H, and mo(D*JC — D} ACy )
is continuous in H, it follows that vanishes in the whole of H. From (44) it
now follows that K = A~'(=D*JC — B*PA) = Ap'(-D*JC — B*PA) = Kp
because A = Ap has been shown earlier.

It is now straightforward to show that P € Ric(®, J):

P(AQJO,AZL’O) — P(ZUO,ZUO)

= <7T+CI’0, J7T+C> - <7T+C¢I.T0,A7T+C¢/> — <CI’0, JC> + <C¢I.T0,AC¢I>
<—KZZ70, —-A K$0> — <CZUO, JO$0> = <K1*3APKPZU0,$0> — <C*JC$0,ZUO> .

Because ¢’ is output stable and I/O stable, by assumption, and ¢p = ¢/, it
follows that P is a H* solution: P € ric(®, J).

It remains to prove the final claim about the residual cost operator. Be-
cause ® and ¢’ are output stable by assumption, we have

AYPAT = AYC*JCA) — AYCy ACy AY
= (7_1'+T*]C)*J(7_T+T*]C) - (7_1'+T*]C¢I)*A(ﬁ'+7'*]c¢l)
= C*Jﬂ'[j,oo]c - C;/AWMOO}C¢/.

Now s —limj_ o0 Tj,00)C = s —limj 0 Mooy = 0, and immediately
Lap=s—lim; o A¥PAJ = 0. This completes the proof. O
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For analogous spectral factorization results, see [15, Chapter 19], [13, Theo-
rem 4.6] and [10] together with its references. In claim (ii) of Theorem 50, a
requirement has been imposed on the spectral factor Dy of the Popov oper-
ator: it must be realizable by using the same input structure as the original
DLS ® and all the spectral DLSs ¢p. It is necessary to make such an apriori
requirement explicitly. To see this, consider the trivial case when D = Z, the
identity operator of ¢2(Z;U). Then the Popov operator satisfies D*JD = T,
if J = I, the identity operator of U. Each inner from the left operator A/’ is,
by definition, a spectral factor of the Popov operator Z. There is a multitude
of such inner operators; if U = C, then these are parameterized by sequences
in D satisfying the Blaschke condition and the singular positive measures on
T. However, the DLS ® = ¢ can be very trivial, say ¢ = (J9%). The DARE
Ric(¢, 1) is trivially I = I, and all (self-adjoint) operators P € L(H) are its
solution. However, each of the spectral DLSs equal ¢p = (§ %), and only one
spectral factor of the Popov operator is covered by a solution of the DARE.

In the proof of Theorem 50, we never wrote down a state space realization
for the Popov function D(e?)* JD(e?). Suppose D(z) € H*(D; L(U)) would
be analytic in an open set Q@ C C, such that D C Q and T \ (T N Q) is, say,
a finite set of points. Then the Popov function D(e?)*JD(e¥) would have
an analytic continuation to a neighbourhood of each e ¢ T NQ. This
analytic continuation is given by D(271)JD(z), and its realization ¢F°P°®
can be formed by using the formula for the product realization. Now, the
connection between the DARE and the spectral factorization of the Popov
function can be studied by using ¢FP°, even for certain classes of unstable
transfer functions D(z). However, a general D(z) € H*(D; L(U)) does not
allow this approach; there is a function in the complex-valued disk algebra
f(z) € A(D) that does not allow analytic continuation to any set larger than
D, and in fact the boundary trace f(e) can be smooth. Such a function
is constructed in [34, Example 16.7]. Then f(z) and f(z~') are bounded
analytic functions in open sets D and (D), with an empty intersection.

In a later result [27, Lemma 101], we shall need a different spectral fac-
torization result, associated to solutions P € ric(®, J) that need not satisfy
the strong residual cost condition. The nonvanishing residual cost is included
in the Popov operator. To achieve this, we must first define analogues (in
I/O-form) to the residual cost operator L p :=s — lim; o, A¥ PAJ.
Definition 51. Let J € L(Y) be a cost operator. Let ® = [4 B ] = (A 5)
be a DLS, and P € Ric(®,J). Let n,m > 0 be arbitrary. Define the linear
operators in (*(Zy;U)

£mn .

