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1 Introduction

A standard line of attack in the solution of linear systems is the following:
First, the “big lines” of the problem are investigated, so that a rough approx-
imation of the inverse operator, called preconditioner, can be found. The
application of a preconditioner eliminates the “large amount of disorder” in
the problem. A successfully preconditioned linear operator is, in some ap-
propriate sense, “almost” an identity operator. The “remaining disorder” is
eliminated by various iterative procedures (Krylov subspace methods, such
as CG of GMRES), possibly using parallel computation techniques. In this
paper, we apply these ideas to a special class of matrices, namely Toeplitz ma-
trices. It seems that Toeplitz matrices appear practically throughout all the
applied mathematics. For example, they are used in the numerical solution
of convolution type equations when they approximate an infinite dimensional
object (e.g. Toeplitz operator), see [6].

Let us consider some requirements that a good preconditioner should
have. In practice, the preconditioning can be done either before or after the
discretization of the problem. In the first way, the preconditioning is done to
the original (infinite dimensional) operator abstractly “on a piece of paper”,
and the iterator software works with (a finite dimensional discretization of)
the preconditioned operator. For the parallel implementation of the iterator
to be effective, the preconditioned operator should, in some sense, be easily
“decomposable” into smaller “blocks” that do not communicate too much with
each other; the reader is instructed to think of the structures that resemble
the decomposition of a compact operator into its generalized eigenspaces. It
is also clear that the iteration of the “blocks” should converge fast for a good
preconditioner.

The second way to precondition is the following: The infinite dimensional
problem is discretized first, and then the finite dimensional matrix of the dis-
cretized problem is preconditioned. Now the preconditioned matrix would
not necessarily exists in the memory of the computer, because this would
require a numerical computation of a matrix-matrix product. Instead, the
preconditioner is applied inside each iteration loop over and over again, so
that only matrix-vector products are calculated by the computer software. It
is now desirable that the preconditioner-vector product is numerically con-
venient.

In 1986, G. Strang [14] proposed that a circulant Toeplitz precondi-
tioner could be applied on Toeplitz matrices. An iterative conjugate gradient
method (CG) is then used to complete the inversion. Several other classes of
Toeplitz preconditioners have been studied by many authors; band Toeplitz
preconditioners for systems with positive symbols [1], circulant Toeplitz pre-
conditioners associated to convolution kernels [3], circulant Toeplitz precon-
ditioners with complex symbols [4], preconditioners arising from “inverse sym-
bol” [2], to mention few.

The common foundation for all these approaches is the possibility of cal-
culating the Toeplitz-vector product in nlogn time by FFT, where n is the



dimension of the matrix (regarded as the level of discretization if the original
problem is infinite dimensional). It follows that the calculation of a single it-
eration step for a Toeplitz system is fast, but the convergence of the iteration
is poor, without proper preconditioning. Because of the mentioned nlogn
complexity property, it seems a computationally attractive alternative to use
a Toeplitz matrix as a preconditioner to a Toeplitz system. Of course, if the
iteration of the preconditioned system would still converge poorly, or a good
preconditioner could not easily be found, this attraction would be totally lost.
Fortunately, this is not the case, as indicated by the results of this paper. We
remark that a plenty of results about the clustering of the spectrum of such
preconditioned systems have been presented by other authors, as discussed
above. In these works, the superlinear convergence of CG is established for
such Toeplitz systems. These results have been obtained by matrix algebra
tools which is a quite different approach from ours.

We now discuss the outline of this paper. We apply approximation the-
oretic methods upon the symbol (also known as the generating function)
f € C(T) of the n x n Toeplitz matrix T,,[f]. This gives us a n x n Toeplitz
preconditioner T,[g] for the original Toeplitz matrix T,,[f]. We remark that,
contrary to the case of Toeplitz operators T[f]|, T,[f] does not uniquely
determine its symbol f. In our approach, much of this uniqueness problem
resolves because we are more interested in the families of matrices {T,[f]}n>1
for fixed f € C(T), rather than any of the matrices T,,[f] alone. This set-
ting is the one adopted in [6], where Toeplitz matrix equations of increasing
dimension n serve as discretized Toeplitz operator equations.

In our approach, the Toeplitz preconditioned operator is divided into two
parts. First of these parts — truncation effect K }7;) — is what remains large
in operator norm, even if the Toeplitz preconditioning is successfully chosen.
This is the part of problem that has to be “iterated away”. The other part —
perturbation matrix B; g) —is a Toeplitz matrix of small norm, corresponding
to the nonoptimality of the Toeplitz preconditioning. Note that after the
preconditioning, one should aim to kill only the truncation effect part Kj(c’g),

at least if n is large. The iteration of the Toeplitz part B( ") g increasingly
expensive with increasing n, and thus should not be attempted

As the dimension n grows, the effect of the smoothness of the symbol f
will be seen in the limit process. Smoothness is measured by requiring the
rth derivative of symbol to be Lipschitz continuous of index «, for » +a > 0.
Roughly, matrices T,[f] with smooth symbols f are computationally more
simple and remain that way, for large n. The smoothness of f will Eet
encoded into the decay of singular values of the truncation effect part K f'f;,
in a manner that is essentially independent of n. The performance of the
iterative solver depends upon this decay rate, as discussed in [§], [10] and
[11]. In other words, it is not the cost of a single iteration step alone that
gives the whole price of the computation. We also need to consider how
many steps we have to calculate in order to get the required precision. Our
conclusion is that the Krylov subspace method (such as GMRES) applied
upon the preconditioned system initially converges at increasing speed (or



“superlinearly”), until the truncation effect part has been “killed off” and the
small Toeplitz matrix part begins to dominate.

We emphasize that our results do not require any normality of the ma-
trices we study. The symbols of Toeplitz matrices can be complex valued
continuous functions, and our convergence results are equally valid for the
GMRES algorithm for nonsymmetric systems, as they are for the CG algo-
rithm for the symmetric systems. In our approach, the decay of the singular
values is the valuable information that we know about the linear operators
of interest. The preconditioned system, being a product of two Toeplitz ma-
trices, is not an object whose spectrum is easily available. In this work we
try to say as much as possible about the properties of iteration for the pre-
conditioned system, without saying much (nontrivial) about the spectrum.

In the strategy we have adopted, there is a quite unavoidable cost we
have to pay. In the final speed estimate for the convergence, a generally
unknown constant remains, measuring the ill-conditioning of the precondi-
tioned system. To actually determine this constant, we would have to know
the spectrum (with multiplicities) of the preconditioned system. This is the
bad news. The good news is that the effect of the constant (or equivalently;
the normalization of the polynomial sequence in equation (26)) is not signifi-
cant in the asymptotics of the estimate, as the iteration number & — oo. This
makes it possible to draw the conclusion about the superlinear convergence
of iteration.

Our approach resorts to a multitude of operator theoretic arguments that
are based upon the Hankel and Toeplitz structure of the problem. The tools
of matrix algebra are not central for us. The abstract numerical analysis
framework is mostly from [10]. The treatment here is analogous to that
given in the companion paper [9] for infinite dimensional Toeplitz operators.
In this sense, the present work differs from what is already done in the
literature. We remark that, in comparison to [9], a lot of extra algebraic
structure emerges, as we have to study two truncation effects and some detail
about their interaction. We conclude that [9] can be seen as an instructive
limit case of this work, when the dimension of the Toeplitz matrix becomes
infinite.



