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Abstract

We consider a generalised Webster’s equation for describing wave propagation in curved
tubular structures such as variable diameter acoustic wave guides. Webster’s equation in
generalised form has been rigorously derived in a previous article starting from the wave
equation, and it approximates cross-sectional averages of the propagating wave. Here,
the approximation error is estimated by an a posteriori technique.
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1. Introduction

We study wave propagation in a narrow but long, tubular domain Ω ⊂ R3 of finite
length whose cross-sections are circular and of varying area. In this case, the wave
equation in the domain Ω, i.e., the topmost equation in (1.1) below, has a classical
approximation depending on a single spatial variable in the long direction of tubular Ω.
The approximation is known as Webster’s equation, which is given in generalised form
as the topmost equation in (1.4) below. The geometry of Ω is represented by the area
function A(·) whose values are cross-sectional areas of Ω. The solution of Webster’s
equation approximates cross-sectional averages of the solution to the wave equation as
shown in [15]. The purpose of this article is to estimate the approximation error by an a
posteriori method, using the passivity and well-posedness estimates given in [2] as well
as analytic tools presented in [15, Section 5].

Webster’s original work [32] was published in 1919, but the model itself has a history
spanning over 200 years and starting from the works of D. Bernoulli, Euler, and Lagrange.
Early work concerning Webster’s equation can be found in [7, 27, 28, 32], and a selection
of contemporary approaches is provided by [13, 14, 21, 22, 23, 24] and, in particular,
[25]. The derivation of Webster’s equation in [23] (see also [20]) is based on asymptotic
expansions that, however, does not give estimates for the approximation error. The reso-
nance structure of Webster’s equation is obtained from the associated eigenvalue problem
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which resembles the characterisation for the asymptotic spectra of Neumann–Laplacian
on shrinking tubular domains in [11, 26]. This is an example of dimensional reduction
that is also the basis of shell and plate models; see, e.g., [5] where the treatment is for
the stationary problems, only. Similarly, strings have been considered in [4] where the
tool for dimensional reduction is the Γ-convergence of energy functionals as opposed to
starting from a partial differential equation. In our approach, the dimensional reduction
is based on the wave equation, and it is carried out by averaging over those degrees of
freedom that are not part of Webster’s equation; see [15].

Our interest in Webster’s equation stems from the fact that it provides a model for
the acoustics of the human vocal tract as it appears during a vowel utterance. Webster’s
equation can be used as a part of a dynamical computational physics model of speech as
discussed in [3, 6, 8, 10] and the theses [1, 19]. Further applications of Webster’s equation
include modelling of water waves in tapered channels, acoustic design of exhaust pipes
and jet engines for controlling noise, vibration, and performance as well as construction
of instruments such as loudspeakers and horns [9, p. 402–405].

The results of this article describe the interplay between two kinds of models for
acoustic waveguides; i.e., wave equation and Webster’s equation. The first of the models
is suitable for high precision, and the latter is computationally more efficient but lacks,
e.g., transversal wave propagation because of simplifications. The two models are related
to each other by the common underlying geometry of the waveguide. The waveguide
geometry is originally defined by the tubular domain Ω ⊂ R3 that has the following
properties. The centreline of the tube is a smooth planar curve γ of unit length and
with vanishing torsion, parametrised by its arc length s ∈ [0, 1]. We assume that the
cross-section of Ω, perpendicular to the tangent of γ at the point γ(s), is the circular
disk Γ(s) with centre point γ(s). The radius of Γ(s) is denoted by R(s) with area A(s).
The boundary ∂Ω of Ω consists of the ends of the tube, Γ(0) and Γ(1), and the wall
Γ := ∪s∈[0,1]∂Γ(s) of the tube.

With this notation, acoustic wave propagation in Ω can be modelled by the wave
equation, written for the (perturbation) velocity potential φ : R+ × Ω→ R

φtt(t, r) = c2∆φ(t, r) for r ∈ Ω and t ∈ R+,

c∂φ∂ν (t, r) + φt(t, r) = 2
√

c
ρA(0) u(t, r) for r ∈ Γ(0) and t ∈ R+,

φ(t, r) = 0 for r ∈ Γ(1) and t ∈ R+,
∂φ
∂ν (t, r) + αφt(t, r) = 0 for r ∈ Γ, and t ∈ R+, and
φ(0, r) = φ0(r), ρφt(0, r) = p0(r) for r ∈ Ω

(1.1)

with the observation defined by

c
∂φ

∂ν
(t, r)− φt(t, r) = 2

√
c

ρA(0) y(t, r) for r ∈ Γ(0) and t ∈ R+, (1.2)

where R+ = (0,∞), R+
= [0,∞), ν denotes the unit normal vector on ∂Ω, c is the sound

speed, ρ is the density of the medium, and α ≥ 0 is a parameter associated to boundary
dissipation. The Dirichlet condition on Γ(1) represents an open end, and the Neumann
condition on Γ represents a hard reflective surface. The control (i.e., the input) u(t, r)
and the observation (i.e., the output) y(t, r) are given in scattering form in (1.1) where
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the physical dimension of both signals is power per unit area. In addition to [2], the
wave equation system can be treated within operator theory in different ways; see also
[12, 30, 33].

It was shown in [2, Theorem 5.1 and Corollary 5.2] that for u ∈ C2(R+
;L2(Γ(0))) and

the initial state
[
φ0
p0

]
compatible with the input u (as detailed below in Assumption (ii)

of Theorem 4.2), there exists a unique classical solution φ of (1.1) satisfying

φ ∈ C1(R+
;H1(Ω)) ∩ C2(R+

;L2(Ω)),

∇φ ∈ C1(R+
;L2(Ω;R3)), and ∆φ ∈ C(R+

;L2(Ω)).
(1.3)

Then the function y given by (1.2) satisfies y ∈ C(R+
;L2(Γ(0))). For the rest of this

article, u, φ, and y always denote these functions.
Following [15], the generalised Webster’s equation for the velocity potential ψ : R+×

[0, 1]→ R is given by

ψtt = c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
− 2παW (s)c(s)2

A(s) ψt

for s ∈ (0, 1) and t ∈ R+,

−cψs(t, 0) + ψt(t, 0) = 2
√

c
ρA(0) ũ(t) for t ∈ R+,

ψ(t, 1) = 0 for t ∈ R+, and
ψ(0, s) = ψ0(s), ρψt(0, s) = π0(s) for s ∈ (0, 1),

(1.4)

and the observation ỹ is defined by

−cψs(t, 0)− ψt(t, 0) = 2

√
c

ρA(0)
ỹ(t) for t ∈ R+. (1.5)

The constants c, ρ, α are same as in (1.1), and A(s) is the area of the cross-section
Γ(s). Note that the dissipative boundary condition in (1.1) gives rise to a dissipation
term in (1.4). The stretching factor is the function W (s) := R(s)

√
R′(s)2 + (η(s)− 1)2

where the curvature ratio is given by η(s) := R(s)κ(s) and κ denotes the curvature of
the centreline γ. Because of the curvature of Ω, we adjust the sound speed for (1.4)
by defining c(s) := cΣ(s) where Σ(s) :=

(
1 + 1

4η(s)2
)−1/2 is the sound speed correction

factor as introduced1 in [15, Section 3].

Standing Assumption 1. We require that

(i) the tubular domain Ω does not fold into itself; i.e., η(s) < 1 for all s ∈ [0, 1]; and
(ii) the centreline γ(·) and the radius function R(·) are infinitely differentiable on [0, 1].

It follows from the smoothness that the rest of the data satisfies

A(·), η(·),W (·), c(·),Σ(·) ∈ C∞([0, 1]), (1.6)

1For generalised Webster’s equation, we use the functions A, Σ, Ξ, E, and W that are introduced in
terms of the tubular domain Ω in [15].
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Figure 1: Left panel: Feedforward coupling describing the tracking error e = ψ − φ̄. Right panel: The
tracking error vanishes when the additional forcing functions F,G, and H are applied. The equations in
the blocks are as they appear in the lossless case α = 0 and without curvature, i.e., c(s) = c.

and such a domain Ω satisfies all the assumptions listed in [2, Appendix A]. Further,
since the domain doesn’t fold into itself, we see that

0 < min
s∈[0,1]

c(s) ≤ max
s∈[0,1]

c(s) <∞.