3P (BT*n”[O»m})* P (BT*n”[O»m}) )

and

EE;LI); =s—lim ng;;n), Lsp:=s—lim EEIT})D,
n—oo m—oo
provided that the strong limits exists. The operator L p s the residual cost
operator (in I/O-form), and the operator Egl} is the truncated residual cost
operator (in I/O-form).
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The operator Br*"m ) : (*(Z4;U) — H is a finite sum of products of
the bounded operators A, B, the orthogonal projections m;, and the unitary
shift 7* in ¢*(Z,;U). Thus it is bounded for all m,n > 0, and it follows that

EEI,";;”) always exists as a bounded operator.

Lemma 52. Let J € L(Y) be a cost operator. Let & = [4/ B/ ] = (A4 5)
be an output stable and I/0 stable DLS, and P € ric(®,J). Then

(i) Both the residual cost operators Lap € L(H) and Lsp € L((*(Z;T))
exist.

(ii) We have the spectral factorization identity
£¢’P + ﬁ+D*JDﬁ+ — 7_T+D:;PAPD¢pﬁ-+'
The residual cost operator Lg p is a self-adjoint Toeplitz operator.

(iii) Assume, in addition, that range(B) = H. Then both B*La pA =0 and
B*LapB =0 if and only if Lo, p =0 if and only if Ly p = 0.

Proof. Because P € ric(®,J), the residual cost operator L, p exists by
Proposition 23. We prove the rest of claim (i) and claim (ii) simultane-
ously. Let zp € H and {u;};50 = @ € (*(Z;;U) be arbitrary. Denote
zj = x;(x, @) = Alzo + Br* 4 the trajectory of the DLS & with this given
initial state and input. We have in [19, claim (i) of Proposition 36] for all
n >0

(45) (Pxg,z0) — (Pxp, xy)

= <J(C$] +DUJ'),C.TJ'+DUJ'>

[ary

S .
Il
= o

=) _(Ap(=Kpz; + u;), —Kpx; + u ).

.
(=}

We now set zp = 0 and assume that the inputs are of form g, % for some
fixed m > 0 and arbitrary @ € ¢*(Z,;U). In this case, (Pxq,z9) = 0 and
equation (45) takes now the form

(PBr" 0 m)il, BT T m]it) + (DT o,m]ih, To.n-11DT0m] ) 2 7., )

= <APD¢P7T[0,m]@, 7T[0,n—1]D¢p7T[0,m]1~t>42(Z+;y) )

because x, = BT*" g m)U.

Both the operators D, and Dy, m,m) are bounded, because ® and
¢p are I/O stable DLSs by assumptions. Also the operators B7*"mg m
are bounded, as has been discussed after Definition 51. So the adjoints
(BT*”W[O,m])*, D* and Dy, make sense, and we can write

<£S{?}vpn)ﬂ, 17/> + <7T[07m]D*Jﬂ'[o’n,l]pﬂ'[g’m}ﬁ, a>e2(z+;y)

= <7T[07m]D;PApﬂ'[g’n,”D(;,Pﬂ'[g,m}a, &>£2(Z+;Y) ,
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by Definition 51. Because 4 is arbitrary, and all the operators EEIT];"), D and

Dy, are bounded, [35, Theorem 12.7] implies that
(46) EEI,",%I;”) = —Tom D" * Ton 11 P0,m] + Tio,m P AP * T0,0 Dpp T(0,m)

for all m,n > 0. Because D is bounded, s — lim, o 7[0,n—1]P7o,m] = P7[o,m)
and s — limy, o0 M0,n—1]DgpTo,m] = DgpTo,m)- But then, the strong limit in
the right hand side of (46) exists, and we conclude that the residual cost
operator Lfl,"f} € L((*(Z,;U)) exists as a bounded operator. We obtain