2 Definitions and basic theory

We use the following notations throughout the paper: Z is the set of integers.
Z, ={jeZ | >0} N:={jeZ | j>0} Tisthe unit circle
of the complex plane. C(T) denotes the class of continuous functions on T
equipped with sup-norm || - ||s. Given f € C(T) and a > 0, the number
|| £ || Lipa(T) is defined by

|f(z) = F(v)]

(1) | f]|zipa (T) = ||f||oo+§£ Fy—

is called the Lipschitz norm of f. Lip,(T) C C(T) is the set of such f for
which the expression (1) is finite. For r € Z,, C™*(T) are those functions
whose r.th derivative is in Lip,(T). If « = 0, then C™*(T) := C"(T). If H
is a Hilbert space, then £(H) denotes the bounded and £C(H) the compact
linear operators in H.

Bi-infinite sequences of complex numbers are denoted @ := {a;}52_.
The set of such square summable sequences are denoted by ¢?(Z). We define
the following operators in sequence spaces

Definition 1. Orthogonal projections in (*(Z) are
(i) the interval projections for j, k € Z:
mima = {w;}; wi=a; for j<i<Ek, 0 otherwise;
T -= T
(ii) the future and past projections:
Ty 1= M)y T— = M—oo,—1]5
(iii) the composite projections:
Ty =T+ My, T_: =T+ 7T_.
We define the spaces of semi-infinite, square summable sequences by

*(Zy) := 7, 0*(Z) and (*(Z_) := m (*(Z). The unitary bilateral shift U
in (*(Z) is given by

(2) Ua :={w;} with w; =a;_.

It is well known that the operator polynomials of U and U* = U ! form
a normed commutative subalgebra in £(¢*(Z)), whose norm closure has a
particularly simple commutative C*-algebra structure. This is the content of
the following lemma.

Lemma 2. Let A be the operator norm closure in L((*(Z)) of the set of
operators p(U,U*), where p ranges over all polynomials p(z,y) with complex
coefficient. Then A is a commutative C*-algebra that is isometrically isomor-
phic to C(T). Moreover, there is an isometric isomorphism ¥ : C(T) — A
which satisfies:



(i) Of = (Tf)*
(1) (V€€ T): f(§)=¢ = ¥f=U

Proof. First note that o(U) = T, because U is a bilateral shift. Because U
and U* commute, the claim follows from [13, Theorem 11.19]. O

In the light of previous lemma, let us denote the elements of A by C[f] := ¥ f
— the convolution operator with symbol f € C(T). Now we are in position
to introduce the Toeplitz operators and matrices, together with the causal
and anti-causal Hankel operators and matrices.

Definition 3. Let f € C(T) be arbitrary and C[f] be the convolution oper-
ator with symbol f.

(1) The Toeplitz operator T|f] with symbol f is the operator in L((*(Z,))
defined by

TIf] = 7:CIf)7+.

(i1) The causal (anti-causal) Hankel operator H.[f] (H_[f]) with symbol f
is the operator in L((*(Z.),0(*(Z_)) (L((*(Z_),(*(Z,))) defined by

Holf) = miClflm (H_[f] = n_C[f]r.).

(1ii) The nxn Toeplitz matriz T, f] with symbol f is the operator in L((*(Z,))
defined by

Tolf] == mo,n-1)CLf] 0,0 1]

(iv) Thenxn causal (anti-causal) Hankel matriz H [f] (H_[f]) with symbol
f is the operator in L(¢*(Z)) defined by

H,[f]:= W[o,n—l}c[f]ﬂ[—n,—l} (H-[f] := W[—n,—l]c[f]ﬂ[o,n—u)-

In this paper, all the n X n matrices are regarded as operators of forms
7T[07n,1}T7T[07n,1}, 7T[0,n71]T7T[7n,71] or ﬂ[,n,,”Tﬂ[gm,”, where T € ﬁ(ﬁ(Z))
The identification of C" (with Euclidean inner product) and range(ro ;1))
is obvious. With this identification, all the matrices are naturally interpreted
as finite dimensional operators in space ¢2(Z). The matrices are regarded in-
vertible (or nonsingular) in C" when they are bijections in range(m,_1)).
Clearly this is not equivalent with the invertibility when the matrix is re-
garded as an operator in the whole space. Inverse of a nonsingular n x n
matrix 7, is defined by the Moore-Penrose pseudoinverse

T.' = lim (T)T, + vI,) " 'Tr € L(P(Zy)),
v—0+
where I,, denotes the identity matrix of C”, identified with the projection
To,n—1]- Clearly this definition of matrix invertibility is in harmony with the



usual notion of nonsingularity of a matrix. The ordinary inverse matrix is
just extended with zeroes, from C" to the whole of /*>(Z,).

The symbols of Hankel operators, Hankel matrices and Toeplitz matrix
are not unique. However, as n — oo, all the Fourier coefficients of f will
appear in infinitely many Toeplitz matrices T,,[f]. In this paper, we are more
interested in the families {T,[f]}nen of Toeplitz matrices with a common
symbol f, rather than any of T,[f] separately. A special attention is payed
to the limit processes as n — 0o, but f is kept fixed. In some sense, this
resolves the nonuniqueness problem of the symbol

The following norm estimates are basic:

Lemma 4. It is true that for any f € C(T) andn € N

(3) TN = 11 oo

(4) £ [FII] < 11 ]oos

(5) Tl AU < VIf Mooy IH™EAN < ([H[A]-

Proof. For equation (3) see [6]. Estimate (4) is an easy consequence of
Lemma 2 giving the norm of the convolution operator |[C[f]|| = ||f]|| and
the fact that the norm of the orthogonal projections equal 1. The same
comment goes also for equations (5). O

Note that the estimate (5) for Hankel norm is nothing but optimal. The
Nehari extension theorem characterizes the norm of Hankel operator . [f] as
the infimum inf || f + g|| over all g with vanishing positively indexed Fourier
coefficients. We use the estimate (5) to connect the smoothness of the symbol
(via trigonometric polynomials and Jackson’s theorems) to the singular value
decay of certain Hankel operator.

The invertibility condition for Toeplitz operators in terms of symbols is
quite simple to state, see [9] or [6]:

Proposition 5. Let f € C(T) be arbitrary. Then T[f] is invertible if and
only if 0 ¢ f(T) and Ind (f) =0, where

Ind(f) = o arg f(¢)"

For Toeplitz matrices things are not so simple. A simple counter example
shows that a given nonunique symbol does not determine the invertibility
of T,[f] as in Proposition 5, but the dimension n is also important. The
following lemma is a slight modification of [6, Theorem 2.1].