In addition to the regularity (1.6) of the coefficient data for the Webster’s model (2.1),
we make additional requirements on the geometry of Ω:

Standing Assumption 2. We require that

0 < min
s∈[0,1]

A(s) ≤ max
s∈[0,1]

A(s) <∞ (1.7)

as well as A′(0) = κ(0) = 0 at the control end Γ(0) of Ω.

The solution ψ : [0, 1] × R+ → R is Webster’s velocity potential. It is expected to
approximate the averages

φ̄(t, s) :=
1

A(s)

∫
Γ(s)

φdA for s ∈ (0, 1) and t ∈ R+
(1.8)

of the velocity potential φ given by (1.1) if the inputs and initial states for both models
are matched as shown in Fig. 1. We call the difference e := ψ − φ̄ tracking error, see
the left panel of Fig. 1. A fundamental result on the tracking error is given in [15,
Theorem 3.1], and it is presented in right panel of Fig. 1: if the generalised Webster’s
equation is augmented by an additional load function f = F + G + H, (depending on
φ through (2.3)—(2.5) below), the tracking error will vanish. We estimate the tracking
error e by a method where the exact solution φ of the wave equation (1.1) is assumed
to be known. Hence, we call these results a posteriori estimates for Webster’s equation
even though it is a solution of another equation that needs to be known.

The article is organised as follows: we discuss the generalised Webster’s equation
and its weak solution in the context of [15] in Section 2 and also recall the system
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node formulation from [16]. We write the inhomogeneous Webster’s equation in terms
of a scattering passive system node and give the well-posedness estimate for the unique
strong solution in Section 3. This is used in the next section where we show that the
tracking error e satisfies the first a posteriori estimate, Theorem 4.2. Then, we estimate
its right hand side by measuring how much φ differs from its planar averages, leading to
the second a posteriori estimate, Theorem 5.1.

2. Background

2.1. Inhomogeneous Webster’s equation
Let us consider the interior/boundary point control problem

ψtt − c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
+ 2παW (s)c(s)2

A(s) ψt = f

for s ∈ (0, 1) and t ∈ R+,

−cψs(t, 0) + ψt(t, 0) = 2
√

c
ρA(0) ũ(t) for t ∈ R+,

ψ(t, 1) = 0 for t ∈ R+, and
ψ(0, s) = ψ0(s), ρψt(0, s) = π0(s) for s ∈ (0, 1),

(2.1)

with the observation ỹ is defined by

−cψs(t, 0)− ψt(t, 0) = 2

√
c

ρA(0)
ỹ(t) for t ∈ R+. (2.2)

We allow for a nonvanishing load function f in (2.1). The reason for this is the fact
that the spatial averages φ̄ of φ, given by (1.8), satisfy (2.1) (with properly matched
initial states and boundary control) as shown in [15, Theorem 3.1] if the load term f is
of particular form. We use the mapping

(s, r, θ) 7→ γ(s) + r(cos θ n(s) + sin θ b(s))

as a parameterisation of the domain Ω where n and b are the normal and binormal
vectors of the centreline curve γ of Ω. Similarly, the wall Γ of the tube is parameterised
by

(s, θ) 7→ γ(s) +R(s)(cos θ n(s) + sin θ b(s));

see [15, Section 2] for the details. With these parameterizations, the proper choice of the
load term is f = F +G+H ∈ C(R+

;L2(0, 1)) where

F (t, s) := − 1

A(s)

∂

∂s

(
A′(s)

(
φ̄(s)− 1

2π

∫ 2π

0

φ(s,R(s), θ) dθ

))
; (2.3)

G(t, s) := −2παW (s)

A(s)

∂

∂t

(
φ̄(s)− 1

2π

∫ 2π

0

φ(s,R(s), θ)dθ

)
; and (2.4)

H(t, s) :=

∫
Γ(s)

1

Ξ
∇
(

1

Ξ

)
· ∇φdA− 1

A(s)

∫
Γ(s)

E∆φdA (2.5)

− αW (s)η(s)

A(s)

(∫ 2π

0

∂φ

∂t
(s,R(s), θ) cos θdθ

)
.
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Here the curvature factor is given by Ξ−1(s, r, θ) := 1−rκ(s) cos θ, and the error function
by

E(s, r, θ) := Ξ−2(s, r, θ)− Σ(s)−2 = −2rκ(s) cos θ + κ(s)2(r2 cos2 θ −R(s)2/4); (2.6)

see [15] for details. It follows from the assumed smoothness of γ and R(·) and from
‖η‖L∞([0,1]) < 1 that E(·),Ξ(·) ∈ C∞(Ω).

We proceed to write (2.1) in operator form. Define W := 1
A(s)

∂
∂s

(
A(s) ∂∂s

)
and

D := − 2πW (s)
A(s) . Then the first of equations in (2.1) can be cast into first order form by

using the rule

ψtt = c(s)2 (Wψ + αDψt) + f =̂
d

dt

[
ψ
π

]
=

[
0 ρ−1

ρc(s)2W αc(s)2D

] [
ψ
π

]
+

[
0
ρf

]
.

Henceforth let Lw :=
[

0 ρ−1

ρc(s)2W αc(s)2D

]
: Zw → Xw, and

Zw :=
(
H1
{1}(0, 1) ∩H2(0, 1)

)
×H1

{1}(0, 1), Xw := H1
{1}(0, 1)× L2(0, 1)

where H1
{1}(0, 1) :=

{
f ∈ H1(0, 1) : f(1) = 0

}
.

The Hilbert spaces Zw and Xw are equipped with the norms

‖[ z1z2 ]‖2Zw
:= ‖z1‖2H2(0,1) + ‖z2‖2H1(0,1) and

‖[ z1z2 ]‖2H1(0,1)×L2(0,1) := ‖z1‖2H1(0,1) + ‖z2‖2L2(0,1),

respectively. For any ρ > 0, the energy norm

‖ [ z1z2 ] ‖2Xw
:=

1

2

(
ρ

∫ 1

0

|z′1(s)|2A(s) ds+
1

ρc2

∫ 1

0

|z2(s)|2A(s)Σ(s)−2 ds

)
(2.7)

is an equivalent norm for Xw because
√

2‖z1‖L2(0,1) ≤ ‖z′1‖L2(0,1) for all z1 ∈ H1
{1}(0, 1).

2 We define Yw := C with the absolute value norm ‖u0‖Yw
:= |u0|, and the endpoint

control and observation functionals Gw : Zw → Yw and Kw : Zw → Yw are defined by

Gw [ z1z2 ] :=
1

2

√
A(0)

ρc(0)
(−ρc(0)z′1(0) + z2(0)) and

Kw [ z1z2 ] :=
1

2

√
A(0)

ρc(0)
(−ρc(0)z′1(0)− z2(0)) .

Now, the generalised Webster’s equation (2.1) for the state variable x(t) =
[
ψ(t)
π(t)

]
can be

cast in the form
x′(t) = Lwx(t) +

[
0

ρf(t,·)
]
,

ũ(t) = Gwx(t), ỹ(t) = Kwx(t) for t ∈ R+, and
x(0) =

[
ψ0
π0

]
.

(2.8)

2We denote the (strong) derivative of a (possibly vector-valued) function of one variable by prime.
In particular, f ′ denotes the t-derivative of load function f = f(t, s) since it is regarded as the L2(0, 1)-
valued function t 7→ f(t, ·). In PDE’s, we denote the partial (distribution) derivatives by subindeces
such as φtt, φss, and so on.
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As shown in [2, Theorem 4.1], the triple

Ξ(W ) := (Gw, Lw,Kw) (2.9)

is a scattering passive, strong boundary node3 on Hilbert spaces (Yw,Xw,Yw) which is
conservative if and only if α = 0. For ũ ∈ C2(R+

;Yw) and
[
ψ0
π0

]
∈ Zw, the unique

classical solution of (2.8) follows in the special case that the load function f identically
vanishes (referring to the left panel in Fig. 1.).