(47) L8, = ~m0,mD* T D0 ) + T Dy ApDes 0 m

for all m > 0. We proceed to show that s — limg, o 7o, m DP* J D7 m) exists
and equals the Popov operator #, D*JD7,. Forallm > 0and @ € (*(Z,;U),
we have

||70,m D" I DT myt — T D* IDT 1|2z, 0

< [m0,m D" T DT m 1,001 |62z 07) + |[Tlmes1,00] D™ T DT 4] |22 07
< ey - IPllezu)—e@y) - |1 Tmat,000tl ez 0)

+ ||7T[m+1,oo} . 7?+D*JD7T(+1~L||42(Z+;U),

Because both % and 7,D*JD7 @ belong to (*(Z.;U), the right hand
side of the previous equation converges to zero as m — ©0.
It follows that s —limy, . 7omP*JD7om) = T+D*JD7, and similarly
s — limy, oo W[O,m}D;P JDypTom) = ﬁ'+D;‘,P JDy, 7. Because the right hand
side of equation (47) converges strongly as m — oo, we obtain the spectral
factorization

(48) Lop=—7,D"JD7y + 7Dy, ApDy,Ty

where Lg p is the residual cost operator in I/O-form, as introduced in Defi-
nition 51. Clearly Ls p is a self-adjoint Toeplitz operator, because the right
hand side of equation (48) is such an operator. This proves claims (i) and
(ii).

We proceed to prove claim (iii). We first calculate the block matrix
elements (£q>,p)j1’j2 = 7Tj2[,q>,p7'rj1 of £q>,p for jl,jg 2 0. Let ﬁ, w E 82(Z+, U)
be arbitrary. Then

c > = ( (s —mLy") ) - w0, mj,
<( @,P)Jl»ﬂu w £2(Z;0) <<Sm%;om @.p | T th Tit £2(Z50)

Y (m) -~ ~ Y (m) = 7
= < lim <£§’Pﬂj1u)’ﬂj2w>e2(z+;m = lim <£<I,7P7leu,7Tj2’LU> .

m—00 e(Z430)

But if m > j;, then Lgﬁlela = ng}lela. It follows that the sequence in the
right hand side of the previous equation stabilizes, and for m > max (ji, j2)
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we get

<(5<1>,P)j1,,-2 i,

&

>€2(Z+;U)

= <£51>m1)a7rj16,7rj2ﬁ)> = <<S — lim E;mion)> ‘leavﬁjzﬁ’>
) 02(Z3U) n—00 ’ 2(Z;U)

= < lim (ﬁg?ﬁ,n)ﬂjl’&),ﬂjzlb

— 1 (mn)  ~ 7
Jim = lim <£¢’P i, Uy Tj, W

>e2<Z+;U) n-r00

= lim <PBT*(”_j1_1)7T_17'*(j1+1)&,BT*(n_jz_l)ﬁ_lT*(j2+1)tD>
n—o00

e(Z430)
o

But now Br*=i-Ug_; = Br*v=i-Ug_ . g = A" 'Br_y = A" 7 'Br_,,

where be have used Br_; = Bmr_;. Now, if j := max (ji, j2), then

<(‘C‘I’ap)j1»j2 U, w>lz(z+?U)

= lim (A*" I D pArITt AT B ot AT B 70t )
n—00 B ’ B H

n—oo

= <<s — lim A*("_j_l)PAn_j_1> . Aj_leﬂ'_lT*(le){L, Aj_szﬂ_lT*(j2+1)ID>
= <LA,P : Aj*j1B7.‘.717_*(j1+1)a, AjiszW,]_T*(j2+l)'l.D>H .

This gives for the block matrix elements of Ls p the expression

(49) <(£<1>,P)j1,j2 u, @>£2(Z+;U)

(50) = (m;, B ALy p AT By, - ,0) o s
where j = max (ji, j») and @, w € (*(Z;U) are arbitrary.