Lemma 6. Let f € C(T) be arbitrary. Then the following are equivalent:

(i) liminf, o ||T.[f]7"]] < oo,



(ii) f satisfies the invertibility condition of Proposition 5,

(i) There is a N(f) € N such that T,[f] is invertible in C" for n > N(f).
Furthermore, if b € (*(Z) is arbitrary, then lim, .., = a, where

by = Tu[flan and b= TIf].

Proof. The implications (i) = (ii) and (ii) = (iii) follow from [6, Theorem
2.1]. Assume that claim (iii) holds. Let n > N(f). Now

To[f]7'0 = T, [f] b = G — @ := T[f]"'b

for all b € (*(Z,) by assumption, where by = W[O,n_l](;. It follows from the
Banach-Steinhaus Theorem that ||T,,[f]"|] < C' < oo for n > N(f). But
then liminf, e ||T[f]7"|| < limsup, .. ||Ta[f]7"|| < C < oo, and claim (i)
holds. O

We complete this section with a word of explanation. In [6], the Toeplitz
operators are defined as the closure of polynomials p(S, S*) for the unilateral
shift S on ¢*(Z,). In our earlier work [9], S was unitarily dilated into a bi-
lateral shift. By using functional calculus (i.e. Lemma 2), we obtain discrete
convolution operators, associated to symbols f € C(T). Finally, the Toeplitz
operators were recovered as compressions of the convolution operators. In
discrete time control theory, one could regard the bilateral (time) shift the
starting object, and unilateral shift only something that we get when future
and past projections (causality) enter the game.

Now, when treating the Toeplitz matrices, the unilateral shift has lost
much of its special appeal over the bilateral shift. For this reason, we have
here only introduced the bilateral shift and its polynomials as convolution
operators, and Toeplitz matrices as their compressions. Note that, in a sense,
(inverse of the) Toeplitz matrix is simultaneously an “approximation” to both
the (inverse of the) convolution operator as well as to the (inverse of the)
Toeplitz operator, all sharing the same symbol. Because the convolution
and Toeplitz operators are two fundamentally different kinds of objects, the
“approximation process” is rather interesting. This work, together with [9],
sheds some indirect light upon this process through the study of the trunca-
tion effect matrices, as defined later. Trivially, the Toeplitz matrices could
be described by purely matrix algebraic notions, but this would be inconve-
nient in the present approach; the description of the truncation effect requires
Hankel operators, and thus either unilateral of bilateral shifts.

The reader is instructed to see that all the different (but equivalent) ways
of introducing the Toeplitz operators and matrices are matters of technical
convenience, preferences and traditions, rather than reflections of such deep
mathematical structure that would require some particular type of formalism.
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3 Preconditioning of Toeplitz matrices

In this section, we develop a Toeplitz preconditioning theory for Toeplitz
matrices, in the spirit of our earlier work [9] for Toeplitz operators. The
dimension of the Toeplitz matrix is denoted by n € N. By a = {a;}2,
denote a sequence in (*(Zy), and define &, := mp,_1j@. Now @, can be
regarded as an arbitrary element of C", as considered above. Our problem
is to find b, € C™ satisfying

(6) an = Tn[f]gn

for all n large enough. For this to be possible, we assume that the conditions
of Lemma 6 hold. Let us multiply the both sides of equation (6) by an
invertible Toeplitz matrix T},[g] for a suitably chosen symbol g. This gives:

T.lglan = Tn[Q]Tn[f]l;m

or equivalently, in the form of a fixed point problem:
(7) I;n = (In — Tn[g]Tn[f])Bn + Thlglan,

where I, is the identity matrix of C". We say that the equation (7) has been
Toeplitz preconditioned, at least if T,[g] is in some sense close to T, [f] ",

see [1] and [2|. The matrix I,, — T,[g]T,,[f] is almost Toeplitz, but not quite.
The following decomposition theorem makes this point precise:

Theorem 7. Assume that f,g € C(T) and n € N. Then I, — T,[g]T,[f]
can be decomposed as:

(8) I — Tu[gITulf] = (Tulgf] = TulglTulf]) + Tull — g£1)
= K" + B},

where K}T;)i 18 the n X n matriz given by

(9) K(n) — K(“H‘ + K(”)—

(10) K™% = 100 e [gH_[fmom 1
K™ = mo g UMH_[gIH, [T Ton 1)

The matriz B;c?g) 1s a n X n Toeplitz matrix.

Proof. The claim of equation (8) if trivial, because the mapping f — T,[f]
is linear. In order to prove equations (9) and (10), we write

(11) K}r:]) = To,n—1] ( [ ] C[g]W[On 1] [ ]) To,n—1]
= mon-11 (Clgf] = Clg)(T — 7 — Tin,00))CLS]) Ton-1]
= 7o,n1] (ClglmCLf]) Mon—1] + To,.n 1) (C[9)7m,00CLSf]) Tr0m 11,
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where the last equality holds because Clgf] — Clg]C[f] = 0 by Lemma 2. The
first term in the left of (11) is equal to 7o n—1H,[g|H _[f]mon-1] = KJ(;;H.

The equations (9),(10) are proved if we show that the latter term in the left
of (11) is equal to 7o 1)U H_[g|H [ fIU M0 n-1] = KJ({;)_.

It is a matter of an easy computation that mpn_1)C[g]7n o0
— Tr[O,nfl}UnH—[g]U*n and Tr[n,oo}c[f]ﬂ-[O,nfl] = UHH+[f]U*n7T[0’n,1], Com-
bination of these gives

Ton-11 (CL91Tn01CLS]) Won-1] = Ton-yyH-[FJU" U™ Hot [f]mi0,0-1
= Mo H [fIH [flTon-1 = KJ(ﬁ) :

This completes the proof of equations (9) and (10). To conclude the proof,
we note that Bj(c'fg) is Toeplitz by definition. O

Now that we have our basic objects in hands, it it time to name them. We
propose the following:

Definition 8. Let Kj(cg) , B}"g) be as in Theorem 7. The matrix KJ(:;) 15 the
truncation effect matriz of order n. The matrices K}r;)*—, K}r;)_ are the upper
and lower truncation effect matriz of order n, respectively. The matriz Bﬁng)
18 called the perturbation matrixz of order n.

We call matrix B( ) perturbation matrix because it is regarded an an un-

structured perturbatlon to the (compact) truncation effect K! g) in the frame

of reference of [8], as studied in Section 5. An analogous theorem to Theorem
7 for Toeplitz operators is [9, Theorem 3.1|. There we introduced the trunca-
tion effect operator Ky, := H[g|H_[f]. Clearly K}T;)Jr = Mo,n—1]K ,g0,n—1]-
We proceed to discuss the implications of Theorem 7, especially from the
numerical analysis point of view. We also compare the analogous Toeplitz
matrix and operator results.

