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31 IntroductionA standard line of attack in the solution of linear systems is the following:First, the �big lines� of the problem are investigated, so that a rough approx-imation of the inverse operator, called preconditioner, can be found. Theapplication of a preconditioner eliminates the �large amount of disorder� inthe problem. A successfully preconditioned linear operator is, in some ap-propriate sense, �almost� an identity operator. The �remaining disorder� iseliminated by various iterative procedures (Krylov subspace methods, suchas CG of GMRES), possibly using parallel computation techniques. In thispaper, we apply these ideas to a special class of matrices, namely Toeplitz ma-trices. It seems that Toeplitz matrices appear practically throughout all theapplied mathematics. For example, they are used in the numerical solutionof convolution type equations when they approximate an in�nite dimensionalobject (e.g. Toeplitz operator), see [6].Let us consider some requirements that a good preconditioner shouldhave. In practice, the preconditioning can be done either before or after thediscretization of the problem. In the �rst way, the preconditioning is done tothe original (in�nite dimensional) operator abstractly �on a piece of paper�,and the iterator software works with (a �nite dimensional discretization of)the preconditioned operator. For the parallel implementation of the iteratorto be e�ective, the preconditioned operator should, in some sense, be easily�decomposable� into smaller �blocks� that do not communicate too much witheach other; the reader is instructed to think of the structures that resemblethe decomposition of a compact operator into its generalized eigenspaces. Itis also clear that the iteration of the �blocks� should converge fast for a goodpreconditioner.The second way to precondition is the following: The in�nite dimensionalproblem is discretized �rst, and then the �nite dimensional matrix of the dis-cretized problem is preconditioned. Now the preconditioned matrix wouldnot necessarily exists in the memory of the computer, because this wouldrequire a numerical computation of a matrix-matrix product. Instead, thepreconditioner is applied inside each iteration loop over and over again, sothat only matrix-vector products are calculated by the computer software. Itis now desirable that the preconditioner-vector product is numerically con-venient.In 1986, G. Strang [14] proposed that a circulant Toeplitz precondi-tioner could be applied on Toeplitz matrices. An iterative conjugate gradientmethod (CG) is then used to complete the inversion. Several other classes ofToeplitz preconditioners have been studied by many authors; band Toeplitzpreconditioners for systems with positive symbols [1], circulant Toeplitz pre-conditioners associated to convolution kernels [3], circulant Toeplitz precon-ditioners with complex symbols [4], preconditioners arising from �inverse sym-bol� [2], to mention few.The common foundation for all these approaches is the possibility of cal-culating the Toeplitz-vector product in n logn time by FFT, where n is the



4dimension of the matrix (regarded as the level of discretization if the originalproblem is in�nite dimensional). It follows that the calculation of a single it-eration step for a Toeplitz system is fast, but the convergence of the iterationis poor, without proper preconditioning. Because of the mentioned n logncomplexity property, it seems a computationally attractive alternative to usea Toeplitz matrix as a preconditioner to a Toeplitz system. Of course, if theiteration of the preconditioned system would still converge poorly, or a goodpreconditioner could not easily be found, this attraction would be totally lost.Fortunately, this is not the case, as indicated by the results of this paper. Weremark that a plenty of results about the clustering of the spectrum of suchpreconditioned systems have been presented by other authors, as discussedabove. In these works, the superlinear convergence of CG is established forsuch Toeplitz systems. These results have been obtained by matrix algebratools which is a quite di�erent approach from ours.We now discuss the outline of this paper. We apply approximation the-oretic methods upon the symbol (also known as the generating function)f 2 C(T) of the n� n Toeplitz matrix Tn[f ]. This gives us a n� n Toeplitzpreconditioner Tn[g] for the original Toeplitz matrix Tn[f ]. We remark that,contrary to the case of Toeplitz operators T [f ], Tn[f ] does not uniquelydetermine its symbol f . In our approach, much of this uniqueness problemresolves because we are more interested in the families of matrices fTn[f ]gn�1for �xed f 2 C(T), rather than any of the matrices Tn[f ] alone. This set-ting is the one adopted in [6], where Toeplitz matrix equations of increasingdimension n serve as discretized Toeplitz operator equations.In our approach, the Toeplitz preconditioned operator is divided into twoparts. First of these parts � truncation e�ect K(n)f;g � is what remains largein operator norm, even if the Toeplitz preconditioning is successfully chosen.This is the part of problem that has to be �iterated away�. The other part �perturbation matrixB(n)f;g � is a Toeplitz matrix of small norm, correspondingto the nonoptimality of the Toeplitz preconditioning. Note that after thepreconditioning, one should aim to kill only the truncation e�ect part K(n)f;g ,at least if n is large. The iteration of the Toeplitz part B(n)f;g is increasinglyexpensive with increasing n, and thus should not be attempted.As the dimension n grows, the e�ect of the smoothness of the symbol fwill be seen in the limit process. Smoothness is measured by requiring therth derivative of symbol to be Lipschitz continuous of index �, for r+� > 0.Roughly, matrices Tn[f ] with smooth symbols f are computationally moresimple and remain that way, for large n. The smoothness of f will getencoded into the decay of singular values of the truncation e�ect part K(n)f;g ,in a manner that is essentially independent of n. The performance of theiterative solver depends upon this decay rate, as discussed in [8], [10] and[11]. In other words, it is not the cost of a single iteration step alone thatgives the whole price of the computation. We also need to consider howmany steps we have to calculate in order to get the required precision. Ourconclusion is that the Krylov subspace method (such as GMRES) appliedupon the preconditioned system initially converges at increasing speed (or



5�superlinearly�), until the truncation e�ect part has been �killed o�� and thesmall Toeplitz matrix part begins to dominate.We emphasize that our results do not require any normality of the ma-trices we study. The symbols of Toeplitz matrices can be complex valuedcontinuous functions, and our convergence results are equally valid for theGMRES algorithm for nonsymmetric systems, as they are for the CG algo-rithm for the symmetric systems. In our approach, the decay of the singularvalues is the valuable information that we know about the linear operatorsof interest. The preconditioned system, being a product of two Toeplitz ma-trices, is not an object whose spectrum is easily available. In this work wetry to say as much as possible about the properties of iteration for the pre-conditioned system, without saying much (nontrivial) about the spectrum.In the strategy we have adopted, there is a quite unavoidable cost wehave to pay. In the �nal speed estimate for the convergence, a generallyunknown constant remains, measuring the ill-conditioning of the precondi-tioned system. To actually determine this constant, we would have to knowthe spectrum (with multiplicities) of the preconditioned system. This is thebad news. The good news is that the e�ect of the constant (or equivalently;the normalization of the polynomial sequence in equation (26)) is not signi�-cant in the asymptotics of the estimate, as the iteration number k !1. Thismakes it possible to draw the conclusion about the superlinear convergenceof iteration.Our approach resorts to a multitude of operator theoretic arguments thatare based upon the Hankel and Toeplitz structure of the problem. The toolsof matrix algebra are not central for us. The abstract numerical analysisframework is mostly from [10]. The treatment here is analogous to thatgiven in the companion paper [9] for in�nite dimensional Toeplitz operators.In this sense, the present work di�ers from what is already done in theliterature. We remark that, in comparison to [9], a lot of extra algebraicstructure emerges, as we have to study two truncation e�ects and some detailabout their interaction. We conclude that [9] can be seen as an instructivelimit case of this work, when the dimension of the Toeplitz matrix becomesin�nite.