2.2. On the weak solution of Webster’s equation
Assume that φ is a solution of the wave equation system (1.1) satisfying the regularity

properties listed in (1.3) as discussed in Section 1. It has been shown in [15, Theorem 3.1]
that the averaged solution φ̄ = φ̄(t, s) in (1.8) satisfies

φ̄ ∈ C2(R+
;L2(0, 1)) and φ̄s ∈ C1(R+

;L2(0, 1)), (2.10)

and it is a weak solution of the inhomogeneous Webster’s equation

φ̄tt −
c(s)2

A(s)

∂

∂s

(
A(s)

∂φ̄

∂s

)
+

2παW (s)c(s)2

A(s)
φ̄t = F +G+H (2.11)

where the additional load term F + G + H ∈ C(R+
;L2(0, 1)) is given by (2.3)—(2.5)

above. This means plainly that∫ T

0

∫ 1

0

(
φ̄sζs +

1

c2Σ(s)
φ̄ttζ

)
A(s) dsdt+ 2πα

∫ T

0

∫ 1

0

W (s)φ̄tζdsdt

=

∫ T

0

∫ 1

0

(F +G+H)ζA(s) dsdt

(2.12)

for all test functions ζ ∈ C∞0 ((0, 1)× (0, T )) and all T > 0.
Now, fix t0 ∈ (0, T ) and let {vε} ⊂ C∞0 (0, T ) for ε > 0 be a family of non-negative

functions such that
∫ T

0
vε dt = 1 and limε→0 vε(t) = 0 for all t ∈ (0, T ) \ {t0}. Let

ξ ∈ C∞0 (0, 1) and define ζ(s, t) := ξ(s)vε(t). By Fubini’s Theorem, we get from (2.12)∫ T

0

(∫ 1

0

(
φ̄s(t, s)ξs(s) +

1

c2Σ(s)
φ̄tt(t, s)ξ(s)

)
A(s) ds

)
vε(t) dt

+ 2πα

∫ T

0

(∫ 1

0

W (s)φ̄t(t, s)ξ(s)ds

)
vε(t) dt

=

∫ T

0

(∫ 1

0

(F (s, t) +G(s, t) +H(s, t))ξ(s)A(s) ds

)
vε(t) dt

(2.13)

3It is shown in [2, Theorems 4.1 and 5.1] that the wave equation model in (1.1) as well as the
corresponding Webster’s model in (1.4) are dynamical systems that can be represented as internally
well-posed, passive boundary nodes. A short introduction of passive boundary nodes can be found in [2,
Section 2].
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By (2.10) and the fact that F + G + H ∈ C(R+
;L2(0, 1)), the three inner integrals in

(2.13) represent continuous functions in variable t. By letting ε→ 0, we get the identity∫ 1

0

(
φ̄s(t0, s)ξs(s) +

1

c2Σ(s)
φ̄tt(t0, s)ξ(s)

)
A(s) ds

+ 2πα

∫ 1

0

W (s)φ̄t(t0, s)ξ(s)ds

=

∫ 1

0

(F (s, t0) +G(s, t0) +H(s, t0))ξ(s)A(s) ds.

This means that (2.11) holds pointwise for all t = t0 > 0 if the four terms in (2.11)
are regarded as distributions for each fixed t ∈ (0, 1). By (2.10) and F + G + H ∈
C(R+

;L2(0, 1)), all other terms except the second in (2.11) are functions in L2(0, 1) for
any fixed t ∈ (0, 1). We conclude that the equality in (2.11) holds in L2(0, 1) (understood
as a subspace of distributions) for each fixed t > 0. Even the second term in (2.11) satisfies

c(s)2

A(s)

∂

∂s

(
A(s)

∂φ̄

∂s

)
∈ C(R+

;L2(0, 1)). (2.14)

By continuity, Webster’s equation (2.11) holds with equality in C(R+
;L2(0, 1)). This is

the reformulation of [15, Theorem 3.1] that we use in this article.

Lemma 2.1. Let the functions φ, φ̄, F , G, and H be defined as above. Then x(t) =[
φ̄(t,·)
ρφ̄t(t,·)

]
is a solution of the first equation in (2.8) where f = F + G + H and Lw is

given in Section 2.1.

Proof. We first show that x(t) ∈ Zw = dom (L) for all t ≥ 0. By the latter inclusion in
(2.10) and the fact that φ̄(t, 1) = 0 for all t ≥ 0, we get φ̄(t, ·) ∈ H1

{1}(0, 1). Because A(·)
is continuously differentiable, it follows from (2.14) that φ̄ss(t, ·) ∈ L2(0, 1); implying
φ̄(t, ·) ∈ H2(0, 1).

By the latter inclusion in (2.10), φ̄ ∈ C1(R+
;H1(0, 1)). Hence, φ̄t(t, ·) ∈ H1

{1}(0, 1)

since φ̄t(t, 1) = 0 as a consequence of φ̄(t, 1) = 0. We conclude that φ̄t(t, ·) ∈ H1
{1}(0, 1).

We have now shown that x(t) ∈ Zw for all t.
The claim follows from

Lw

[
φ̄(t, ·)
ρφ̄t(t, ·)

]
=

[
φ̄t(t, ·)

ρc(s)2
(
Wφ̄(t, ·) + αDφ̄t(t, ·)

)] =

[
φ̄t(t, ·)

ρ
(
φ̄tt(t, ·)− f(t, ·)

)]
where the last equality is by (2.11). In particular, Lwx ∈ Xw.

As a consequence of (1.6), (1.7), and (2.14), the averaged solution φ̄ has a little more
regularity that we need in Proposition 5.3:

Lemma 2.2. The function φ̄ satisfies φ̄(t, ·) ∈ H2(0, 1) for all t ∈ R+
.
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2.3. On system nodes
To treat the case f 6= 0 in (2.8), we rewrite (2.8) in terms of system nodes in Section 3.

There exists a wide literature on system nodes, and we give a short reminder on what
we need based on, e.g., [16, 29, 31]. Following [17, Definition 2.1] or [16, Definition 2.2],
the system node is characterised as follows:

Definition 2.3. An operator

S :=

[
A&B
C&D

]
: X × U ⊃ dom (S)→ X × Y

is called an system node on the Hilbert spaces (U ,X ,Y) if the following holds:

(i) A is a generator of a strongly continuous semigroup on X .
(ii) B ∈ L(U ;X−1) where X−1 = dom (A∗)

d ⊃ X is the usual extrapolation space.
(iii) dom (S) = {[ xu ] ∈ X ×U : A−1x+Bu ∈ X} where A−1 ∈ L(X ;X−1) is the Yoshida

extension of A.
(iv) A&B =

[
A−1 B

] ∣∣
dom(S)

.
(v) C&D ∈ L(dom (S) ;Y) where we use on dom (S) the graph norm of A&B:

‖[ xu ]‖2dom(S) := ‖x‖2X + ‖u‖2U + ‖A−1x+Bu‖2X .

Details of A−1 and X−1 can be found in, e.g., [16, Proposition 2.1]. We also use the
Hilbert space X1 = dom (A) equipped with the graph norm of A. Whenever we refer to
these spaces for the dual node Sd (as characterised in [16, Proposition 2.4]), we use the
symbols X d1 and X d−1.

The dynamical equations for systems nodes take the form that is reminiscent of the
equations in finite-dimensional linear system theory where S = [A B

C D ] :[
x′(t)
ỹ(t)

]
= S

[
x(t)
ũ(t)

]
for t ∈ R+; x(0) = x0. (2.15)

Proposition 2.4. Assume that S =
[
A&B
C&D

]
is a system node with domain dom (S).

For all x0 ∈ X and ũ ∈ C2(R+
;U) with

[ x0

ũ(0)

]
∈ dom (S) the equations (2.15) are

uniquely solvable, and the solutions satisfy x ∈ C1(R+
;X ), ỹ ∈ C(R+

;Y), and [ xũ ] ∈
C(R+

; dom (S)).

This is given in [16, Proposition 2.6], and these solutions are called classical in the sense
of mathematical systems theory. For a more complete treatment of system nodes, see
[16, Section 2].