We first remark the that left hand side of (8) does not depend upon
the Fourier coefficients of f, g with index j satisfying |j| > n. However,
both the operators Kl(fg), B](ng) depend on all the Fourier coefficients of f
and g. Different choices of the symbols f, g give different decompositions
in the right of (8) for the same preconditioned Toeplitz systems given in
the left of (8). This is in contrast to the case of Toeplitz operators where
T[f] and its symbol f € C(T) are in bijective correspondence. The Toeplitz
operator truncation effect is always compact for f € C(T), see [8, Theorem
3.3]. A Toeplitz operator is compact if and only if it vanishes, by a spectral
argument. It follows that the decomposition of Z — T[g]T[f] into truncation

effect K, and perturbation operator By, is unique in [9, Theorem 3.1].
For the Toephtz matrices, K (n g) can be even Toephtz consider the circulant

example f(e?) := e~in=1)¢ +em9 and g(e) := f(e ®). Then

K = T,[fg) - TulgTlf] = 21, — I, = L.
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However, this example works only because the symbols f and ¢ depend on
the dimension n of the Toeplitz matrix. For the same f and g as above,
KJ(CTI) is no longer Toeplitz. Because our results are stated for “large n”,
these “accidents” play no significant role.

Fix f,g € C(T). The truncation effect can further be decomposed as

(n) _ gr(n) (n)
(12) Kpg = Kf,% + Kf,(g*%)'

The first part Kj(c"l) is a measure how far from Toeplitz the matrix T,,[f]”" is.
i
Namely,

Tlf) ™" = Tul5] = KT,

This part is independent of the preconditioners symbol g. The singular value
decay of the right hand side can be bounded above by an estimate not de-

pending on n, if some smoothness of f is assumed. The latter part K;"gqil)
9=

in (12) is due to the nonoptimality of the preconditioning symbol g. As n
increases, the major part of the computational cost of nonoptimal precondi-

tioning is in the Toeplitz perturbation matrix B](c’fg), not in K™ 1

flo- by as will

be implied by this work.

The rest of this section is dedicated to a more detailed study of the
matrices K}Z;i. We present some connections to the Toeplitz operator case
as studied in [9]. Also some results are established that lead to the proof
of Theorem 20. It is interesting to see in what sense the Toeplitz matrix
case given in Theorem 7 relates to the Toeplitz operator case given in [9] as
n — oco. Lemma 10 gives us the result, but first we need a functional analytic

proposition.

Proposition 9. Let H be a Hilbert space and B, B, € L(H) for n € N. Let
K € LC(H). Then the following holds:

(i) If Byx — Bz for allx € H (i. e. B, — B strongly), then
|B.K — BK|| — 0.

(ii) If Bix — B*z for all x € H, then ||KB, — KB|| — 0.

Lemma 10. Let the operators Ky, K}Z;i be defined in Theorem 7. Then

. n)+
(13) lim ||Kpg — 7)) =0
and
(14) lim I1K7a =0 forall ae (*(Zy),

i e. KJ(CZ)_ — 0 strongly. Moreover, KJ(CZ? — Ky 4 strongly.
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Proof. To prove (13), write
Kio— K" = Ko+ K ,m
fvg f,g [n,oo} fvg [0,1’1—1} fag [T'L,OO] .

Now use Proposition 9 with B, = B}, = 7, o and B = 0. Because Ky 4 is
compact (see [9]), equation (13) follows.
The proof of (14) is somewhat more technical. Because

K™ = mop UMM [gIH, [f]U™m00 1

by Theorem 7 and o ,_11U"H - [g] is bounded, it suffices to show that H [ f]U*" g, 1) —
0 strongly. To this end, let ¢ > 0 and @ € ¢*(Z, ) be arbitrary. Choose m € N

so large that |[mmeo)@|| < €/(2]|f]lo). It is a matter of easy manipulation

to show that H [flU"mon1] = (FLU™)C[f]70n—1]- Using this we may

estimate for n < m:

(15)
M AU m0.n-vjal| < |7 U™)CIf o m-nall + ||(7+ U™)ClfImim,00al]

The second part of (14) is less than €/2, because ||(7 . U*™)|| = 1, ||C[f]|| =
| f]loo and ||7pm,00@|| < €/(2]|f]|ec). The first part is under €/2 if n is large
enough, because the unilateral backward shift 7, U** — 0 strongly. This
completes the proof. O

The operator sequence K (n ) does not generally converge in norm. When it
does, the operator family 1tse1f is trivial:

Corollary 11. Let the operators Ky g, K * be defined in Theorem 7. Then
the following are equivalent:

(i) K}T;) — Ky 4 in norm,
(i1) K g ~ — 0 in norm,
(111) H_[g|H+[f] =0 for alln € N,
(iv) K =0.
(n)

Proof. The only nontrivial part is to check that K¢~ — 0 in norm implies

H_[g]H.[f] = 0. So assume that K(g) — 0 in norm. By {e;};cz denote the
natural basis of (*(Z). Let 4,7 € Z_, and n < max (—i,—j). An elementary
calculation, based upon formula (10), gives the following:

(16) (es, 1o+ fles) = (evsm KJ) ejen)

The left hand side of (16) does not depend upon n. The right hand side
does and approaches zero, because K(g) — 0 in norm. It follows that
(e;, H_[g]H +[f]e;) = 0 for all 4,5 € Z_, and the proof is complete. O
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The development of Lemma 10 and Corollary 11 has an important implica-
tion from the numerical analysis point of view. If one is inverting an infinite
dimensional Toeplitz operator by preconditioning and iterating a finite di-
mensional section of it (i.e. a Toeplitz matrix), the iterative solver will attack
both K " and K . Only the data in K( ST present in the limit case of

the 1nﬁn1te dlmensronal Toeplitz operator. However K" g) is always present

for all large n, if for any n at all, by Corollary 11. It is by formula (10),
modulo truncation and unitary shift, a product of two Hankel operators —
a structure numerically quite comparable to K (n g)

The Proposition 12 and Lemmas 13, 14 are results that we need in our
marn result, Corollary 22. We start with a fundamental symmetry between

K 1, g * and K
Proposition 12. Let f,g € C(T). Then we have the unitary equivalence
(17) K{%)~ = Flip}, - K" - Flip,,

where f(e) = f(e ), §(e?®) = g(e *), and the operator Flip,, : range(mon 1)
— range(7o,n—1]) 15 the permutation

Uo Up—1
. Uy :
(18) Flip, _ = :
: Uy
Up—1 Ug

Proof. Note first that the Fourier coefficients of f € C(T) (§ € C(T)) are
related to the Fourier coefficients of f (g) by
(19) fi=f (§=g-) foral jeZ
Define the operator flip : (*(Z;U) — (*(Z;U) by (flipu); = u_; for all
j € Z and u € (*(Z;U). With this notation, we can show that

H_[g/H[f] = U* flip- Hi[g)H_[f] - flip U,

where U is the bilateral shift given in equation (2), and f , g are given by
(19). Now

K = mon UK [gIH.: [fIU" Mo -1
= (Tjon-1)U™) (U* - flip- Ho[GH_[f]- flip- U) (Um0 n1y)
= (mon-) U™ flip) - (Mo [G1H - [f])(Flip U Ve ay).
By looking at (18), Flip, = mp,—yU""" flip = mpopn_yyU™" flipmo p_1].
This, together with the above calculation implies equation (17). O

Note that the matrix Flip, gives a unitary equivalence of a Toeplitz matrix
T,[f] to its transpose T,[f].