62 De�nitions and basic theoryWe use the following notations throughout the paper: Z is the set of integers.Z+ := fj 2 Z j j � 0g. N := fj 2 Z j j > 0g. T is the unit circleof the complex plane. C(T) denotes the class of continuous functions on Tequipped with sup-norm jj � jj1. Given f 2 C(T) and � > 0, the numberjjf jjLip�(T) is de�ned byjjf jjLip�(T) = jjf jj1 + supx6=y jf(x)� f(y)jjx� yj�(1)is called the Lipschitz norm of f . Lip�(T) � C(T) is the set of such f forwhich the expression (1) is �nite. For r 2 Z+, Cr;�(T) are those functionswhose r.th derivative is in Lip�(T). If � = 0, then Cr;�(T) := Cr(T). If His a Hilbert space, then L(H) denotes the bounded and LC(H) the compactlinear operators in H.Bi-in�nite sequences of complex numbers are denoted ~a := fajg1j=�1.The set of such square summable sequences are denoted by `2(Z). We de�nethe following operators in sequence spacesDe�nition 1. Orthogonal projections in `2(Z) are(i) the interval projections for j; k 2 Z:�[j;k]~a := fwjg; wi = ai for j � i � k; 0 otherwise;�j := �[j;j];(ii) the future and past projections:�+ := �[1;1]; �� := �[�1;�1];(iii) the composite projections:��+ := �0 + �+; ��� := �0 + ��:We de�ne the spaces of semi-in�nite, square summable sequences by`2(Z+) := ��+`2(Z) and `2(Z�) := ��`2(Z). The unitary bilateral shift Uin `2(Z) is given by U~a := fwjg with wj = aj�1:(2)It is well known that the operator polynomials of U and U� = U�1 forma normed commutative subalgebra in L(`2(Z)), whose norm closure has aparticularly simple commutative C�-algebra structure. This is the content ofthe following lemma.Lemma 2. Let A be the operator norm closure in L(`2(Z)) of the set ofoperators p(U; U�), where p ranges over all polynomials p(x; y) with complexcoe�cient. Then A is a commutative C�-algebra that is isometrically isomor-phic to C(T). Moreover, there is an isometric isomorphism 	 : C(T) ! Awhich satis�es:



7(i) 	 �f = (	f)�(ii) (8� 2 T) : f(�) = � =) 	f = UProof. First note that �(U) = T, because U is a bilateral shift. Because Uand U� commute, the claim follows from [13, Theorem 11.19].In the light of previous lemma, let us denote the elements of A by C[f ] := 	f� the convolution operator with symbol f 2 C(T). Now we are in positionto introduce the Toeplitz operators and matrices, together with the causaland anti-causal Hankel operators and matrices.De�nition 3. Let f 2 C(T) be arbitrary and C[f ] be the convolution oper-ator with symbol f .(i) The Toeplitz operator T [f ] with symbol f is the operator in L(`2(Z+))de�ned by T [f ] := ��+C[f ]��+:(ii) The causal (anti-causal) Hankel operator H+[f ] (H�[f ]) with symbol fis the operator in L(`2(Z+); `2(Z�)) (L(`2(Z�); `2(Z+))) de�ned byH+[f ] := ��+C[f ]�� (H�[f ] := ��C[f ]��+):(iii) The n�n Toeplitz matrix Tn[f ] with symbol f is the operator in L(`2(Z+))de�ned by Tn[f ] := �[0;n�1]C[f ]�[0;n�1](iv) The n�n causal (anti-causal) Hankel matrix H+[f ] (H�[f ]) with symbolf is the operator in L(`2(Z)) de�ned byH+[f ] := �[0;n�1]C[f ]�[�n;�1] (H�[f ] := �[�n;�1]C[f ]�[0;n�1]):In this paper, all the n � n matrices are regarded as operators of forms�[0;n�1]T�[0;n�1], �[0;n�1]T�[�n;�1] or �[�n;�1]T�[0;n�1], where T 2 L(`2(Z)).The identi�cation of Cn (with Euclidean inner product) and range(�[0;n�1])is obvious. With this identi�cation, all the matrices are naturally interpretedas �nite dimensional operators in space `2(Z). The matrices are regarded in-vertible (or nonsingular) in Cn when they are bijections in range(�[0;n�1]).Clearly this is not equivalent with the invertibility when the matrix is re-garded as an operator in the whole space. Inverse of a nonsingular n � nmatrix Tn is de�ned by the Moore-Penrose pseudoinverseT�1n = lim�!0+ (T �nTn + �In)�1T �n 2 L(`2(Z+));where In denotes the identity matrix of Cn, identi�ed with the projection�[0;n�1]. Clearly this de�nition of matrix invertibility is in harmony with the



8usual notion of nonsingularity of a matrix. The ordinary inverse matrix isjust extended with zeroes, from Cn to the whole of `2(Z+).The symbols of Hankel operators, Hankel matrices and Toeplitz matrixare not unique. However, as n ! 1, all the Fourier coe�cients of f willappear in in�nitely many Toeplitz matrices Tn[f ]. In this paper, we are moreinterested in the families fTn[f ]gn2N of Toeplitz matrices with a commonsymbol f , rather than any of Tn[f ] separately. A special attention is payedto the limit processes as n ! 1, but f is kept �xed. In some sense, thisresolves the nonuniqueness problem of the symbolThe following norm estimates are basic:Lemma 4. It is true that for any f 2 C(T) and n 2 NjjT [f ]jj = jjf jj1;(3) jjH�[f ]jj � jjf jj1;(4) jjTn[f ]jj � jjf jj1; jjH(n)�[f ]jj � jjH�[f ]jj:(5)Proof. For equation (3) see [6]. Estimate (4) is an easy consequence ofLemma 2 giving the norm of the convolution operator jjC[f ]jj = jjf jj1 andthe fact that the norm of the orthogonal projections equal 1. The samecomment goes also for equations (5).Note that the estimate (5) for Hankel norm is nothing but optimal. TheNehari extension theorem characterizes the norm of Hankel operatorH+[f ] asthe in�mum inf jjf + gjj over all g with vanishing positively indexed Fouriercoe�cients. We use the estimate (5) to connect the smoothness of the symbol(via trigonometric polynomials and Jackson's theorems) to the singular valuedecay of certain Hankel operator.The invertibility condition for Toeplitz operators in terms of symbols isquite simple to state, see [9] or [6]:Proposition 5. Let f 2 C(T) be arbitrary. Then T [f ] is invertible if andonly if 0 =2 f(T) and Ind (f) = 0, whereInd (f) := 12� arg f(ei�)j2�0For Toeplitz matrices things are not so simple. A simple counter exampleshows that a given nonunique symbol does not determine the invertibilityof Tn[f ] as in Proposition 5, but the dimension n is also important. Thefollowing lemma is a slight modi�cation of [6, Theorem 2.1].Lemma 6. Let f 2 C(T) be arbitrary. Then the following are equivalent:(i) lim infn!1 jjTn[f ]�1jj <1,