3. Inhomogeneous Webster’s model

The purpose of this section is to rewrite the inhomogeneous Webster’s model (2.8)
as a system node with an energy inequality. As a matter of fact, we solve the following
general problem in the context of mathematical systems theory: how to add an interior
point control input to a passive boundary control system in the framework of system
nodes.
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As argued in [17, Section 2], boundary node Ξ(W ) = (Gw, Lw,Kw) from (2.9) induces
a unique system node S =

[
A&B
C&D

]
on Hilbert spaces (Yw,Xw,Yw) with operators A,

A−1, B, and C&D as in Definition 2.3. Then, if ũ ∈ C2(R+
;Yw) and x0 =

[
ψ0
π0

]
∈ Zw,

the functions x, ỹ in (2.8) and (2.15) are the same if f ≡ 0 in (2.8). We emphasize that
the translation between boundary nodes like Ξ(W ) and the corresponding system nodes
S is easiest carried out using [17, Theorem 2.3]. The resulting node S is of boundary
control type in the sense that BYw ∩ Xw = {0} and ker (B) = {0}. We make use of
the following relations4 connecting S and Ξ(W ): dom (S) =

[
I
Gw

]
Zw, A = Lw

∣∣
ker(Gw)

with dom (A) = ker (Gw), Lw = A−1

∣∣
Zw

+ BGw, and C&D =
[
Kw 0

] ∣∣
dom(S)

; for
details, see, e.g., [17, Section 2.2]. The unbounded adjoint of A is denoted by A∗, and
it has been described in [2, Theorem 4.1] in the general passive case α ≥ 0. In the
conservative special case α = 0 we get A∗ := −Lw

∣∣
ker(Kw)

with dom (A∗) = ker (Kw)

by [17, Theorem 1.7 and Proposition 4.3]. To write (2.8) as a system node, say S(W ),
amounts to augmenting S with an additional input that accommodates the load term f .

We define the Hilbert spaces (Xw)1 := dom (A) and (Xw)∗1 := dom (A∗) with the
graph norms ‖z‖2(Xw)1

= ‖Az‖2Xw
+‖z‖2Xw

and ‖z‖2(Xw)∗1
= ‖A∗z‖2Xw

+‖z‖2Xw
, respectively.

Define (Xw)−1 to be the dual of dom (A∗w) when we identify the dual of Xw with itself.
Then (Xw)1 ⊂ Xw ⊂ (Xw)−1 with continuous and dense embeddings.5 With these
definitions, B ∈ L(Yw; (Xw)−1).

Define the control operators B(e) :=
[

0
ρ

]
: L2(0, 1) → Xw and Bw :=

[
B B(e)

]
∈

L(Uw; (Xw)−1) where Uw := Yw×L2(0, 1) with the norm ‖
[
ũ
f

]
‖2Uw = ‖ũ‖2Yw

+ ‖f‖2L2(0,1).
Define dom

(
S(W )

)
:= dom (S)× L2(0, 1) (where dom (S) =

[
I
Gw

]
Zw) with the norm

‖
[ z
ũ
f

]
‖2

dom(S(W )) = ‖z‖2Zw
+ ‖Gwz‖2Yw

+ ‖f‖2L2(0,1)

and the operators

[A&B]w :=
[
A−1 Bw

] ∣∣
dom(S(W )) and [C&D]w :=

[
C&D 0

] ∣∣
dom(S(W ))

yields now the system node

S(W ) :=

[
[A&B]w
[C&D]w

]
(3.1)

on the Hilbert spaces (Uw,Xw,Yw) with domain dom
(
S(W )

)
. It is clear from the con-

struction that S(W ) has been obtained by adding a new input (using the operator B(e)

above) to the system node S that is associated to boundary node Ξ(W ) by [17, Theorem
2.3].

The node S(W ) is, in particular, internally well-posed since it has the same semigroup
as S. Hence, for any

[
ψ0
π0

]
∈ Zw and

[
ũ
f

]
∈ C2(R+

;Uw) satisfying the compatibility

4A shorter way of writing all this is
[
Lw
Kw

]
= S

[
I

Gw

]
.

5Recall that (Xw)1 ⊂ Zw ⊂ Xw but (Xw)1 is not dense in Zw.
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condition Gw
[
ψ0
π0

]
= ũ(0), the first and the last of the equations in
x′(t) = A−1x(t) +Bw

[
ũ(t)
f(t,·)

]
,

ỹ(t) = [C&D]w

[
x(t)
ũ(t)
f(t,·)

]
for t ∈ R+, and

x(0) =
[
ψ0
π0

] (3.2)

have a unique classical solution x ∈ C1(R+
;Xw) with

[ x
ũ
f

]
∈ C(R+

; dom
(
S(W )

)
). (These

equations are plainly (2.15) written for S(W ) instead of S.) Then the output signal can be
defined through the second of the equations in (3.2) since [C&D]w ∈ L(dom

(
S(W )

)
;Uw)

as in Proposition 2.4. We conclude that (2.8) and (3.2) are equivalent Cauchy problems
under the assumptions on

[
ψ0
π0

]
and

[
ũ
f

]
stated above.

The state x(·) in equations (3.2) is controlled both from the boundary points 0, 1
(using the control function ũ) and also from all of the interior points of the interval
[0, 1] (using the control function f). We show next that that if both ũ and f are twice
continuously differentiable in time, the boundary and the interior point parts of the
control “do not mix”.

Proposition 3.1. Let
[
ψ0
π0

]
∈ Zw,

[
ũ
f

]
∈ C2(R+

;Uw), and Gw
[
ψ0
π0

]
= ũ(0). Then the

classical solution x of the first and the last of equations (3.2) (associated with the system
node in (3.1)) satisfies x = z + w where z is the classical solution of (2.8) with f ≡ 0
(associated with the boundary node Ξ(W ) in (2.9)), and w(t) ∈ ker (Gw) for all t ≥ 0.

The compatibility condition Gw
[
ψ0
π0

]
= ũ(0) is a peculiarity that is required by classical

solutions as they are defined here. In the context of general system nodes, the role of the
same compatibility condition can be understood from [16, proof of Proposition 2.6].

Proof. By linearity, the classical solution x of (3.2) can be decomposed as the sum
x = z + w of two classical solutions z and w for t ∈ R+ of the equations

z′(t) = A−1z(t) +Bw
[
ũ(t)

0

]
= A−1z(t) +Bũ(t) with z(0) =

[
ψ0
π0

]
; (3.3)

and

w′(t) = A−1w(t) +Bw
[

0
f(t,·)

]
= A−1w(t) +B(e)f(t, ·) with w(0) = 0. (3.4)

Because the operators A−1 and B relate to S (as introduced in the beginning of this
section) and, hence, to the boundary node Ξ(W ) in (2.9), we have z′(t) = Lwz(t) from
the formulation of Cauchy problem for boundary nodes. Further, equations (3.3) give
z′(t) = Lwz(t) + B(ũ(t) − Gwz(t)), implying B(ũ(t) − Gwz(t)) = 0, and hence ũ(t) =
Gwz(t) because ker (B) = {0}.

Consider next the initial value problem

w̃′(t) = A−1w̃(t) +B(e)f ′(t, ·) for t ∈ R+, w̃(0) = B(e)f(0), (3.5)

where now f ′ ∈ C1(R+
;L2(0, 1)) and w̃(0) ∈ Xw. Denote by T (·) the strongly continuous

contraction semigroup on Xw generated by A. Because B(e) ∈ L(L2(0, 1);Xw), the
variation of constants formula w̃(t) = T (t)B(e)f(0) +

∫ t
0
T (t− τ)B(e)f ′(τ, ·) dτ gives a
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unique strong solution of (3.5) satisfying w̃ ∈ C(R+
;Xw); see [29, Theorem 3.8.2(iv)].

Then w defined by w(t) :=
∫ t

0
w̃(τ) dτ satisfies w̃(t) = A−1w(t) +B(e)f(t, ·) for all t ≥ 0,

as can be seen by integrating (3.5) over [0, 1] as a (Xw)−1-valued function. Since also
w̃ = w′ (derivative computed in the space (Xw)−1), we conclude that w equals the unique
classical solution of (3.4), with w ∈ C1(R+

;Xw).
It now follows from A−1w(t) = w̃(t)− B(e)f(t, ·) that w ∈ C(R+

; (Xw)1). Therefore
Gww(t) = 0 because (Xw)1 = dom (A) = ker (Gw).

In fact, the system node S(W ) defines a well-posed linear system in the usual sense
of, e.g., [16, Definition 2.7] and [29, Definition 2.2.1]:

Theorem 3.2. The classical solution of (3.2) satisfies the energy inequality

d

dt
‖x(t)‖2Xw

≤ |ũ(t)|2 + 2ρ · Re
〈
x(t),

[
0

f(t,·)
]〉
Xw
− |ỹ(t)|2 (3.6)

for all t > 0. Moreover, the well-posedness estimate

‖x(T )‖2Xw
+ ‖ỹ‖2L2((0,T );Yw) ≤ K(T )

(
‖
[
ψ0
π0

]
‖2Xw

+ ‖
[
ũ
f

]
‖2L2((0,T );Uw)

)
(3.7)

holds for all T ≥ 0 where K(T ) := 5(ρ2 + 1)(T + 1).