Claim (i) of the following Lemma has been used in the construction of
the numerical example in [8, Section 5|. Claim (ii) has a direct application
in Corollary 22, one of the main results of this paper.
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Lemma 13. Assume that f,g € C(T). Define

~ (n)+ L (n)+ _ (Ln/2J)+
wag = W[O,Ln/zj]Kf,g To,[n/2]] = Kf,g

() (n)—
Kpy =T m Ky Tmy21n),

~(n) . p(n)+ -(n)—
Kf,g T Kf,g +Kf,g )

Y

where | j| is the integral part of j € Z, and [j] = |j| + 1. Then
(i) lim, o0 [| K — K| = 0, and
(i) Tt | K] = T oo [|RE]] = max (1K gl |15 7511

Proof. In order to prove claim (i), we estimate:

(20) 1K — K< [|KEY — KO+ (K - K7

The estimation of the first part in the right hand side of (20) goes as follows:

n)+ -(n)+ n)+ n
157" = Ky < K = Kpgll + 15 g — K7
Because, in fact K( n)+ K}L;m) the both terms in the right hand side
converge to zero, by equat10n (13) of Lemma 10. The second part of equation
(20) is similar, when we use the identity

K - K = Fliph (KT~ Ky

f9 )th”’

implied by Proposition 12. Claim (ii) is a consequence of the first claim. We
obtain

(1) IEFI = Ky — K < WK < I+ K, — K5,
which 1mpl1es hmn%OOHngH = limn%ooHR'fng)H' But ||R']({;)|| =
max(||Kf 1, ||ng ||), because K " and K ~ operate in their disjoint

reducing subspaces; this was the reason why We defined them in the first
place. By equation (13) of Lemma 10, and Proposition 12, we have

lim RSN = 11K 1, lim IIng = 1[E4ll-
It now follows that max(||Kf +|| ||ng 1) — max (|| Kygll, [|K74]]), and
the proof is complete. O

In Corollary 22, we need to exclude the situations when K('f) vanishes.
This is because the convergence speed estimate (25) we use, has a norm of
the truncation effect in the denominator. Given a fixed n, there are two
totally different situations when this happens. The situation of the first
kind appears when K]({;) = 0 for all n large enough. This can happen only

when K( n)+ K;’;) = 0 for all n, as can be shown by a similar calculation
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as in the proof of Corollary 11. This first case is explicitly excluded in
the assumptions of Corollary 22, by using the followmg Lemma 14. The
situation of the second kind appears when generally Kt f.0 ;é 0 except for
some finite number of particular n € N. Two Toeplitz matrices T,,[f], T5.[g]

with analytic symbols have vanishing truncation effects K J(c';) =0foralln. A

small co-analytic perturbation to such f and g will cause that Kj(cn) = 0 only

for n small. This second case is excluded in the assumptions of Cérollary 22,
by saying that the result only holds for large n.

So, we need only be able to identify the first kind of situation, as described
above. The following lemma is the result we need, stated only for K; (n TOA

similar result for the lower truncation effect K } g)_

application of Proposition 12.

can be obtalned by an

Lemma 14. Let f,g € C(T). Then the following are equivalent:
(i) K}ZH =0 for all n,
(i) Kyq =0,

(112) Hilgl =0 or H_[f] =

Proof. (i) = (ii) follows because 0 = K(n;Jr — Ky, in operator norm as
n — oo, by equation (13) of Lemma 10. The implication (ii) = (iii) is
somewhat nontrivial. Because Ky, = H.[g|H_[f] it suffices to show that if
a product of two arbitrary Hankel operators (with complex valued symbols)
vanishes, the at least one of the Hankel operators vanishes. By multiplying
two semi-infinite Hankel matrices, we obtain for the matrix element

(22) mH (g H [fmj = greif -k forall i,j>0,

k,>1

where f;, g; are the Fourier coefficients of f, g. Note that the sum in (22) must
converge, because the Hankel operators are bounded. Now m;H . [g|H_[f]7; =
0 for all 7,5 > 0 by assumption. Furthermore, m 1 H [g|H _[f]mjs1 —
miHi[g|H_[flmj = gif-; = 0, for all 4,5 > 0. For definiteness, assume
that 7. [g] # 0. Then gy # 0 for some i’ > 0. Because gy f_; = 0 for all
J > 0, it follows that f_; = 0 for all j > 0, which is equivalent to saying that
H_[f] = 0. Thus at least one of #[g],_[f] vanishes. The remaining part
(iii) = (i) is trivial. This completes the proof. O

We conclude this section with the following dimension lemma which has
a direct application in Theorem 19 that has been used in [8, Section 5]. Tt
gives a basic approximation property of the truncation effect operators. By
trigonometric polynomial in T, we mean the finite sums of form

f) = Z hie® veZ,.

j=v
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The least v such that h; = 0 for all j such that |j| > v + 1 is the degree
of the polynomial, and denoted by degh. In many practical applications,
the symbol g of the preconditioner matrix T,[g] would be a trigonometric
polynomial.

Lemma 15. Assume that f,g € C(T), n € N.

(i) If f is trigonometric polynomial with vy := deg f and n > vy, then

(n)+ _ g-(n)+ (n)— _ g-(n)—
K =K \ To,v1—1]» Kf,g - Kf,g Tn—vi1,n—1]-

(ii) If g is trigonometric polynomial v := deg f and n > vs, then

(n)+ _ (n)+ (n)— _ (n)—
Kfag o ﬂ-[o’y2il] Kfvg ’ Kfvg - Tr[niu%nil}Kfag :

(1ii) If both f, g are trigonometric polynomials, and n > 2v, where v :=

max (deg f,deg g), then the upper and lower truncation effects K](CZ)JF,
K}Z;i operate in  their reducing subspaces range(mp,—1]),
range(mp—y+1,0-1]), respectively.

(v) If at least one of f, g is a trigonometric polynomial, then rank K}T;)i <

min (n, deg f,deg g) and rank K;T;)i < min (n, 2deg f,2deg g)

Proof. All the formulae in claims (i) and (ii) are quite similar consequences
of the easily proved equations

Hilf] = mop—H lf]m—v—1) H[f] = 7wy~ H_[f]T0,,-1]

where f trigonometric polynomial and v; = deg f. Claims (iii) and (iv) are
follow immediately from claims (i) and (ii). O
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4 Smoothness of symbols

In this section we study how the smoothness of the symbol f € C(T) affect
the properties of iteration of the preconditioned system (7). We start with
recalling the definitions of approximation numbers and Schatten classes of
compact operators. A good reference for these is [5, p. 1089 - 1119].

Definition 16. Let T € L((*(Z,)) and k € N. The approzimation numbers
by finite dimensional operators are defined by:

on(T):= inf ||T— F|

rank F<k—1

In a Hilbert space the approximation numbers o (T) equal the singular
values of T. The closed ideal of compact operators LC(¢*(Z,)) can now be
divided into smaller spaces, if we look at the decay of the singular values.
Consider the following definition:

Definition 17. Let p € (0,00).

(i) By ||.|ls, denote the number in [0, c0] given by:

I1T[s, = (3" low(T)[P)7

for each T € LC(*(Z,)).