9(ii) f satis�es the invertibility condition of Proposition 5,(iii) There is a N(f) 2 N such that Tn[f ] is invertible in Cn for n > N(f).Furthermore, if ~b 2 `2(Z+) is arbitrary, then limn!1 ~an = ~a, where~bn = Tn[f ]~an and ~b = T [f ].Proof. The implications (i) ) (ii) and (ii) ) (iii) follow from [6, Theorem2.1]. Assume that claim (iii) holds. Let n > N(f). NowTn[f ]�1~b = Tn[f ]�1~bn = ~an ! ~a := T [f ]�1~bfor all ~b 2 `2(Z+) by assumption, where ~bn = �[0;n�1]~b. It follows from theBanach�Steinhaus Theorem that jjTn[f ]�1jj � C < 1 for n � N(f). Butthen lim infn!1 jjTn[f ]�1jj � lim supn!1 jjTn[f ]�1jj � C <1, and claim (i)holds.We complete this section with a word of explanation. In [6], the Toeplitzoperators are de�ned as the closure of polynomials p(S; S�) for the unilateralshift S on `2(Z+). In our earlier work [9], S was unitarily dilated into a bi-lateral shift. By using functional calculus (i.e. Lemma 2), we obtain discreteconvolution operators, associated to symbols f 2 C(T). Finally, the Toeplitzoperators were recovered as compressions of the convolution operators. Indiscrete time control theory, one could regard the bilateral (time) shift thestarting object, and unilateral shift only something that we get when futureand past projections (causality) enter the game.Now, when treating the Toeplitz matrices, the unilateral shift has lostmuch of its special appeal over the bilateral shift. For this reason, we havehere only introduced the bilateral shift and its polynomials as convolutionoperators, and Toeplitz matrices as their compressions. Note that, in a sense,(inverse of the) Toeplitz matrix is simultaneously an �approximation� to boththe (inverse of the) convolution operator as well as to the (inverse of the)Toeplitz operator, all sharing the same symbol. Because the convolutionand Toeplitz operators are two fundamentally di�erent kinds of objects, the�approximation process� is rather interesting. This work, together with [9],sheds some indirect light upon this process through the study of the trunca-tion e�ect matrices, as de�ned later. Trivially, the Toeplitz matrices couldbe described by purely matrix algebraic notions, but this would be inconve-nient in the present approach; the description of the truncation e�ect requiresHankel operators, and thus either unilateral of bilateral shifts.The reader is instructed to see that all the di�erent (but equivalent) waysof introducing the Toeplitz operators and matrices are matters of technicalconvenience, preferences and traditions, rather than re�ections of such deepmathematical structure that would require some particular type of formalism.



103 Preconditioning of Toeplitz matricesIn this section, we develop a Toeplitz preconditioning theory for Toeplitzmatrices, in the spirit of our earlier work [9] for Toeplitz operators. Thedimension of the Toeplitz matrix is denoted by n 2 N. By ~a = fajg1j=0denote a sequence in `2(Z+), and de�ne ~an := �[0;n�1]~a. Now ~an can beregarded as an arbitrary element of Cn, as considered above. Our problemis to �nd ~bn 2 Cn satisfying ~an = Tn[f ]~bn(6)for all n large enough. For this to be possible, we assume that the conditionsof Lemma 6 hold. Let us multiply the both sides of equation (6) by aninvertible Toeplitz matrix Tn[g] for a suitably chosen symbol g. This gives:Tn[g]~an = Tn[g]Tn[f ]~bn;or equivalently, in the form of a �xed point problem:~bn = (In � Tn[g]Tn[f ])~bn + Tn[g]~an;(7)where In is the identity matrix of Cn. We say that the equation (7) has beenToeplitz preconditioned, at least if Tn[g] is in some sense close to Tn[f ]�1,see [1] and [2]. The matrix In � Tn[g]Tn[f ] is almost Toeplitz, but not quite.The following decomposition theorem makes this point precise:Theorem 7. Assume that f; g 2 C(T) and n 2 N. Then In � Tn[g]Tn[f ]can be decomposed as:In � Tn[g]Tn[f ] = (Tn[gf ]� Tn[g]Tn[f ]) + Tn[1� gf ])(8) =: K(n)f;g +B(n)f;g ;where K(n)�f;g is the n� n matrix given byK(n)f;g := K(n)+f;g +K(n)�f;g ;(9)with the n� n matricesK(n)+f;g := �[0;n�1]H+[g]H�[f ]�[0;n�1](10) K(n)�f;g := �[0;n�1]UnH�[g]H+[f ]U�n�[0;n�1]:The matrix B(n)f;g is a n� n Toeplitz matrix.Proof. The claim of equation (8) if trivial, because the mapping f 7! Tn[f ]is linear. In order to prove equations (9) and (10), we writeK(n)f;g := �[0;n�1] �C[gf ]� C[g]�[0;n�1]C[f ]��[0;n�1](11) = �[0;n�1] �C[gf ]� C[g](I � �� � �[n;1])C[f ]� �[0;n�1]= �[0;n�1] (C[g]��C[f ])�[0;n�1] + �[0;n�1] �C[g]�[n;1]C[f ]��[0;n�1];



11where the last equality holds because C[gf ]�C[g]C[f ] = 0 by Lemma 2. The�rst term in the left of (11) is equal to �[0;n�1]H+[g]H�[f ]�[0;n�1] = K(n)+f;g .The equations (9),(10) are proved if we show that the latter term in the leftof (11) is equal to �[0;n�1]UnH�[g]H+[f ]U�n�[0;n�1] = K(n)�f;g .It is a matter of an easy computation that �[0;n�1]C[g]�[n;1]= �[0;n�1]UnH�[g]U�n and �[n;1]C[f ]�[0;n�1] = UnH+[f ]U�n�[0;n�1]. Com-bination of these gives�[0;n�1] �C[g]�[n;1]C[f ]��[0;n�1] = �[0;n�1]H�[f ]UnU�nH+[f ]�[0;n�1]= �[0;n�1]H�[f ]H+[f ]�[0;n�1] = K(n)�f;g :This completes the proof of equations (9) and (10). To conclude the proof,we note that B(n)f;g is Toeplitz by de�nition.Now that we have our basic objects in hands, it it time to name them. Wepropose the following:De�nition 8. Let K(n)�f;g , B(n)f;g be as in Theorem 7. The matrix K(n)f;g is thetruncation e�ect matrix of order n. The matrices K(n)+f;g , K(n)�f;g are the upperand lower truncation e�ect matrix of order n, respectively. The matrix B(n)f;gis called the perturbation matrix of order n.We call matrix B(n)f;g perturbation matrix because it is regarded an an un-structured perturbation to the (compact) truncation e�ect K(n)f;g in the frameof reference of [8], as studied in Section 5. An analogous theorem to Theorem7 for Toeplitz operators is [9, Theorem 3.1]. There we introduced the trunca-tion e�ect operator Kf;g := H+[g]H�[f ]. Clearly K(n)+f;g = �[0;n�1]Kf;g�[0;n�1].We proceed to discuss the implications of Theorem 7, especially from thenumerical analysis point of view. We also compare the analogous Toeplitzmatrix and operator results.We �rst remark the that left hand side of (8) does not depend uponthe Fourier coe�cients of f , g with index j satisfying jjj > n. However,both the operators K(n)f;g , B(n)f;g depend on all the Fourier coe�cients of fand g. Di�erent choices of the symbols f , g give di�erent decompositionsin the right of (8) for the same preconditioned Toeplitz systems given inthe left of (8). This is in contrast to the case of Toeplitz operators whereT [f ] and its symbol f 2 C(T) are in bijective correspondence. The Toeplitzoperator truncation e�ect is always compact for f 2 C(T), see [8, Theorem3.3]. A Toeplitz operator is compact if and only if it vanishes, by a spectralargument. It follows that the decomposition of I � T [g]T [f ] into truncatione�ect Kf;g and perturbation operator Bf;g is unique in [9, Theorem 3.1].For the Toeplitz matrices, K(n)f;g can be even Toeplitz; consider the circulantexample f(ei�) := e�i(n�1)� + ein� and g(ei�) := f(e�i�). ThenK(n)f;g = Tn[fg]� Tn[g]Tn[f ] = 2In � In = In:



12However, this example works only because the symbols f and g depend onthe dimension n of the Toeplitz matrix. For the same f and g as above,K(n+1)f;g is no longer Toeplitz. Because our results are stated for �large n�,these �accidents� play no signi�cant role.Fix f; g 2 C(T). The truncation e�ect can further be decomposed asK(n)f;g = K(n)f; 1f +K(n)f;(g� 1f ):(12)The �rst part K(n)f; 1f is a measure how far from Toeplitz the matrix Tn[f ]�1 is.Namely, Tn[f ]�1 � Tn[ 1f ] = K(n)f; 1f Tn[f ]�1:This part is independent of the preconditioners symbol g. The singular valuedecay of the right hand side can be bounded above by an estimate not de-pending on n, if some smoothness of f is assumed. The latter part K(n)f;(g� 1f )in (12) is due to the nonoptimality of the preconditioning symbol g. As nincreases, the major part of the computational cost of nonoptimal precondi-tioning is in the Toeplitz perturbation matrix B(n)f;g , not in K(n)f;(g� 1f ), as willbe implied by this work.The rest of this section is dedicated to a more detailed study of thematrices K(n)�f;g . We present some connections to the Toeplitz operator caseas studied in [9]. Also some results are established that lead to the proofof Theorem 20. It is interesting to see in what sense the Toeplitz matrixcase given in Theorem 7 relates to the Toeplitz operator case given in [9] asn!1. Lemma 10 gives us the result, but �rst we need a functional analyticproposition.Proposition 9. Let H be a Hilbert space and B;Bn 2 L(H) for n 2 N. LetK 2 LC(H). Then the following holds:(i) If Bnx! Bx for all x 2 H (i. e. Bn ! B strongly), thenjjBnK � BKjj ! 0.(ii) If B�nx! B�x for all x 2 H, then jjKBn �KBjj ! 0.Lemma 10. Let the operators Kf;g, K(n)�f;g be de�ned in Theorem 7. Thenlimn!1 jjKf;g �K(n)+f;g jj = 0(13)and limn!1 jjK(n)�f;g ~ajj = 0 for all ~a 2 `2(Z+);(14)i. e. K(n)�f;g ! 0 strongly. Moreover, K(n)f;g ! Kf;g strongly.



13Proof. To prove (13), writeKf;g �K(n)+f;g = �[n;1]Kf;g + �[0;n�1]Kf;g�[n;1]:Now use Proposition 9 with Bn = B�n = �[n;1] and B = 0. Because Kf;g iscompact (see [9]), equation (13) follows.The proof of (14) is somewhat more technical. BecauseK(n)�f;g = �[0;n�1]UnH�[g]H+[f ]U�n�[0;n�1]by Theorem 7 and �[0;n�1]UnH�[g] is bounded, it su�ces to show thatH+[f ]U�n�[0;n�1] !0 strongly. To this end, let � > 0 and ~a 2 `2(Z+) be arbitrary. Choose m 2 Nso large that jj�[m;1]~ajj < �=(2jjf jj1). It is a matter of easy manipulationto show that H+[f ]U�n�[0;n�1] = (��+U�n)C[f ]�[0;n�1]. Using this we mayestimate for n � m:jjH+[f ]U�n�[0;n�1]~ajj � jj(��+U�n)C[f ]�[0;m�1]~ajj+ jj(��+U�n)C[f ]�[m;1]~ajj(15)The second part of (14) is less than �=2, because jj(��+U�n)jj = 1, jjC[f ]jj =jjf jj1 and jj�[m;1]~ajj < �=(2jjf jj1). The �rst part is under �=2 if n is largeenough, because the unilateral backward shift ��+U�n ! 0 strongly. Thiscompletes the proof.The operator sequence K(n)�f;g does not generally converge in norm. When itdoes, the operator family itself is trivial:Corollary 11. Let the operators Kf;g, K(n)�f;g be de�ned in Theorem 7. Thenthe following are equivalent:(i) K(n)f;g ! Kf;g in norm,(ii) K(n)�f;g ! 0 in norm,(iii) H�[g]H+[f ] = 0 for all n 2 N,(iv) K(n)f;g = 0.Proof. The only nontrivial part is to check that K(n)�f;g ! 0 in norm impliesH�[g]H+[f ] = 0. So assume that K(n)�f;g ! 0 in norm. By feigi2Z denote thenatural basis of `2(Z). Let i; j 2 Z�, and n < max (�i;�j). An elementarycalculation, based upon formula (10), gives the following:hei;H�[g]H+[f ]eji = Dei+n; K(n)�f;g ej+nE(16)The left hand side of (16) does not depend upon n. The right hand sidedoes and approaches zero, because K(n)�f;g ! 0 in norm. It follows thathei;H�[g]H+[f ]eji = 0 for all i; j 2 Z�, and the proof is complete.