Proof. We first verify (3.6) for the classical solution x of (3.2) for which
[
ψ0
π0

]
∈ Zw,[

ũ
f

]
∈ C2(R+

;Uw), and Gw
[
ψ0
π0

]
= ũ(0). Proposition 3.1 gives the decomposition x(t) =

z(t) + w(t) ∈ Zw for such solutions where z′(t) = Lwz(t), w(t) ∈ ker (Gw), and w′(t) =
Aw(t) +B(e)f(t, ·). Hence, we get for any t ≥ 0

d

dt
‖x(t)‖2Xw

+ |ỹ(t)|2 = 2Re 〈x(t), z′(t) + w′(t)〉Xw
+ |ỹ(t)|2

= 2Re 〈x(t), Lwx(t)〉Xw
+ |ỹ(t)|2 + 2Re

〈
x(t), B(e)f(t, ·)

〉
Xw

(3.8)

since A = Lw
∣∣
ker(Gw)

. Since ỹ(t) = Kwx(t) by the definition of [C&D]w, we have by the
passivity of Ξ(W ) the Green–Lagrange inequality

2Re 〈x(t), Lwx(t)〉Xw
+ |Kwx(t)|2 ≤ |Gwx(t)|2 = |ũ(t)|2 .

This, together with (3.8), gives for all t ≥ 0 the energy estimate

d

dt
‖x(t)‖2Xw

+ |ỹ(t)|2 ≤ |ũ(t)|2 + 2Re
〈
x(t), B(e)f(t, ·)

〉
Xw

. (3.9)

Since B(e)f(t, ·) =
[

0
ρf(t,·)

]
, we conclude that (3.6) holds.

To conclude (3.7) from (3.6), we must obtain an a priori bound for ‖x(t)‖Xw
. We

use again the splitting x = z+w from Proposition 3.1. Because (3.3) describes the input
part of the scattering passive system node S associated to Ξ(W ) in (2.9), we get

‖z(t)‖2Xw
≤ ‖
[
ψ0
π0

]
‖2Xw

+ ‖ũ‖2L2(0,t); (3.10)
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see [2, Theorem 4.1], based on scattering passive boundary nodes described in [18, Defi-
nition 2.3 and Theorem 2.5] that are related to passive system nodes as explained in [17,
Section 2]. As in the proof of Proposition 3.1, the variation of constants formula gives
w(t) =

∫ t
0
T (t− τ)

[
0

ρf(τ,·)
]
dτ for the solution of (3.4). Because T (·) is a contraction

semigroup, it follows from Hölder’s inequality that

‖w(t)‖2Xw
≤ tρ2‖f‖2L2((0,t);L2(0,1)) = tρ2‖f‖2L2((0,1)×(0,t)). (3.11)

Combining (3.10) and (3.11) we get

‖x(t)‖2Xw
≤ 2(‖z(t)‖2Xw

+ ‖w(t)‖2Xw
) ≤ 2(‖

[
ψ0
π0

]
‖2Xw

+ (1 + tρ2)‖
[
ũ
f

]
‖2L2((0,t);Uw))

and thus ‖x‖2L2((0,T );Xw) ≤ 2T‖
[
ψ0
π0

]
‖2Xw

+ (ρ2T 2 + 2T )‖
[
ũ
f

]
‖2L2((0,T );Uw)) ≤ (ρ2T 2 +

2T )(‖
[
ψ0
π0

]
‖2Xw

+ ‖
[
ũ
f

]
‖2L2((0,T );Uw)) which implies

‖x‖L2((0,T );Xw) ≤ (ρ2 + 1)1/2(T + 1)(‖
[
ψ0
π0

]
‖Xw + ‖

[
ũ
f

]
‖L2((0,T );Uw)).

Now we get∫ T

0

∣∣∣〈x(t),
[

0
ρf(t,·)

]〉
Xw

∣∣∣ dt ≤ ‖x‖L2((0,T );Xw) · ‖
[

0
ρf

]
‖L2((0,T );Xw)

≤ ρ(ρ2 + 1)1/2(T + 1)(‖
[
ψ0
π0

]
‖Xw

+ ‖
[
ũ
f

]
‖L2((0,T );Uw)) · ‖f‖L2((0,1)×(0,T ))

≤ (ρ2 + 1)(T + 1)(‖
[
ψ0
π0

]
‖Xw

+ ‖
[
ũ
f

]
‖L2((0,T );Uw))

2

≤ 2(ρ2 + 1)(T + 1)(‖
[
ψ0
π0

]
‖2Xw

+ ‖
[
ũ
f

]
‖2L2((0,T );Uw)).

This, together with integrating (3.6) over the interval [0, T ], produces (3.7) provided that[
ψ0
π0

]
∈ Zw,

[
ũ
f

]
∈ C2(R+

;Uw), and Gw
[
ψ0
π0

]
= ũ(0).

Using the well-posedness estimate of Theorem 3.2, we can move from classical solu-
tions to more general strong solutions of equations (3.2).

Corollary 3.3. The system node S(W ) in (3.1), associated to the inhomogeneous Web-
ster’s equation described by (2.1)—(2.5), defines a well-posed linear system through equa-
tions (3.2).

The first and the last of equations in (3.2) have a unique strong solution x (in Xw) for
any

[
ψ0
π0

]
∈ Xw and

[
ũ
f

]
∈ L2

loc(R+;Uw) satisfying x ∈ C(R+
;Xw) ∩W 1,1

loc (R+; (Xw)−1).
The output function satisfies ỹ ∈ L2

loc(R+;Yw), and the well-posedness estimate (3.7)
holds.

Strong solutions are defined in [29, Definition 3.8.1] in the sense of mathematical systems
theory. It is clear that classical solutions of (3.2) (as given in Proposition 2.4) are strong
solutions as well. Conversely, it does not make sense to say that a strong solution would
in general satisfy equations in (2.8) for, e.g,

[
ũ
f

]
/∈ C2(R+

;Uw).

Proof. That S(W ) defines a well-posed linear system follows from estimate (3.7) and [29,
Lemma 4.7.8 and Theorem 4.7.15]. The existence of the strong solution follows from
the definition of the well-posed linear system; see [29, Definition 2.2.1]. That the strong
solution satisfies (3.7) follows by density as given in [16, Definition 2.7] and the discussion
following it.
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4. Tracking error dynamics

It is now time to discuss in a rigorous way what actually is described in the right panel
of Fig. 1. There, both the wave equation and Webster’s equation are boundary controlled
by a common external signal, apart from averaging. More precisely, the boundary control
signal u ∈ C2(R+

;L2(Γ(0))) acts as an input for the wave equation, and the scalar signal

ū(t) :=
1

A(0)

∫
Γ(0)

udA for t ∈ R+
(4.1)

satisfying ū ∈ C2(R+
;Yw) is used as the input for the Webster’s model. It has been

shown in [15, Theorem 3.1] that the averaged solution φ̄ = φ̄(t, s) in (1.8), with φ coming
from (1.1), is a weak solution ψ = φ̄ of the problem

ψtt − c(s)2

A(s)
∂
∂s

(
A(s)∂ψ∂s

)
+ 2παW (s)c(s)2

A(s) ψt = f

for s ∈ (0, 1) and t ∈ R+,

−cψs(t, 0) + ψt(t, 0) = 2
√

c
ρA(0) ū(t) for t ∈ R+,

ψ(t, 1) = 0 for t ∈ R+, and
ψ(0, s) = φ̄(0, s), ψt(0, s) = φ̄t(0, s) for s ∈ (0, 1),

(4.2)

where the additional load term f = F +G+H ∈ C(R+
;L2(0, 1)) is given by (2.3)—(2.5)

above. By [15, Theorem 3.1], the particular weak solution φ̄ of (4.2) has extra regularity
a consequence of (1.3) as given in (2.10).