(i) By S, denote the set of such T € LC(C*(Z.)) that ||T|ls, < oc.
The set Sy is the Schatten p-class.

The set S, is always a vector space. Note that ||.||s, is not actually a norm
if p € (0,1) because the triangle inequality fails. However, for p € [1, 00) the
space S, is Banach. One more detail is needed for the proof of Theorem 19,
namely the result [9, Lemma 3.2|, which is a combination of two Jackson’s
theorems.

Lemma 18. Let r € Zy, a > 0 such that r +« > 0. f € C™*(T). For all
keZ,, set Ep(f) = infgeqp,<k ||px — flloo, where the infimum is taken over
all trigonometric polynomials py, degpr < k. Then

ﬂ.r—l—a
2r

Ey(f) < 1 Lipa(y (K + 1)~ F),

We are ready to present a result about the relation between the smooth-
ness of the symbol f, and the decay of the singular values of K ](f;)
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Theorem 19. Let f € C(T) and n € N, r € Z, and o > 0 such that
r+a>0.

(i) If f € C"*(T), then the approximation numbers ofK satisfy

r+a
o1 (K1) < T 1 iy gl oo (4 1))

:]

for k such that 0 < k < |(n—1)/2].

1) Let p € (0,00). The Schatten information about K™ s given by
f9

1
|(n+1)/2)] /p

K(n) < ﬂ.r-i-a (r) ) k —p(r+a)
165y llsy < 5oz 1F " zipacm gl Z

In particular, if p > 1/r + «, then {K }neN 1s an uniformly bounded
family in the norm of S,.

Proof. Claim (i) is proved by the following calculation. For any k > 0, we
get from Definition 17

J2k+1(K;T:])) - ranlicl}?f<2k ||K;T;) B F|| S degirp}lf;k ||K;T;) a Kz(yf,)gH?

where the last estimate holds by claim (iv) of Lemma 15. Here pj is a
trigonometric polynomial, deg p;, < k. By using formulae (10), we estimate

1K — K

pkag

< ||K pk,g || + ||ng Kz(vz,)g_H

= |Imo,n-11H+[g ]H—[f]ﬁ[o,mu — Mo M4 [9)H-[Pr]m0,n- 1]

+ |7 0,n-0U"H - [gIH 4 [FIU" o n-1) — Ton-yU"H_[g]H+ [pr]U" 70,011
= |mon-uH [g|H [f — PrlT0n 1]l

+ Mo - U H_[g]H 4 [f — pe]U" 0 n-1)l]

< 1M lglll - R Lf = palll + [1H-[g]l] - [[H4 [f = palll

< 2[lglloo - I1f = Prlloo-

where we have used Lemma 4. Now

o1 (K7y) < 2lglloo - inf_11f = pllo,

and an application of Lemma 18 proves now (i).
In order to prove claim (ii), we first note that the singular values satisfy
o (K;g =0 for £ > 0. Furthermore, for p > 0

o e e
> ai(Kfy) = Z o (Kpg )+ D oK)
j=1 k=1

[(n—1)/2]

E oak1 (K fg i



20

where the inequality holds because 02k+2(KJ(ct;)) < ang(K}Z])) for all £ > 0.
Summing things up, together with the first claim of this theorem, completes
the proof. O

The upper singular value estimate for the Hankel operators used in the proof
of Theorem 19 is not optimal. It can be shown that there is an infimal
symbol h € C(T) satisfying infrank p<n ||H+[f] — F|| = [|[H+[f] — Hi[R]]]
where rank H [h] < n. This is a consequence of the Kronecker theorem for
the finite dimensional Hankel operators and the AAK-theorem stating that
the above infimum is actually attained by a Hankel operator, rather than
just some unstructured operator. For details, see [12].
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5 On the convergence of iterations

In this section, we study the Toeplitz preconditioners for Toeplitz matrices,
such that the symbol of the preconditioner is a trigonometric polynomial.
Consider the following theorem about the Toeplitz preconditioning:

Theorem 20. Let f € C(T) satisfy the invertibility condition of claim (ii)

of Lemma 6. Let n > max (N(f),N(%)), where N(f) and N(%) are the

constants given by claim (iii) of Lemma 6. Then there is a preconditioning
sequence of trigonometric polynomials {gr}3>, (deg(gx) < k) satisfying the
following conditions.

(i) The perturbation matrices satisfy

n 1
1B 1] < 11— faelloo < 111l (5 = 98)leo

and limy_, o ||B](c"g)k|| = 0. There is a constant M < oo such that g;

satisfies the invertibility condition of claim (ii) of Lemma 6, for all
k > M. There is a constant N < oo, such that for all k > M and
n > N, T,[gx] is a nonsingular Toeplitz preconditioner for nonsingular
T,[f], as written in equation (7).

(11) Assume, in addition, that f € C™*(T) for r + a > 0. Then the pre-
conditioning sequence {gr} can be chosen so that the following speed
estimate holds:

n e 1 (r) —(r+a
(23) BN < =5 11l () laipamy ()70,

(iii) If, in addition, p > 1/(r + «), then the family {K}i;)k}kzg,neN is a
bounded set in S,.

Proof. By the definition of B;T;)k and Lemma 4 we have

1B || = ||Tn[f<§ — gl < ||f<§ — )l < ||f||oo||<} g0l

By the Stone-Weierstrass approximation theorem, we can choose a sequence
{gr} of trigonometric polynomials (deg (gx) < k) so that ||gr — %Hoo — 0. It

now follows that limy_, ||B§ng)k || = 0 for this special sequence.

To continue the proof, note that if f satisfies the invertibility condition of
Lemma 6, so does %, by a simple geometric argument. Let {g;} the sequence
of polynomials as above. For the sequence {g}, there exists a M < oo such
that for all £ > M, we have

1 1, 1.7t
(24) ||gk_?||oo<§||7-[?] [
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Note that the right hand side is finite and nonzero, because % satisfies the
invertibility condition of Lemma 6.

We now show that for all k£ > M, the Toeplitz operator T [g] is invertible.
It is well known and easy to see that for any two operator S, T in a Hilbert
space, T' boundedly invertible, we have S — T invertible if ||S|| < |||~
Now, define S := Tg] + T[;] and T := T[;]. Then |[T[g] — T[{]l| <
||7'[%]71||_1 implies that 7[gx] is boundedly invertible.

It follows that for any k > M, T,[gx] is a nonsingular, if n > N; for some
Nj < 00, by Lemma 6. By the same lemma, the Toeplitz matrix T),[f] itself
is nonsingular, if n > N(f). It follows that T,,[gx] is a nonsingular precon-
ditioner for nonsingular matrix T,,[f], if £ > M and n > max (Ng, N(f),).
However, we want to have the constants N independent of k.

By claim (iii) of Lemma 6, limsup,_, ||Tn[%]71|| := C' < oo because

Tn[%] — T[%] strongly. Let N > N(%) be so large that ||Tn[%]71|| < 2C for
all n > N. Choose M, € N so large that

L
2C

for all £ > M,. Then we can estimate for £k > M, and n > N

196 — ~]loo <
gk__ oo >
f

HnW—n@Mﬂmmrémgm—?u
A g =
< L In) <TG

But this implies that T,[gy] is invertible, as already considered above. Claim
(i) is now proved.