14The development of Lemma 10 and Corollary 11 has an important implica-tion from the numerical analysis point of view. If one is inverting an in�nitedimensional Toeplitz operator by preconditioning and iterating a �nite di-mensional section of it (i.e. a Toeplitz matrix), the iterative solver will attackboth K(n)+f;g and K(n)�f;g . Only the data in K(n)+f;g is present in the limit case ofthe in�nite dimensional Toeplitz operator. However, K(n)�f;g is always presentfor all large n, if for any n at all, by Corollary 11. It is by formula (10),modulo truncation and unitary shift, a product of two Hankel operators �a structure numerically quite comparable to K(n)+f;g .The Proposition 12 and Lemmas 13, 14 are results that we need in ourmain result, Corollary 22. We start with a fundamental symmetry betweenK(n)+f;g and K(n)�f;g .Proposition 12. Let f; g 2 C(T). Then we have the unitary equivalenceK(n)�f;g = F lip�n �K(n)+~f;~g � F lipn;(17)where ~f(ei�) = f(e�i�), ~g(ei�) = g(e�i�), and the operator F lipn : range(�[0;n�1])! range(�[0;n�1]) is the permutationF lipn0BBB@ u0u1...un�1
1CCCA = 0BBB@un�1...u1u0

1CCCA(18)Proof. Note �rst that the Fourier coe�cients of ~f 2 C(T) (~g 2 C(T)) arerelated to the Fourier coe�cients of f (g) by~fj = f�j (~gj = g�j) for all j 2 Z:(19)De�ne the operator flip : `2(Z;U) ! `2(Z;U) by (flip ~u)j = u�j for allj 2 Z and ~u 2 `2(Z;U). With this notation, we can show thatH�[g]H+[f ] = U� flip � H+[~g]H�[ ~f ] � flip U;where U is the bilateral shift given in equation (2), and ~f , ~g are given by(19). NowK(n)�f;g := �[0;n�1]UnH�[g]H+[f ]U�n�[0;n�1]= (�[0;n�1]Un) (U� � flip � H+[~g]H�[ ~f ] � flip � U) (U�n�[0;n�1])= (�[0;n�1]Un�1 flip) � (H+[~g]H�[ ~f ])(flip U�(n�1)�[0;n�1]):By looking at (18), F lipn = �[0;n�1]Un�1 flip = �[0;n�1]Un�1 flip �[0;n�1].This, together with the above calculation implies equation (17).Note that the matrix F lipn gives a unitary equivalence of a Toeplitz matrixTn[f ] to its transpose Tn[ ~f ].Claim (i) of the following Lemma has been used in the construction ofthe numerical example in [8, Section 5]. Claim (ii) has a direct applicationin Corollary 22, one of the main results of this paper.



15Lemma 13. Assume that f; g 2 C(T). De�ne~K(n)+f;g := �[0;bn=2c]K(n)+f;g �[0;bn=2c] = K(bn=2c)+f;g ;~K(n)�f;g := �[dn=2e;n]K(n)�f;g �[dn=2e;n];~K(n)f;g := ~K(n)+f;g + ~K(n)�f;g ;where bjc is the integral part of j 2 Z, and dje = bjc+ 1. Then(i) limn!1 jjK(n)f;g � ~K(n)f;g jj = 0, and(ii) limn!1 jjK(n)f;g jj = limn!1 jj ~K(n)f;g jj = max (jjKf;gjj; jjK ~f;~gjj).Proof. In order to prove claim (i), we estimate:jjK(n)f;g � ~K(n)f;g jj � jjK(n)+f;g � ~K(n)+f;g jj+ jjK(n)�f;g � ~K(n)�f;g jj:(20)The estimation of the �rst part in the right hand side of (20) goes as follows:jjK(n)+f;g � ~K(n)+f;g jj � jjK(n)+f;g �Kf;gjj+ jjKf;g � ~K(n)+f;g jj:Because, in fact ~K(n)+f;g = K(bn=2c)+f;g , the both terms in the right hand sideconverge to zero, by equation (13) of Lemma 10. The second part of equation(20) is similar, when we use the identityK(n)�f;g � ~K(n)�f;g = F lip�n(K(n)+~f;~g � ~K(n)+~f;~g )F lipn;implied by Proposition 12. Claim (ii) is a consequence of the �rst claim. Weobtain jj ~K(n)f;g jj � jjK(n)f;g � ~K(n)f;g jj � jjK(n)f;g jj � jj ~K(n)f;g jj+ jjK(n)f;g � ~K(n)f;g jj;(21)which implies limn!1 jjK(n)f;g jj = limn!1 jj ~K(n)f;g jj. But jj ~K(n)f;g jj =max (jj ~K(n)+f;g jj; jj ~K(n)�f;g jj), because ~K(n)+f;g and ~K(n)�f;g operate in their disjointreducing subspaces; this was the reason why we de�ned them in the �rstplace. By equation (13) of Lemma 10, and Proposition 12, we havelimn!1 jj ~K(n)+f;g jj = jjKf;gjj; limn!1 jj ~K(n)�f;g jj = jjK ~f;~gjj:It now follows that max (jj ~K(n)+f;g jj; jj ~K(n)�f;g jj) ! max (jjKf;gjj; jjK ~f;~gjj), andthe proof is complete.In Corollary 22, we need to exclude the situations when K(n)f;g vanishes.This is because the convergence speed estimate (25) we use, has a norm ofthe truncation e�ect in the denominator. Given a �xed n, there are twototally di�erent situations when this happens. The situation of the �rstkind appears when K(n)f;g = 0 for all n large enough. This can happen onlywhen K(n)+f;g = K(n)�f;g = 0 for all n, as can be shown by a similar calculation



16as in the proof of Corollary 11. This �rst case is explicitly excluded inthe assumptions of Corollary 22, by using the following Lemma 14. Thesituation of the second kind appears when generally K(n)f;g 6= 0 except forsome �nite number of particular n 2 N. Two Toeplitz matrices Tn[f ], Tn[g]with analytic symbols have vanishing truncation e�ects K(n)f;g = 0 for all n. Asmall co-analytic perturbation to such f and g will cause that K(n)f;g = 0 onlyfor n small. This second case is excluded in the assumptions of Corollary 22,by saying that the result only holds for large n.So, we need only be able to identify the �rst kind of situation, as describedabove. The following lemma is the result we need, stated only for K(n)+f;g . Asimilar result for the lower truncation e�ect K(n)�f;g can be obtained by anapplication of Proposition 12.Lemma 14. Let f; g 2 C(T). Then the following are equivalent:(i) K(n)+f;g = 0 for all n,(ii) Kf;g = 0,(iii) H+[g] = 0 or H�[f ] = 0.Proof. (i) ) (ii) follows because 0 � K(n)+f;g ! Kf;g in operator norm asn ! 1, by equation (13) of Lemma 10. The implication (ii) ) (iii) issomewhat nontrivial. Because Kf;g = H+[g]H�[f ] it su�ces to show that ifa product of two arbitrary Hankel operators (with complex valued symbols)vanishes, the at least one of the Hankel operators vanishes. By multiplyingtwo semi-in�nite Hankel matrices, we obtain for the matrix element�iH+[g]H�[f ]�j = Xk;l�1 gk+if�k�j for all i; j � 0;(22)where fj; gj are the Fourier coe�cients of f , g. Note that the sum in (22) mustconverge, because the Hankel operators are bounded. Now �iH+[g]H�[f ]�j =0 for all i; j � 0 by assumption. Furthermore, �i+1H+[g]H�[f ]�j+1 ��iH+[g]H�[f ]�j = gif�j = 0, for all i; j � 0. For de�niteness, assumethat H+[g] 6= 0. Then gi0 6= 0 for some i0 � 0. Because gi0f�j = 0 for allj � 0, it follows that f�j = 0 for all j � 0, which is equivalent to saying thatH�[f ] = 0. Thus at least one of H+[g];H�[f ] vanishes. The remaining part(iii) ) (i) is trivial. This completes the proof.We conclude this section with the following dimension lemma which hasa direct application in Theorem 19 that has been used in [8, Section 5]. Itgives a basic approximation property of the truncation e�ect operators. Bytrigonometric polynomial in T, we mean the �nite sums of formh(ei�) = �Xj=�� hjeij�; � 2 Z+:



17The least � such that hj = 0 for all j such that jjj � � + 1 is the degreeof the polynomial, and denoted by deg h. In many practical applications,the symbol g of the preconditioner matrix Tn[g] would be a trigonometricpolynomial.Lemma 15. Assume that f; g 2 C(T), n 2 N.(i) If f is trigonometric polynomial with �1 := deg f and n > �1, thenK(n)+f;g = K(n)+f;g �[0;�1�1]; K(n)�f;g = K(n)�f;g �[n��1;n�1]:(ii) If g is trigonometric polynomial �2 := deg f and n > �2, thenK(n)+f;g = �[0;�2�1]K(n)+f;g ; K(n)�f;g = �[n��2;n�1]K(n)�f;g :(iii) If both f , g are trigonometric polynomials, and n � 2�, where � :=max (deg f; deg g), then the upper and lower truncation e�ects K(n)+f;g ,K(n)�f;g operate in their reducing subspaces range(�[0;��1]),range(�[n��+1;��1]), respectively.(iv) If at least one of f , g is a trigonometric polynomial, then rankK(n)�f;g �min (n; deg f; deg g) and rankK(n)�f;g � min (n; 2 deg f; 2 deg g)Proof. All the formulae in claims (i) and (ii) are quite similar consequencesof the easily proved equationsH+[f ] = �[0;�1�1]H+[f ]�[��1;�1]; H�[f ] = �[��1;�1]H�[f ]�[0;�1�1]where f trigonometric polynomial and �1 = deg f . Claims (iii) and (iv) arefollow immediately from claims (i) and (ii).



184 Smoothness of symbolsIn this section we study how the smoothness of the symbol f 2 C(T) a�ectthe properties of iteration of the preconditioned system (7). We start withrecalling the de�nitions of approximation numbers and Schatten classes ofcompact operators. A good reference for these is [5, p. 1089 - 1119].De�nition 16. Let T 2 L(`2(Z+)) and k 2 N. The approximation numbersby �nite dimensional operators are de�ned by:�k(T ) := infrankF�k�1 jjT � F jjIn a Hilbert space the approximation numbers �k(T ) equal the singularvalues of T . The closed ideal of compact operators LC(`2(Z+)) can now bedivided into smaller spaces, if we look at the decay of the singular values.Consider the following de�nition:De�nition 17. Let p 2 (0;1).(i) By jj:jjSp denote the number in [0;1] given by:jjT jjSp := ( 1Xk=1 j�k(T )jp) 1pfor each T 2 LC(`2(Z+)).(ii) By Sp denote the set of such T 2 LC(`2(Z+)) that jjT jjSp < 1.The set Sp is the Schatten p-class.The set Sp is always a vector space. Note that jj:jjSp is not actually a normif p 2 (0; 1) because the triangle inequality fails. However, for p 2 [1;1) thespace Sp is Banach. One more detail is needed for the proof of Theorem 19,namely the result [9, Lemma 3.2], which is a combination of two Jackson'stheorems.Lemma 18. Let r 2 Z+, � � 0 such that r + � > 0. f 2 Cr;�(T). For allk 2 Z+, set Ek(f) := infdeg pk�k jjpk � f jj1, where the in�mum is taken overall trigonometric polynomials pk, deg pk � k. ThenEk(f) � �r+�2r jjf (r)jjLip�(T) (k + 1)�(r+�):We are ready to present a result about the relation between the smooth-ness of the symbol f , and the decay of the singular values of K(n)f;g .



19Theorem 19. Let f 2 C(T) and n 2 N , r 2 Z+ and � � 0 such thatr + � > 0.(i) If f 2 Cr;�(T), then the approximation numbers of K(n)f;g satisfy�2k+1(K(n)f;g ) � �r+�2r�1 jjf (r)jjLip�(T) jjgjj1 (k + 1)�(r+�)for k such that 0 � k � b(n� 1)=2c.(ii) Let p 2 (0;1). The Schatten information about K(n)f;g is given byjjK(n)f;g jjSp � �r+�2r�2 jjf (r)jjLip�(T) jjgjj10@b(n+1)=2)cXk=1 k�p(r+�)1A1=p :In particular, if p > 1=r + �, then fK(n)f;g gn2N is an uniformly boundedfamily in the norm of Sp.Proof. Claim (i) is proved by the following calculation. For any k � 0, weget from De�nition 17�2k+1(K(n)f;g ) = infrankF�2k jjK(n)f;g � F jj � infdeg pk�k jjK(n)f;g �K(n)pk;gjj;where the last estimate holds by claim (iv) of Lemma 15. Here pk is atrigonometric polynomial, deg pk � k. By using formulae (10), we estimatejjK(n)f;g �K(n)pk;gjj � jjK(n)+f;g �K(n)+pk;g jj+ jjK(n)�f;g �K(n)�pk;g jj= jj�[0;n�1]H+[g]H�[f ]�[0;n�1] � �[0;n�1]H+[g]H�[pk]�[0;n�1]jj+ jj�[0;n�1]UnH�[g]H+[f ]U�n�[0;n�1] � �[0;n�1]UnH�[g]H+[pk]U�n�[0;n�1]jj= jj�[0;n�1]H+[g]H�[f � pk]�[0;n�1]jj+ jj�[0;n�1]UnH�[g]H+[f � pk]U�n�[0;n�1]jj� jjH+[g]jj � jjH�[f � pk]jj+ jjH�[g]jj � jjH+[f � pk]jj� 2jjgjj1 � jjf � pkjj1:where we have used Lemma 4. Now�2k+1(K(n)f;g ) � 2jjgjj1 � infdeg pk�k jjf � pkjj1;and an application of Lemma 18 proves now (i).In order to prove claim (ii), we �rst note that the singular values satisfy�k(K(n)f;g = 0 for k � 0. Furthermore, for p > 0nXj=1 �j(K(n)f;g )p = b(n�1)=2cXk=0 �2k+1(K(n)f;g )p + bn=2cXk=1 �2k(K(n)f;g )p� 2 � b(n�1)=2cXk=0 �2k+1(K(n)f;g )p;



20where the inequality holds because �2k+2(K(n)f;g ) � �2k+1(K(n)f;g ) for all k � 0.Summing things up, together with the �rst claim of this theorem, completesthe proof.The upper singular value estimate for the Hankel operators used in the proofof Theorem 19 is not optimal. It can be shown that there is an in�malsymbol h 2 C(T) satisfying infrankF�n jjH+[f ]� F jj = jjH+[f ] � H+[h]jjwhere rankH+[h] � n. This is a consequence of the Kronecker theorem forthe �nite dimensional Hankel operators and the AAK-theorem stating thatthe above in�mum is actually attained by a Hankel operator, rather thanjust some unstructured operator. For details, see [12].