If both B*LypA = 0 and B*L4pB = 0, then all the block matrix el-
ements (Ls,p); ;, vanish, by equation (49). By a straightforward density
argument, the bounded operator Ls p is seen to vanish.

Assume that L p = 0. Then all the block matrix elements (Eq,y)m2
for 71,72 > 0 vanish by their definition, and equation (48) implies that
B*LspA*B = 0 for all k& > 0. Tt follows that B*L,pBi = 0 for all
@ € dom(B), and thus B*Lspzr = 0 for all z € range(B). Because B
and L4 p are bounded, and range(B) = H, it follows that B*L4 p = 0, and
also Ly pB = 0 because Ly p is self-adjoint.

It is easy to see that A¥ L, pA? = Ly pforall j > 0. Thus A¥ L, pA’B =
L4pB =0 and immediately B*A*L, pA'B = B*A**=) . A9, pA’B = 0
for all k > j. By adjoining, we see that B*A**L 4 pA’B = 0 for arbitrary
J,k > 0. But this implies that (L4 pBi,Bi), = 0, for all & € dom(B).
By the assumed approximate controllability range(B) = H, boundedness of
L4 g, and [35, Theorem 12.7], it follows that L4 g = 0.

Trivially, if Ly s = O then both B*L,pA = 0 and B*L, pB = 0. This
completes the proof. O

Recall that in Propositions 24 and 25 we asked whether the indicator Ap
and the DLS ¢p uniquely determine the solution P € Ric(¢,J). Under the

H
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indicated additional assumptions, claim (iii) of Lemma 52 provides an answer
to this. Under the approximate controllability range(B) = H, it is exactly
the solutions P € ricy(¢4, J) (in the set ric(4, J)) that give us a spectral
factorization of the Popov operator 7, D*JD7, .

We proceed to consider the inertia of the indicator operator. The follow-
ing is another variant of Lemma 49:

Lemma 53. Let J € L(Y) be a self-adjoint operator. Let & = [/g ng} be
an output stable, I/0 stable and J-coercive DLS. Assume that that the input

space U is separable and there exists Py € ricy,(®,J) such that Ap, > 0.
Then for all P € ricy,(®,J), we have Ap > 0.

Proof. By Theorem 50, D*JD = D;POAPODd,PO = Dj, ApDy, for all P €
ricyw(®, J). By Proposition 38, the noncausal inverse D;; : (2(Z;U) —
(*(Z;U) is exists and is bounded, because Dy, (0) = I has a bounded inverse.
Then we have

(D;;)*D;’Po AP(’,Dd’Po D;; = (D¢P0 D;;) APO (D¢P0 D;;) = AP’

which represents a shift-invariant, bounded and self-adjoint operator in
(*(Z;U). Because Ap, > 0, it follows that Ap > 0, regarded as a static
shift invariant operator on ¢*(Z;U). But then, quite trivially, Ap > 0 as an
element of L(U). O

Corollary 54. Let J € L(Y) be a self-adjoint operator. Let & = [fg BTD”j]
be an output stable and I/0 stable DLS, with a separable input space U. Then
the following are equivalent

(i) 7. D*JD7, > ent, for some e > 0.

(ii) The solution set ric,,(®,J) is not empty, and for all P € ric,, (P, J),
Ap > 0.

When these equivalent conditions hold, the reqular critical solution Pt :=
(Ceit)™ JCerit € ricy(®, J) erists.