On the other hand, the system described by (4.2) and the output function ỹ defined
by (2.2) can be reformulated in terms of the scattering passive system node as[

x′(t)
ỹ(t)

]
= S(W )

[
x(t)
ū(t)
f(t,·)

]
and x(0) =

[
φ̄(0,·)
ρφ̄t(0,·)

]
(4.3)

as shown in Section 3. Equation (4.3) has a unique strong solution x by Corollary 3.3
which is of the form x = [ ψπ ] where ψ solves (4.2), and π = ρψt. To apply the estimate
(3.7) using Corollary 3.3, we need to conclude that the top component ψ of the strong
solution x of (4.3) equals φ̄ for all t ≥ 0.

Lemma 4.1. Let Ω an Γ(0) ⊂ ∂Ω be defined as in Section 1, and let u ∈ C2(R+
;L2(Γ(0))).

By φ denote the solution of the wave equation model (1.1) satisfying the regularity con-
ditions (1.3), and define y ∈ C(R+

;L2(Γ(0))) by (1.2). Assume that

(i) the function φ̄ is obtained from φ of (1.1) by the averaging operator given in (1.8);
(ii) the function ū ∈ C2(R+

;Yw) is obtained from u by (4.1); the function ȳ ∈ C(R+
;Yw)

is obtained similarly from y; and
(iii) the function f ∈ C(R+

;L2(0, 1)) is defined as f = F +G+H where F ,G, and H
are given by (2.3)–(2.5).

Then x(t) =
[
φ̄(t,·)
ρφ̄t(t,·)

]
is the (unique) strong solution of (4.3) with the output satisfying

ỹ = ȳ.
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We remark that the result depends essentially on the Standing Assumptions 2 as seen in
the proof.

Proof. The proof is an extension of Lemma 2.1. More precisely, we need to show that
(i) the functions x(t) =

[
φ̄(t,·)
ρφ̄t(t,·)

]
and

[
ū
f

]
satisfy x(0) ∈ Xw,

[
ū
f

]
∈ L2

loc(R+;Uw), and

x ∈ C(R+
;Xw) ∩ W 1,1

loc (R+; (Xw)−1); and that (ii) the dynamical equations (4.3) are
satisfied with ỹ = ȳ where the Hilbert spaces Uw, Xw, (Xw)−1 and the system node S(W )

are defined in Section 3.
Now, it is immediate from assumptions that

[
ū
f

]
∈ L2

loc(R+;Uw). Recalling that
Zw ⊂ Xw, the inclusion x(0) ∈ Xw follows because a stronger result x(t) ∈ Zw for all
t ≥ 0 has been shown in the proof of Lemma 2.1.

We work under the regularity assumptions (1.3) on the classical solution φ of (1.1)–
(1.2), and hence

[
φ
ρφt

]
∈ C1(R+;H1(Ω) × L2(Ω)). The averaging operator A defined

by (1.8) satisfies A ∈ L(Hk(Ω);Hk(0, 1)) for all k ≥ 0 by [15, Proposition 5.3]. Thus,
the averaged solution φ̄(t, ·) = Aφ(t, ·) satisfies x =

[
φ̄
ρφ̄t

]
∈ C1(R+;Xw) since Xw =

H1
{1}(0, 1)× L2(0, 1) and φ̄(t, 1) = 0 follows from the boundary condition φ(t, r) = 0 for

all r ∈ Γ(1). Because Xw ⊂ (Xw)−1 with a continuous embedding (see Definition 2.3),
we have x ∈ C(R+

;Xw) ∩W 1,1
loc (R+; (Xw)−1) as required.

Let us first check the top row of (4.3); i.e.,

x′(t) = [A&B]w

[
x(t)
ū(t)
f(t,·)

]
= A−1x(t) +Bū(t) +

[
0

ρf(t,·)
]

(4.4)

where the operators A−1, B are as in Section 3. Since x(t) ∈ Zw (as is already stated in
this proof) and A−1

∣∣
Zw

= Lw − BGw, we conclude that A−1x(t) + Bu(t) +
[

0
ρf(t,·)

]
=

Lwx(t) +B (ū(t)−Gwx(t)) +
[

0
ρf(t,·)

]
= x′(t) +B (ū(t)−Gwx(t)) by Lemma 2.1. Thus,

equation (4.4) holds since ū(t) = Gwx(t) follows from the second equation in (1.1) as
explained in [15, Eqs. (3.6) and (3.8), as shown at the end of Section 4], noting that the
last two condition listed in Standing Assumptions 2 hold.

It remains to treat the bottom row of (4.3) which takes the form

ỹ(t) = [C&D]w

[
x(t)
ū(t)
f(t,·)

]
= Kwx(t).

Similarly as above for the input equation ū(t) = Gwx(t), we observe that ȳ(t) = Kwx(t)
as well. Hence ỹ = ȳ follows, and the proof is complete.

For the rest of the section, we denote by
[
ψ
ρψt

]
the unique solution of (4.3) with

f ≡ 0 and output ỹ, referring to the left panel in Fig. 1. By Lemma 4.1, the function[
φ̄
ρφ̄t

]
is the unique solution of (4.3) with f = F +G+H ∈ C(R+

;L2(0, 1)) and output
ȳ, referring to the right panel in Fig. 1. By subtracting the model equations for ψ and
φ̄ from each other, we get the equations for the tracking error. Indeed, because both[
ψ
ρψt

]
and

[
φ̄
ρφ̄t

]
are strong solutions in the sense of Corollary 3.3, the tracking error
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ẽ := [ e
ρet ] =

[
ψ−φ̄

ρ(ψ−φ̄)t

]
is the unique strong solution of the tracking error model[

ẽ′(t)
ỹ(t)− ȳ(t)

]
= S(W )

[
ẽ(t)

0
F (t,·)+G(t,·)+H(t,·)

]
and ẽ(0) =

[
0
0

]
. (4.5)

Now, the tracking error can be estimated for T ≥ 0 by using the well-posedness estimate
(3.7) for strong solutions, given in Theorem 3.2:

‖ẽ(T )‖2Xw
+ ‖ỹ − ȳ‖2L2((0,T );Yw)

≤ 5(ρ2 + 1)(T + 1) · ‖F +G+H‖2L2((0,T );L2(0,1)).
(4.6)

It remains to translate (4.6) to our first a posteriori estimate recalling the norm of
Xw in (2.7) that was used for deriving (4.6).

Theorem 4.2. Let the sets Ω, Γ, and Γ(s) for s ∈ [0, 1] be defined as in Section 1, and
assume that the Standing Assumptions 1 and 2 hold. Moreover, assume the following:

(i) Let u ∈ C2(R+
;L2(Γ(0))), and define its spatial average ū by (4.1).

(ii) Let φ0 ∈ H1(Ω) with φ0

∣∣
Γ(1)

= 0, ∆φ0 ∈ L2(Ω), and ∂φ0

∂ν

∣∣
Γ(0)∪Γ

∈ L2(Γ(0) ∪ Γ).
Let p0 ∈ H1(Ω) with p0

∣∣
Γ(1)

= 0, and assume that the compatibility condition with
the input function u holds:

c
∂φ0

∂ν
(r) + ρ−1p0(r) = 2

√
c

ρA(0) u(0, r) for all r ∈ Γ(0).

(iii) By φ : R+ × Ω → R denote the solution6 of the wave equation model (1.1) Define
the output y by (1.2).

(iv) Define the spatially averaged version φ̄ of φ by (1.8). Similarly with ū, define ȳ in
terms of y.

(v) By ψ : R+ × [0, 1] → R denote the solution7 of the generalised Webster’s equation
(1.4) with the input ũ = ū, and define the output ỹ by (1.5).

Then the tracking error e = ψ − φ̄, as described by the left panel of Fig. 1, is bounded
from above for all T ≥ 0 by the inequality

‖
(
ψ − φ̄

)
(T, ·)‖H1(0,1) + ‖

(
ψt − φ̄t

)
(T, ·)‖L2(0,1) + ‖ỹ − ȳ‖L2(0,T )

≤ 4CΩρ
−1/2(ρ+ 1)3/2(T + 1)1/2 · ‖F +G+H‖L2((0,T )×(0,1))

where the constant CΩ given by

C2
Ω = max

(
‖A(·)−1‖L∞(0,1), ‖c(·)2A(·)−1‖L∞(0,1)

)
+ 1, c(s) = cΣ(s), (4.7)

depends only on the geometry of Ω, and the functions F , G, and H are given by (2.3) –
(2.5) in terms of solution φ of (1.1) and the problem data.