215 On the convergence of iterationsIn this section, we study the Toeplitz preconditioners for Toeplitz matrices,such that the symbol of the preconditioner is a trigonometric polynomial.Consider the following theorem about the Toeplitz preconditioning:Theorem 20. Let f 2 C(T) satisfy the invertibility condition of claim (ii)of Lemma 6. Let n > max (N(f); N( 1f )), where N(f) and N( 1f ) are theconstants given by claim (iii) of Lemma 6. Then there is a preconditioningsequence of trigonometric polynomials fgkg1k=0 (deg (gk) � k) satisfying thefollowing conditions.(i) The perturbation matrices satisfyjjB(n)f;gkjj � jj1� fgkjj1 � jjf jj1jj( 1f � gk)jj1;and limk!1 jjB(n)f;gkjj = 0. There is a constant M < 1 such that gksatis�es the invertibility condition of claim (ii) of Lemma 6, for allk � M . There is a constant N < 1, such that for all k � M andn � N , Tn[gk] is a nonsingular Toeplitz preconditioner for nonsingularTn[f ], as written in equation (7).(ii) Assume, in addition, that f 2 Cr;�(T) for r + � > 0. Then the pre-conditioning sequence fgkg can be chosen so that the following speedestimate holds:jjB(n)f;gkjj � �r+�2r jjf jj1jj�1f �(r)jjLip�(T) (k + 1)�(r+�):(23)(iii) If, in addition, p > 1=(r + �), then the family fK(n)f;gkgk�0;n2N is abounded set in Sp.Proof. By the de�nition of B(n)f;gk and Lemma 4 we havejjB(n)f;gkjj = jjTn[f( 1f � gk)]jj � jjf( 1f � gk)jj1 � jjf jj1jj( 1f � gk)jj1:By the Stone-Weierstrass approximation theorem, we can choose a sequencefgkg of trigonometric polynomials (deg (gk) � k) so that jjgk � 1f jj1 ! 0. Itnow follows that limk!1 jjB(n)f;gkjj = 0 for this special sequence.To continue the proof, note that if f satis�es the invertibility condition ofLemma 6, so does 1f , by a simple geometric argument. Let fgkg the sequenceof polynomials as above. For the sequence fgkg, there exists a M <1 suchthat for all k �M , we havejjgk � 1f jj1 < 12 jjT [ 1f ]�1jj�1:(24)



22Note that the right hand side is �nite and nonzero, because 1f satis�es theinvertibility condition of Lemma 6.We now show that for all k �M , the Toeplitz operator T [gk] is invertible.It is well known and easy to see that for any two operator S, T in a Hilbertspace, T boundedly invertible, we have S � T invertible if jjSjj < jjT�1jj�1.Now, de�ne S := T [gk] + T [ 1f ] and T := T [ 1f ]. Then jjT [gk] � T [ 1f ]jj <jjT [ 1f ]�1jj�1 implies that T [gk] is boundedly invertible.It follows that for any k �M , Tn[gk] is a nonsingular, if n � Nk for someNk <1, by Lemma 6. By the same lemma, the Toeplitz matrix Tn[f ] itselfis nonsingular, if n � N(f). It follows that Tn[gk] is a nonsingular precon-ditioner for nonsingular matrix Tn[f ], if k � M and n � max (Nk; N(f); ).However, we want to have the constants Nk independent of k.By claim (iii) of Lemma 6, lim supn!1 jjTn[ 1f ]�1jj := C < 1 becauseTn[ 1f ] ! T [ 1f ] strongly. Let N � N( 1f ) be so large that jjTn[ 1f ]�1jj < 2C forall n � N . Choose M2 2 N so large thatjjgk � 1f jj1 � 12Cfor all k �M2. Then we can estimate for k �M2 and n � NjjTn[gk]� Tn[ 1f ]jj = jjTn[gk � 1f ]jj � jjgk � 1f jj1� jjTn[ 1f ]�1jj2C � jjTn[ 1f ]�1jj�1 < jjTn[ 1f ]�1jj�1:But this implies that Tn[gk] is invertible, as already considered above. Claim(i) is now proved.Now claim (ii). If f 2 Cr;�(T), so does 1f , by a routine argument. ByLemma 18, we can choose the sequence fgkg to satisfy equation (23). Toprove the remaining claim, note that fgkg is an uniformly bounded familyin C(T) because it converges uniformly to a limit in C(T). It follows thatfK(n)f;gkgk�0;n2N is a uniformly bounded family in Sp, by part (ii) of Theorem19.The companion paper [9] about Toeplitz operators contains a numerical ex-ample, which is equally valid for the present case of Toeplitz matrices, too.The rest of this chapter is dedicated to the interpretation of the results ofTheorem 20 from the numerical analysis point of view.Not all preconditioning sequences of trigonometric polynomials satisfy thespeed estimate of equation (23). The preconditioning sequence fgkg can beconstructed in great many ways, still preserving the speed estimate (23) in anasymptotic sense; see for example [7, pp.21, Ex. 2] for Lipschitz continuoussymbols. So as to the numerical construction schemes for fgkg, we refer tothe ideas presented in [2].Theorems 7 and 19 show that after Toeplitz preconditioning, the systemconsists of a truncation e�ect K(n)f;g perturbed by a small B(n)f;g . Smoothness



23of the symbol f has thus a two-fold e�ect on the properties for iteration ofTn[f ]: For smooth f it is easier to control the �preconditioning error� B(n)f;gkby increasing the degree of the trigonometric polynomial gk. And then, byclaim (ii) of Theorem 19, smoothness of the symbol f 2 C(T) speci�es theapproximation properties of K(n)f;g by lower rank matrices. This gives us speedestimates for the Krylov subspace methods, as will be discussed below.In [9], we treated the analogous preconditioning problem of Toeplitz op-erators by appealing to a solution of a more general problem: How does aKrylov subspace method perform if it is applied upon an operator consistingof a compact K 2 Sp perturbed by an unstructured small B. This problem isstudied in [8] and [11]. There K corresponds to the truncation e�ect, and Bto the perturbation operator of Toeplitz operators. In this paper we proceedalong the same lines. Now both the operators K(n)f;g , B(n)f;g are �nite dimen-sional (thus compact) for each n 2 N. This does not stop us from treatingK(n)f;g as a compact operator and B(n)f;g as an (unstructured) perturbation.Let us brie�y reiterate some of the terminology given in [8], [10] and [11].In the study of Krylov subspace methods applied uponK+B, it is customaryto look at how the sequence jjpk(K+B)jj 1k behaves as k !1, where fpkg isa sequence of normalized (pk(1) = 1) degree k polynomials associated to theKrylov subspace method in question. Degree k of the polynomial correspondsto the number of iteration steps computed. For a brief reminder why this isdone, look at the discussion at the end of this section.A function theoretic argument proves the following theorem where thenormalization of the polynomials f~pkg is slightly di�erent, but without e�ecton the asymptotics as k !1:Theorem 21. Let p � 1. Let H be Hilbert space and Sp(H) be the Schattenp-class. Take K 2 Sp(H), K 6= 0, and let B 2 L(H) be a small perturbationsuch that 1 =2 �(K + B). Then there exists an essentially monic sequence ofpolynomials f~pkg1k=1, deg pk � k, such that for all parameter values � 2 (0; 1]:jj~pk(K +B)jj1=k(25) � p1=k �jjBjj+ jjKjjSp k��=p�� jjBjj k�=pjjKjjSp + 1�1=k e1=(k1��):Furthermore, limk!1 j~pk(1)j > 0.Proof. See [8, Theorem 6.7].The expression �essentially monic� means that the leading term of all ~pkis a same nonzero complex number. The fact that limk!1 j~pk(1)j > 0 makesit possible to normalize ~pk for large k, and de�nepk(�) := ~pk(�)~pk(1) :Now the sequence fpkg has the correct normalization pk(1) = 1, and thespeed estimate like (25) holds also for pk with an additional multiplicative