Proof. Assume (i). Corollary 32 implies that a critical P € Ricy, (®, J) ex-
ists. Proposition 29 implies that we have a regular critical H* solution P €
rico(®, J) C ricy,(®, J). Thus the solution set ricy,(®, J) is not empty. By
Theorem 50,
7‘r+X*AP5m X7, = 7, D*JDm, > emy where & := D, . is outer with

0
a bounded inverse. By shift invariance, also X *Apng > €7, and then

Apese > eX X1 = e(XX*)™" > 0, where Apeis is regarded as a static
multiplication operator on ¢*(Z; U). Immediately, Apeic > 0 as an element of
L(U), too. An application of Lemma 53 gives now claim (ii). The converse
direction and the final comment are given in Proposition 31. U

There is a one-to-one correspondence between (.J, S)-inner-outer factoriza-
tions of D = N'X (with the outer part having a bounded inverse X!) and
S-spectral factorizations of the Popov operator D*JD, see [19, Proposition
20]. Applying this to the spectral DLSs gives the proposition:
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Proposition 55. Let & = [4' 877 | be an I/O stable and output stable DLS.
Let J be a self-adjoint operator. Assume that the equivalent conditions of
Theorem 27 hold, and by P§™t := (CMi)* JCit € ricy(®, J) denote the reqular
critical solution. Let P € ric,,(®,J) be arbitrary. Then

(i) Dyp has an (Ap, Apesc)-inner-outer factorization given by
D¢P = NPX,

where X =Dy ., 18 /0 stable, and Np := D¢PD;;M
0

conditions of Theorem 27 hold for the DLS ¢p and the cost opera-

tor Ap. The outer factor does not depend upon the solution P. Both

range(Dy,7+) and range(Dy, ) are closed. If the input space U is sep-
arable, then range(Dy, ) = (*(Z;U).

. The equivalent

(ii) X (X°1)is the I/O-map of the spectral DLS ¢ perie (¢ pese, TESPECtively),
0
with the realizations

QS o ( A B> -1 . <AP6:rit B>
Pé)rlt — —Kpézrit .[ ) Pocrnt - Kpgrit _[ )

and Np is the I/O-map of the DLS

A crit B
-1 _ P,
¢P¢pocrit - <Kpgrit 0_ KP I) )

where Apeie := A + BK pait.

Proof. To prove claim (i), we note that we have the factorization of the Popov
operator, for all P € ric,,(®, J)

D*JD =D} ApDy, = D¢P5m Apocrit%,,gw

by claim (i) of Theorem 50. But then, & := Dy . is a Apei-spectral
0

factor of D} ApDy,, and then, by [19, Proposition 20|, Dy, = NpX, where
Np =Dy, X 'isa (Ap, A perit)-inner-outer factorization, and the outer part
has a bounded inverse. Both range(Dy,) and range(Dy,) are closed because
ép is Ap-coercive, by [19, Proposition 6]. Finally, claim (ii) of Proposition
38 implies that range(Dy, ) = (*(Z;U) if U is separable, because Dy, (0) = I
has a full range.

To prove claim (ii), Proposition 2 is used. Only the claim concerning Np is
somewhat nontrivial, and the outlines are given below. For a more complete
presentation using the same technique, see the proof of (ii) of Proposition
56. First, the product DLS ¢p¢;§rit is written

|:A BKP(;:rit :| |:B:|
PP ¢;§m = 0 Apgit B
|:_ KP Kpocrit ] I
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Its the semigroup generator is seen to satisfy

0 Apgrit 0 A‘;Dgrit

Finally, looking at the Taylor coefficients of the I/O-map, we see

A] Ai‘ocrit - A] B j
[—KP Kpocrit] 0 34;-3”“ |:B:| = (Kpocrit — KP)APOCMB'
0
We consider this claim to be proved. O

Let P € ricy,(®, J) be arbitrary. To the spectral DLS ¢p, we can associate
a minimax cost optimization problem with the cost operator Ap, see [19,
Section 3|. It follows from Proposition 55 and Theorem 27 that if one of
these problems is solvable (in the sense of Theorem 27), then they all are,
together with the original minimax problem associated to ® and J. This is
true just because all the I/O-maps have the same outer factor X, if they have
such factorization at all.