6As explained in [2, Theorem 5.1] for α > 0 and [2, Corollary 5.2] for α = 0.
7As explained in [2, Theorem 4.1].
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Note that assumptions (i) and (ii) are first required for the classical solvability of equa-
tions in (1.1). After these, the next two assumption (iii) and (iv) can be made.

Proof. We observe that φ has the regularity required in (1.6) since it is part of [2, The-
orem 5.1] for classical solutions. Hence, all that has been stated above about φ̄ is at our
disposal. Recalling the energy norm (2.7) of Xw, we get

‖
(
ψs − φ̄s

)
(T, ·)‖2L2(0,1) + ‖

(
ψt − φ̄t

)
(T, ·)‖2L2(0,1)

≤ C1

∥∥∥[ (ψ−φ̄)(T,·)
ρ(ψt−φ̄t)(T,·)

]∥∥∥2

Xw

where

C1 =
2

ρ
max

(
‖A(·)−1‖L∞(0,1), ‖c(·)2A(·)−1‖L∞(0,1)

)
and c(s) = cΣ(s).

Thus, using (4.6), we get

‖
(
ψ − φ̄

)
(T, ·)‖2H1(0,1) + ‖

(
ψt − φ̄t

)
(T, ·)‖2L2(0,1) + ‖ỹ − ȳ‖2L2(0,T )

≤ C2

(
‖
[

(ψ−φ̄)(T,·)
ρ(ψt−φ̄t)(T,·)

]
‖2Xw

+ ‖ỹ − ȳ‖2L2(0,T )

)
≤ 5C2(ρ2 + 1)(T + 1) · ‖F +G+H‖2L2((0,T );L2(0,1))

(4.8)

where C2 = C1 + 1. Taking the square root of both sides and using (a + b + c)2 ≤
3
(
a2 + b2 + c2

)
gives

‖
(
ψ − φ̄

)
(T, ·)‖H1(0,1) + ‖

(
ψt − φ̄t

)
(T, ·)‖L2(0,1) + ‖ỹ − ȳ‖L2(0,T )

≤
√

15C2(ρ2 + 1)1/2(T + 1)1/2 · ‖F +G+H‖L2((0,T )×(0,1))

which gives the claim after straightforward estimation, observing that C2 ≤ ρ+1
ρ C2

Ω.

5. A posteriori error estimate

In essence, the following Theorem 5.1 follows from Theorem 4.2 by estimating the
functions F , G, and H in terms of φ and the problem data.

By f
∣∣
Γ
denote the Dirichlet trace of a function f defined on Ω. Define the Hilbert

space
E(Ω) =

{
f ∈ H1(Ω) : ∆f ∈ L2(Ω), f

∣∣
Γ
∈ H1(Γ)

}
,

equipped with the norm

‖f‖2E(Ω) = ‖f‖2H1(Ω) + ‖∆f‖2L2(Ω) + ‖f
∣∣
Γ
‖2H1(Γ).

Recall that Γ ⊂ ∂Ω denotes the walls of the tube Ω, excluding the ends Γ(0) and Γ(1).

Theorem 5.1. Let the sets Ω, Γ, and Γ(s) for s ∈ [0, 1] be defined as in Section 1, and
assume that the Standing Assumptions 1 and 2 hold. Make the same assumptions (i)–(v)
on signals u, ū, y, ȳ, ỹ, and solutions φ, φ̄ as in Theorem 4.2. Denote by ¯̄φ the extension
of the averaged solution φ̄ to all of Ω, given by

¯̄φ(·, r) = φ̄(·, s) for all r ∈ Γ(s), s ∈ [0, 1]. (5.1)
17



Then the tracking error e = ψ− φ̄, as described by the left panel of Fig. 1, is bounded by
the inequality

‖
(
ψ − φ̄

)
(T, ·)‖H1(0,1) + ‖

(
ψt − φ̄t

)
(T, ·)‖L2(0,1) + ‖ỹ − ȳ‖L2(0,T )

≤4CΩρ
−1/2(ρ+ 1)3/2(T + 1)1/2

·
(
‖A−1‖L∞(0,1)

(
‖A′‖L∞(0,1) + ‖A′′‖L∞(0,1)

)
CF

∥∥∥φ− ¯̄φ
∥∥∥
L2((0,T );E(Ω))

+ ‖max (κ, κ′)‖2L∞(0,1)CH,1

∥∥∥∇(φ− ¯̄φ
)∥∥∥

L2([0,T ]×Ω;C3)

+ α (CG + CH,2)
∥∥∥(φ− ¯̄φ

)
t

∥∥∥
L2((0,T );H1(Ω))

+‖κ‖L∞(0,1)CH,3

∥∥∥∆φ−∆φ
∥∥∥
L2([0,T ]×Ω)

)
for all T ≥ 0 where(

∆φ
)

(t, r) := A(∆φ(t, ·))(s) for all r ∈ Γ(s), s ∈ [0, 1], and t ∈ R+
,

the constant CΩ is given by (4.7), the constants CF and CG are as given in Proposi-
tion 5.3, and the constants CH,1, CH,2, and CH,3 are as given in Proposition 5.4.

All of the constants on the right hand side depend only on the domain Ω.

The proof of this theorem is divided into Propositions 5.2, 5.3, and 5.4. Even though
the constants in Theorem 5.1 depend only on the domain Ω, their numerical values are
difficult to obtain since they contain, e.g., norms of trace mappings.

For f ∈ E(Ω) and g ∈ H1(Ω), define the linear operators

(Ff)(s) = A′′(s)(Af − Bf
∣∣
Γ
) +A′(s)

∂

∂s
(Af − Bf

∣∣
Γ
)

(Gg)(s) = −2πW (s)

A(s)

(
Ag − Bg

∣∣
Γ

) (5.2)

where we use the two averaging operators that have been introduced in [15]

(Af)(s) :=
1

A(s)

∫
Γ(s)

f dA and (Bg
∣∣
Γ
)(s) :=

1

2π

∫ 2π

0

g(s,R(s), θ) dθ

for all s ∈ (0, 1).

Proposition 5.2. The operators defined in (5.2) satisfy F ∈ L(E(Ω);L2(0, 1)) with the
estimate

‖Ff‖L2(0,1) ≤
(
‖A′‖L∞(0,1) + ‖A′′‖L∞(0,1)

)
CF‖f‖E(Ω)

and G ∈ L(E(Ω);H1(0, 1)) ∩ L(H1(Ω);H1/2(0, 1)).
Moreover, ker (G)∩E(Ω) ⊂ ker (F), ker (G) is closed in H1(Ω), and ker (F) closed in

E(Ω). If f ∈ H1(Ω), and ¯̄f is defined by dilation
¯̄f(r) = (Af)(s) for all r ∈ Γ(s) and s ∈ (0, 1)

then ¯̄f ∈ ker (G). Similarly, if f ∈ E(Ω) is such that Af ∈ H2(0, 1) then ¯̄f ∈ ker (G) ∩
E(Ω).
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Proof. As shown in [15, Propositions 5.2 and 5.3], we have

A ∈ L(L2(Ω);L2(0, 1)) ∩ L(H1(Ω);H1(0, 1)) and B ∈ L(Hs(Γ);Hs(0, 1))

for all s ∈ R. Because the functions A(·) and W (·) are smooth and strictly positive, the
norm estimates for F and G follow. The claims about the null spaces are evident, apart
from the last one.

Since ¯̄f is constant on each Γ(s) for s ∈ (0, 1), it would follow that the two averages
(A ¯̄f)(s) and (B ¯̄f

∣∣
Γ
)(s) would coincide for all s. Thus, formally ¯̄f ∈ ker (G). It remains to

show that ¯̄f ∈ H1(Ω) if f ∈ H1(Ω), and that ¯̄f ∈ E(Ω) if f ∈ E(Ω) and Af ∈ H2(0, 1).
We choose a smooth curve l : [0, 1]→ Γ on the tube wall such that Γ(s)∩ l consists of

a single point. Then cut the tube wall open along l, and map the surface Γ\ l to the unit
square [0, 1]× (0, 1) by a smooth diffeomorphism, so that the circles ∂Γ(s) \ {l(s)} map
onto {s}× (0, 1). Now, it it clear that the extension f̃(s, ξ) := f̄(s) for ξ ∈ (0, 1) satisfies
f̃ ∈ H1((0, 1)2) because f ∈ H1(Ω) implies f̄ = Af ∈ H1(0, 1) by [15, Proposition 5.2].
Thus ¯̄f ∈ H1(Γ) by pullback. By a similar argument, we have ¯̄f ∈ H2(Ω) ⊂ E(Ω) if
f̄ ∈ H2(0, 1) which completes the proof.