24constant sequence j~pk(1)j�1=k, for all k large enough. Note that becauselimk!1 j~pk(1)j�1=k = 1, the e�ect of the incorrect normalization of ~pk doesnot change the nature of speed estimate (25) in an asymptotic sense.Theorem 21 tells us that in the �rst stages the iteration the convergencefactor jjpk(K +B)jj 1k of order jjBjj+ jjKjjsp k��p decreases (the �superlinear�stage) and is asymptotically only of order jjBjj (the �linear� stage). Moreover,the rate of decrease of the convergence factor is dictated by the Schattenclass of K. The concept �superlinear� is usually used to describe somethingthat happens in the asymptotics of the speed estimates. Here we are abit unorthodox (as we have been in [9]) and regard �superlinear� stage ofan iteration as those iteration steps when �speed is being gained�. By the�linear� stage we of course refer to the analogous phenomenon.The following corollary of Theorem 21 is our convergence estimate for theiteration of B(n)f;g + K(n)f;g , the matrix of the preconditioned system (7). Weinvite the reader to regard g as an element of the preconditioning sequencefgkg of Theorem 20, with increasing degree k of the preconditioner.To say that f 2 C(T) is strictly analytic ( strictly coanalytic) means thatthe negatively (positively) indexed Fourier coe�cients of f vanish. A strictlyanalytic symbol f 2 C(T) has an analytic continuation f(z) inside the unitdisk of the complex plane, and f(0) = 0.Corollary 22. Let r 2 Z+, r � 0 be such that r + � > 0. Assume that thenonconstant f; g 2 Cr;�(T) satisfy the invertibility condition of Lemma 6.Furthermore, assume that not both f; g are simultaneously strictly analyticor coanalytic. Let N1 be so large that both Tn[f ] and Tn[g] are invertible forall n > N1. Then the following holds:(i) For p > 1=(r + �), there are constants C1; C2, and N2, such that0 < C1 � jjK(n)f;g jjSp � C2 <1:for all n > N2.(ii) Assume, in addition, that r + � � 1. For each �xed n > N :=max (N1; N2), there exists an essentially monic sequence polynomialsf~p(n)k g1k=1 such that for all parameter values � 2 (0; 1]:jj~p(n)k (K(n)f;g +B(n)f;g )jj1=k(26) � p1=k �jj1� fgjj1 + C2 k��=p� �� � jj1� fgjj1 k�=pC1 + 1�1=k e3=(k1��):Furthermore, limk!1 ~p(n)k (1) exists is bounded away from the origin.Proof. We prove claim (i) about the constants C1 and C2. By the de�nitionof the Schatten norm, alwaysjjK(n)f;g jj = �1(K(n)f;g ) � jjK(n)f;g jjSp:



25By Lemma 13, limn!1 jjK(n)f;g jj = max (jjKf;gjj; jjK ~f;~gjj). To show that thelower bound C1 > 0 exists for n large enough, we have to show that it is notpossible to have Kf;g = K ~f;~g = 0 under the assumptions of this Corollary.By Lemma 14, Kf;g = K ~f;~g = 0 if and only if one of the following conditionsholds: (1) f is constant, (2) g is constant, (3) both f and g are strictly ana-lytic, (4) both f and g are strictly coanalytic. However, all these possibilitiesare ruled out in the assumptions. So C1 > 0 exists. The upper bound C2exists, by claim (iii) of Theorem 20. The latter claim (ii) is a straightforwardapplication of Theorem 21.An analogous theorem to Theorem 21 can be proved for the Schattenclasses p 2 (0; 1], see [8, Theorem 6.9]. An analogous corollary to Corollary22 for p 2 (0; 1] is then a triviality. This establishes a convergence speedestimate of type (26) for all Toeplitz systems with symbol f 2 Cr;�(T) forr + � > 0, without the extra smoothness assumption r + � � 1.What is the meaning of the requirement in Corollary 22 that not bothf , g are allowed to be, say, strictly analytic? For technical reasons only, theconvergence estimate (25) is written so that the Schatten norm of the trun-cation e�ect is in the denominator. Suppose we could precondition optimallyso that g = 1f and the perturbation part B(n)f;g = 0 for all n. Then if both fwere g are strictly analytic, then f is, by de�nition, would be an outer ana-lytic function. But this is impossible, because f(0) = 0 by strict analyticity.We conclude that if g � 1f , not both f and g can be strictly analytic.As we have seen, the upper bounds for both jjB(n)f;g jj and jjK(n)f;g jjSp, givenin Theorems 19 and 20, are not dependent of n, the dimension of the prob-lem. It follows that the right hand side of the convergence estimate (26) isindependent of n for n large. In order to obtain a similar speed estimatefor the corresponding correctly normalized polynomial sequence satisfyingp(n)k (1) = 1, with the right hand side independent of n, we would have toshow at least that infn>N limk!1 ~p(n)k (1) > 0:Even to look at this in�mum super�cially, it requires long and complicatedcalculations about the limit process of the spectrum of B(n)f;g+K(n)f;g , as n!1.This is no longer a subject of this paper, because our aim was to go as faras we can, without explicitly looking at the (di�cult) spectral properties ofthe preconditioned operator.How does this all relate to a particular Krylov subspace algorithm, namelyGMRES? The GMRES method for the inversion of nonsymmetric problemscan be regarded as a minimization algorithm that (at least implicitly) gen-erates polynomial sequences to approximate the value of resolvent in certainpoints; this is the minimization of residuals. If the GMRES generates thepolynomial sequence sk with deg (sk) = k and sk(1) = 1, corresponding tothe normalized sequence pk given after Theorem 21. Then the residual dk



26after k steps is of size jjsk(K +B)d0jj, and we havejjsk(K +B)d0jj � jjpk(K +B)d0jj � jjpk(K +B)jj jjd0jj;(27)see [8, Proposition 2.2] or [10, Chapter 1]. The former inequality is truebecause sk is optimal polynomial of degree k for the initial residual d0, and~pk is possibly worse than optimal for the same initial residual d0. This isto say that the upper estimates we have for ~pk are as well upper estimatesfor the GMRES residuals. The same kind of result is true so as to the errorsequences with quite obvious modi�cations for the reasoning � we againrefer to [8] or [10, Chapter 1].
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