Now claim (ii). If f € C™*(T), so does %, by a routine argument. By
Lemma 18, we can choose the sequence {g;} to satisfy equation (23). To
prove the remaining claim, note that {gy} is an uniformly bounded family
in C(T) because it converges uniformly to a limit in C(T). It follows that

{Kj(ft;)k}kzﬂ,neN is a uniformly bounded family in S,, by part (ii) of Theorem
1 U

The companion paper [9] about Toeplitz operators contains a numerical ex-
ample, which is equally valid for the present case of Toeplitz matrices, too.
The rest of this chapter is dedicated to the interpretation of the results of
Theorem 20 from the numerical analysis point of view.

Not all preconditioning sequences of trigonometric polynomials satisfy the
speed estimate of equation (23). The preconditioning sequence {gx} can be
constructed in great many ways, still preserving the speed estimate (23) in an
asymptotic sense; see for example [7, pp.21, Ex. 2| for Lipschitz continuous
symbols. So as to the numerical construction schemes for {g;}, we refer to
the ideas presented in [2].

Theorems 7 and 19 show that( %Lfter Toeplitz preconditioning, the system

n

consists of a truncation effect K/ perturbed by a small B](c'fg). Smoothness
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of the symbol f has thus a two-fold effect on the properties for iteration of
T,[f]: For smooth f it is easier to control the “preconditioning error” Bglg)k
by increasing the degree of the trigonometric polynomial g;. And then, by
claim (ii) of Theorem 19, smoothness of the symbol f € C(T) specifies the
approximation properties of K J(c';) by lower rank matrices. This gives us speed
estimates for the Krylov subspace methods, as will be discussed below.

In [9], we treated the analogous preconditioning problem of Toeplitz op-
erators by appealing to a solution of a more general problem: How does a
Krylov subspace method perform if it is applied upon an operator consisting
of a compact K € S, perturbed by an unstructured small B. This problem is
studied in [8] and [11]. There K corresponds to the truncation effect, and B
to the perturbation operator of Toeplitz operators. In this paper we proceed
along the same lines. Now both the operators K](c'f;, B](c'?g) are finite dimen-
sional (thus compact) for each n € N. This does not stop us from treating
K}T;) as a compact operator and Bj(c'fg) as an (unstructured) perturbation.

Let us briefly reiterate some of the terminology given in [8], [10] and [11].
In the study of Krylov subspace methods applied upon K + B, it is customary
to look at how the sequence ||py(K + B)||+ behaves as k — co, where {p;} is
a sequence of normalized (pg(1) = 1) degree k polynomials associated to the
Krylov subspace method in question. Degree k of the polynomial corresponds
to the number of iteration steps computed. For a brief reminder why this is
done, look at the discussion at the end of this section.

A function theoretic argument proves the following theorem where the
normalization of the polynomials {py} is slightly different, but without effect

on the asymptotics as k — oo:

Theorem 21. Let p > 1. Let H be Hilbert space and S,(H) be the Schatten
p-class. Take K € S,(H), K #0, and let B € L(H) be a small perturbation
such that 1 ¢ o(K + B). Then there exists an essentially monic sequence of
polynomials {py }32,, degpr < k, such that for all parameter values § € (0,1]:

(25)  |lpx(K + B)||'/*

1/k
- || B| K°/P 1-p
<p*(|IBI[ + [|K]|s, k~77) (Hi K||s+1 e,

Furthermore, limy,_, |Pr(1)| > 0.
Proof. See [8, Theorem 6.7]. O

The expression “essentially monic” means that the leading term of all p;
is a same nonzero complex number. The fact that limy_, ., [fx(1)| > 0 makes
it possible to normalize p; for large k, and define

_ ()

Pe(1)
Now the sequence {pj} has the correct normalization p(1) = 1, and the
speed estimate like (25) holds also for p, with an additional multiplicative

pr(N)
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constant sequence |pp(1)|7'/*, for all k large enough. Note that because

limy_, o0 |5%(1)]71/% = 1, the effect of the incorrect normalization of 7, does

not change the nature of speed estimate (25) in an asymptotic sense.
Theorem 21 tells us that in the first stages the iteration the convergence

factor ||px(K + B)||* of order || B|| + | K|]s, k™o decreases (the “superlinear”
stage) and is asymptotically only of order || B|| (the “linear” stage). Moreover,
the rate of decrease of the convergence factor is dictated by the Schatten
class of K. The concept “superlinear” is usually used to describe something
that happens in the asymptotics of the speed estimates. Here we are a
bit unorthodox (as we have been in [9]) and regard “superlinear” stage of
an iteration as those iteration steps when “speed is being gained”. By the
“linear” stage we of course refer to the analogous phenomenon.

The following corollary of Theorem 21 is our convergence estimate for the
iteration of B](c'?g) + K](c'f;, the matrix of the preconditioned system (7). We
invite the reader to regard g as an element of the preconditioning sequence
{gr} of Theorem 20, with increasing degree k of the preconditioner.

To say that f € C(T) is strictly analytic ( strictly coanalytic) means that
the negatively (positively) indexed Fourier coefficients of f vanish. A strictly
analytic symbol f € C(T) has an analytic continuation f(z) inside the unit
disk of the complex plane, and f(0) = 0.

Corollary 22. Letr € Z,, r > 0 be such that r + a > 0. Assume that the
nonconstant f,g € C"*(T) satisfy the invertibility condition of Lemma 6.
Furthermore, assume that not both f,g are simultaneously strictly analytic
or coanalytic. Let Ny be so large that both T,[f] and T,|g] are invertible for
alln > Ny. Then the following holds:

(i) Forp > 1/(r + «), there are constants Cy,Cs, and Na, such that
0<Ci < |IKM]s, < Cy < o0
for all n > Ns.

(ii) Assume, in addition, that r + o > 1. For each fited n > N :=
max (N1, Na), there exists an essentially monic sequence polynomials
{ﬁ;n)},;“;l such that for all parameter values 5 € (0, 1]:

~(n) ¢ 7-(n) (n)
(26) |15k (Kf,g + Bf,g)”l/k
<" (1L = Follos + Cok™/7) -

1/k
. <||1— F9lloo KPP +1> /()

C1
Furthermore, limy_. o, ﬁgcn)(l) exists is bounded away from the origin.

Proof. We prove claim (i) about the constants C; and Cy. By the definition
of the Schatten norm, always

1K = ou(K) < KD,
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By Lemma 13, lim,, ||Kf || = max ( ;). To show that the
lower bound C; > 0 exists for n large enough we have to show that it is not
possible to have Ky, = K;; = 0 under the assumptions of this Corollary.