In Proposition 55, a particular fixed regular critical solution P{Mt &
rico(®, J) was picked and the proposition was formulated relative to this so-
lution. One should ask whether we would have obtained another factorization
Dy, = NpX' for another critical solution, say P5"™* € Ricy, (¢, J). The an-
swer in negative. In the proof of Corollary 30, we have seen that the indicators
of the critical solutions are all the same: Apaic = Apeic. Then we might have
two different (Ap, Apent) -inner-outer factorizations Dy, = NpX = NpX'.
However, the feed-through parts of both X and X’ are normalized to identity
operator I, and this implies by [19, Proposition 21| that X = X" as the I/O-
maps. It now follows that the factor Np does not depend on the choice of
the critical solution. However, the realizations ¢peri, ¢P§rit for X, X' might
be different, because the feedback operators K Perit, K pgrit might differ. How-

ever, this can happen only in the orthogonal complement of range(B). So,
if range(B) = H, then Kpai = Kpei as in the proof of Proposition 30, and
the possible nonuniqueness of the realizations disappears.

The following proposition gives us realizations for chains of certain I/O-
maps. It is instructive to compare the DLS ¢p, p, to the realization of Np,
given in claim (ii) of Proposition 55. We remark that the following tedious
calculations depend on the properties of the Riccati equation only in a very
implicit manner, if at all.

Proposition 56. Let ® be an DLS, and J self-adjoint. Let Py, Py, P; €
ric(®, J) be arbitrary. Define the DLS

oo Ar B
PoPr = \Kp, — Kp, I

and we denote Np, p, := Dy, , . Then
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(7’) N1;11,P2 = NP2,P1)
(i) Np,,p,Npy,p, = Npy, by,

(iii) Assume, in addition, that the conditions of Theorem 27 hold. Then
Np, peie = Np, is the (Ap,, Apese)-inner factor of Dy, Also NNyt =
Py,Py-

Proof. To prove claim (i), use claim (i) of Proposition 2. A direct calculation

gives
6 = Ap, — B(Kp,— Kp,) B\ _ Ap, B — ¢
sl _(KP2 - KP1) r) KP1 - KP2 ) PP
proving claim (i). To verify claim (ii), claim (ii) of Proposition 2 is now used.
We obtain

— AP2 B AP3 B

(5]‘) ¢P1’P2¢P2’P3 - (Kp2 — KPI I) (Kps - KP2 I
Ap, B(Kp, — Kp,) B
= O AP3 B

[(sz - KP1) (KP3 - KPz)] I

Now we have to consider the I/O-map of the product DLS ¢p, p,¢p, p,- We
first see that its feed-through operator I is that of Dy, , . The rest is studied
by applying the Taylor series formula (7) for the I/O-map of a DLS on the
right hand side of (51). The whole trick lies in noting that the semigroup

: Ap, B(Kp, K Ap, Ap,—A
generator satisfies | 72 BEPs~Kra) | 1 ARy Ars ARy | g e have for the
0 Ap3 0 Ap3 )

block matrices of this kind

A] — APZ AP3 - APZ A;z A%g - A;z
(¢P17P2¢P27P3) B 0 Ap 0 A§D3

3
for all j > 0, as can easily be shown by induction. We now obtain for all
j=0
j
(¢Py,Py ¢P2aP3)A(¢P1,P2 ¢P2,P3)B(¢P1’P2 ¢Py,P;)

AL AL — Al B
- [(Kp2—Kp1) (KP3_KP2)} |: 632 P3A§D3 P2:| |:B:|

= (KP2 - KPl)A;zB + (KP2 KP1)(A§33 - A;z)B
+ (KP3 - KPz)Ag%,
- (Kp2 —KPI)A] B+(Kp3 KPQ)A;?’B

= (KP3 - KPI)AJF’;;

But these equal the corresponding coeflicients of ¢p, p,, and claim (ii) is
proved. Claim (iii) follows immediately from claim (ii) of Proposition 55. The

last claim follows from the previous claims: NpNp' = N, Py, perie N, s lpmt =

N Pl,PocritN Pgrit, P2 = NP1,P2- 0
The I/O-maps of the DLSs ¢p, p, will play crucial role in [25].
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