By Lemma 14, Ky, = K. = 0 if and only if one of the following conditions
holds: (1) f is constant, (2) g is constant, (3) both f and g are strictly ana-
lytic, (4) both f and g are strictly coanalytic. However, all these possibilities
are ruled out in the assumptions. So C; > 0 exists. The upper bound C,
exists, by claim (iii) of Theorem 20. The latter claim (ii) is a straightforward
application of Theorem 21. O

An analogous theorem to Theorem 21 can be proved for the Schatten
classes p € (0, 1], see [8, Theorem 6.9]. An analogous corollary to Corollary
22 for p € (0,1] is then a triviality. This establishes a convergence speed
estimate of type (26) for all Toeplitz systems with symbol f € C™*(T) for
r + a > 0, without the extra smoothness assumption r +a > 1.

What is the meaning of the requirement in Corollary 22 that not both
f, g are allowed to be, say, strictly analytic? For technical reasons only, the
convergence estimate (25) is written so that the Schatten norm of the trun-
cation effect is in the denominator. Suppose we could precondition optimally
so that g = % and the perturbation part B( ") = 0 for all n. Then if both f
were g are strictly analytic, then f is, by deﬁnltlon would be an outer ana-
lytic function. But this i 1s 1mp0551ble because f(0) = 0 by strict analyticity.
We conclude that if g = 3, not both f and g can be strlctly analytic.

As we have seen, the upper bounds for both ||B )|| and ||ng |s,, given
in Theorems 19 and 20, are not dependent of n, the dlmensmn of the prob-
lem. It follows that the right hand side of the convergence estimate (26) is
independent of n for n large. In order to obtain a similar speed estimate
for the corresponding correctly normalized polynomial sequence satisfying
pgc")(l) = 1, with the right hand side independent of n, we would have to
show at least that

inf lim p,(c )(1) > 0.

n>N k—o00

Even to look at this infimum superficially, it requires long and complicated
calculations about the limit process of the spectrum of B](c’fg)—l-KJ({g, asn — o0.
This is no longer a subject of this paper, because our aim was to go as far
as we can, without explicitly looking at the (difficult) spectral properties of
the preconditioned operator.

How does this all relate to a particular Krylov subspace algorithm, namely
GMRES? The GMRES method for the inversion of nonsymmetric problems
can be regarded as a minimization algorithm that (at least implicitly) gen-
erates polynomial sequences to approximate the value of resolvent in certain
points; this is the minimization of residuals. If the GMRES generates the
polynomial sequence s, with deg(s;) = k and si(1) = 1, corresponding to
the normalized sequence p given after Theorem 21. Then the residual d
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after k steps is of size ||sg(K + B)dp||, and we have
27) k(K + B)dol| < |[px(K + B)dol| < [[px(K + B)]| ||doll,

see [8, Proposition 2.2| or [10, Chapter 1|. The former inequality is true
because s;, is optimal polynomial of degree k for the initial residual dy, and
Pr is possibly worse than optimal for the same initial residual dy. This is
to say that the upper estimates we have for p, are as well upper estimates
for the GMRES residuals. The same kind of result is true so as to the error
sequences with quite obvious modifications for the reasoning — we again
refer to [8] or [10, Chapter 1].



27

References

[1] R. Chan. Toeplitz preconditioners for Toeplitz systems with nonnegative
generating functions. IMA J. Numer. Anal., 11:333-345, 1991.

[2] R. Chan and Kwok-Po Ng. Toeplitz preconditioners for hermitian
Toeplitz systems. Linear Algebra and its Applications, 190:181-205,
1993.

[3] R. Chan and Man-Chung Yeung. Circulant preconditioners constructed
from kernels. STAM J. Numer. Anal., 29(4):1093-1103, 1992.

[4] R. Chan and Man-Chung Yeung. Circulant preconditioners for complex
Toeplitz matrices. STAM J. Numer. Anal., 30(4):1193-1207, 1993.

[5] N. Dunford and J. Schwarz. Linear Operators; Part II: Spectral Theory.
Interscience Publishers, Inc. (J. Wiley & Sons), New York, London,
1963.

[6] I.C. Gohberg and I.A. Feldman. Convolution Equations and Projection
Methods for Their Solution, volume 41 of AMS Translations of Mathe-
matical Monographs. American Mathematical Society, 1974.

[7] Y. Katznelson. Introduction to Harmonic Analysis. Dover Publications,
Inc., New York, 2 edition, 1976.

[8] J. Malinen. On the properties for iteration of a compact operator with
unstructured perturbation. Helsinki University of Technology, Institute
of mathematics, Research Report, A360, 1996.

[9] J. Malinen. Properties of iteration of Toeplitz operators with Toeplitz
preconditioners. BIT Numerical Mathematics, 38(2), June 1998.

[10] O. Nevanlinna. Convergence of Iterations for Linear Equations. Lectures
in Mathematics ETH Ziirich. Birkhduser Verlag, Basel, Boston, Berlin,
1993.

[11] O. Nevanlinna. Convergence of Krylov-methods for sums of two opera-
tors. BIT Numerical Mathematics, 36(4):775-785, 1996.

[12] J. R. Partington. An introduction to Hankel operators, volume 13 of
Student terts. London Mathematical Society, London, 1988.

[13] W. Rudin. Functional Analysis. McGraw-Hill Book Company, New
York, TMH edition, 1990.

[14] G. Strang. A proposal for Toeplitz matrix calculations. Studies in
Applied Mathematics, 74:171-176, 1986.



(continued from the back cover)

A403

A402

A400

A399

A398

A397

A396

A395

A393

A392

A391

A390

Saara Hyvonen and Olavi Nevanlinna
Robust bounds for Krylov method, Nov 1998

Saara Hyvonen
Growth of resolvents of certain infinite matrice, Nov 1998

Seppo Hiltunen
Implicit functions from locally convex spaces to Banach spaces, Jan 1999

Otso Ovaskainen
Asymptotic and Adaptive Approaches to thin Body Problems in Elasticity

Jukka Liukkonen
Uniqueness of Electromagnetic Inversion by Local Surface Measurements,
Aug 1998

Jukka Tuomela
On the Numerical Solution of Involutive Ordinary Differential Systems, 1998

Clement Ph., Gripenberg G. and Londen S-0
Holder Regularity for a Linear Fractional Evolution Equation, 1998

Matti Lassas and Erkki Somersalo
Analysis of the PML Equations in General Convex Geometry, 1998

Jukka Tuomela and Teijo Arponen
On the numerical solution of involutive ordinary differential equation systems,
1998

Hermann Brunner, Arvet Pedas, Gennadi Vainikko
The Piecewise Polynomial Collocation Method for Nonlinear Weakly Singular
Volterra Equations, 1997

Kari Eloranta
The bounded Eight-Vertex Model, 1997

Kari Eloranta
Diamond Ice, 1997



(inside of the back cover, not to be printed)



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are
available at http://www.math.hut.fi/reports/ .

A412

A411

A410

A408

Marko Huhtanen
Ideal GMRES can be bounded from below by three factors, Jan 1999

Juhani Pitkranta
The first locking-free plane-elastic finite element: historia mathematica,
Jan 1999

Kari Eloranta
Bounded Triangular and Kagomé Ice, Jan 1999

Ville Turunen
Commutator Characterization of Periodic Pseudodifferential Operators,
Dec 1998

ISBN 951-22-4354-7
ISSN 0784-3143
Edita, Espoo, 1999