With the help of the operators F and G, the forcing terms F and G given in (2.3)
–(2.4) may be written as

F (t, s) = −A(s)−1(Fφ(t, ·))(s) and G(t, s) = α(Gφt(t, ·))(s) (5.3)

for all (t, s) ∈ R+ × (0, 1).

Proposition 5.3. Make the same assumption as in Theorem 5.1. The forcing functions
F and G, given by (2.3)–(2.4), satisfy the estimates

‖F (t, ·)‖L2(0,1) ≤ ‖A−1‖L∞(0,1)

(
‖A′‖L∞(0,1) + ‖A′′‖L∞(0,1)

)
CF

∥∥∥(φ− ¯̄φ
)

(t, ·)
∥∥∥
E(Ω)

and

‖G(t, ·)‖L2(0,1) ≤ αCG
∥∥∥(φ− ¯̄φ

)
t
(t, ·)

∥∥∥
H1(Ω)

for all t ≥ 0 where the constants CF and CG depend only on the geometry of Ω.

Proof. As shown in [2, Theorem 5.1 and Corollary 5.2], the unique classical solution φ of
the wave equation (1.1) satisfies the regularity assumptions (1.3). Hence, all results of [15,
Section 5] can be used: in particular, that φ

∣∣
Γ
∈ C(R+;H1(Γ)) by [15, Proposition 5.1]

and, hence, φ(t, ·) ∈ E(Ω) for all fixed t ∈ R+
. Further, by Lemma 2.2 we get that

φ̄ ∈ H2(0, 1). Together with (5.3), we get

‖A(·)F (t, ·)‖L2(0,1) ≤
∥∥∥F (φ(t, ·)− ¯̄φ(t, ·)

)∥∥∥
L2(0,1)

+ ‖F ¯̄φ(t, ·)‖L2(0,1)

≤ CF
(
‖A′‖L∞(0,1) + ‖A′′‖L∞(0,1)

)
·
∥∥∥(φ− ¯̄φ

)
(t, ·)

∥∥∥
E(Ω)

because F ¯̄φ ≡ 0 by Proposition 5.2. The estimate involving G is proved similarly, noting
that the dissipativity constant α is always nonnegative.

It remains to treat the term H(·) given in (2.5):
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Proposition 5.4. Make the same assumption as in Theorem 5.1. Then the forcing
function H, given by (2.5), satisfies the estimate

‖H(t, ·)‖L2(0,1) ≤ ‖max (κ, κ′)‖L∞(0,1)CH,1

∥∥∥∇(φ− ¯̄φ
)

(t, ·)
∥∥∥
L2(Ω;C3)

+ αCH,2

∥∥∥(φ− ¯̄φ
)
t
(t, ·)

∥∥∥
H1(Ω)

+ ‖κ‖L∞(0,1)CH,3

∥∥∥(∆φ−∆φ
)

(t, ·)
∥∥∥
L2(Ω)

(5.4)

for all t ≥ 0 where the constants CH,1, CH,2, and CH,3 depend only on the geometry of
Ω.

Proof. Let us begin with the first term in H in (2.5). Denoting by ¯̄φ the extension given
in (5.1), we observe by using the gradient formula in [15, Section 2] that ∇ ¯̄φ = t(s) Ξ∂ ¯̄φ

∂s

and ∇
(
Ξ−1

)
= −t(s) rκ′(s) cos θ − n(s)κ(s). Thus, recalling that ¯̄φ = ¯̄φ(t, s), we get∫

Γ(s)

∇
(

1

Ξ

)
· ∇ ¯̄φ

dA

Ξ
= −κ′(s)∂

¯̄φ

∂s

∫
Γ(s)

r cos θ dA = 0

where dA = rdrdθ. Hence, we get by using Hölder’s inequality∥∥∥∥∥
∫

Γ(s)

∇
(

1

Ξ

)
· ∇φ dA

Ξ

∥∥∥∥∥
2

L2(0,1)

=

∥∥∥∥∥
∫

Γ(s)

∇
(

1

Ξ

)
· ∇
(
φ− ¯̄φ

) dA

Ξ

∥∥∥∥∥
2

L2(0,1)

≤
∫ 1

0

(∫
Γ(s)

∣∣∣∣∇( 1

Ξ

)∣∣∣∣2 dAΞ ·
∫

Γ(s)

∣∣∣∇(φ− ¯̄φ
)∣∣∣2 dA

Ξ

)
ds

≤‖max (κ, κ′)‖2L∞(0,1) C
2
H,1 ·

∫ 1

0

(∫
Γ(s)

∣∣∣∇(φ− ¯̄φ
)∣∣∣2 dA

Ξ

)
ds

=‖max (κ, κ′)‖2L∞(0,1)C
2
H,1 ·

∥∥∥∇(φ− ¯̄φ
)∥∥∥2

L2(Ω;C3)

where CH,1 := sups∈[0,1]

(∫
Γ(s)

(r + 1)2Ξ−1 dA
)1/2

, since dV = Ξ−1 dAds and
∣∣∇ (Ξ−1

)∣∣ ≤
max (κ, κ′)(r + 1).

Let us estimate next the last term in (2.5). Because the function ¯̄φt ≡ φt does not
depend on r and θ variables at all, we have∥∥∥∥∫ 2π

0

φt(t, ·, R(·), θ) cos θdθ

∥∥∥∥
L2(0,1)

≤
∥∥∥∥∫ 2π

0

(
φt − ¯̄φt

)
(t, ·, R(·), θ) cos θ dθ

∥∥∥∥
L2(0,1)

+

∥∥∥∥ ¯̄φt(t, ·) ·
∫ 2π

0

cos θ dθ

∥∥∥∥
L2(0,1)

=

∥∥∥∥∫ 2π

0

(
φt − ¯̄φt

)
(t, ·, R(·), θ) cos θ dθ

∥∥∥∥
L2(0,1)

.

Since the surface element on tube wall Γ is given by dS = W (s) dθ ds by [15, Section 2],
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we get for all t ≥ 0∥∥∥∥αW (·)η(·)
A(·)

∫ 2π

0

φt(t, ·, R(·), θ) cos θdθ

∥∥∥∥2

L2(0,1)

≤ α2C2
3

∫ 1

0

∣∣∣∣∫ 2π

0

W (s)1/2
(
φt − ¯̄φt

)
(t, s, R(s), θ) cos θ dθ

∣∣∣∣2 ds
≤ πα2C2

3

∫ 1

0

∫ 2π

0

∣∣∣(φt − ¯̄φt

)
(t, s, R(s), θ)

∣∣∣2W (s) dθ ds

= πα2C2
3

∫
Γ

∣∣∣(φt(t, ·)− ¯̄φt(t, ·)
) ∣∣

Γ

∣∣∣2 dS = πα2C2
3

∥∥∥(φt(t, ·)− ¯̄φt(t, ·)
) ∣∣

Γ

∥∥∥2

L2(Γ)

≤ πα2C2
3C

2
4

∥∥∥(φt(t, ·)− ¯̄φt(t, ·)
) ∣∣

Γ

∥∥∥2

H1/2(Γ)
≤ α2C2

H,2

∥∥∥(φ− ¯̄φ
)
t
(t, ·)

∥∥∥2

H1(Ω)

where C3 := sups∈[0,1]
η(s)
A(s) , CH,2 := π1/2C3C4C5, and the constants C4, C5 are the norms

of the inclusion H1/2(Γ) ⊂ L2(Γ) and the trace mapping from H1(Ω) into H1/2(Γ),
respectively.

It remains to treat the second term in H in (2.5). We first observe that the error
function E = E(s, r, θ) introduced in (2.6) averages to zero over each intersectional
surface Γ(s). We have∫

Γ(s)

E(s, r, θ) dA

= −2κ(s)

∫
Γ(s)

r cos θ dA+ κ(s)2

∫ R(s)

0

∫ 2π

0

(
r2 cos2 θ − R(s)2

4

)
rdrdθ

= κ(s)2

(∫ R(s)

0

r3dr

∫ 2π

0

cos2 θ dθ − R(s)2

4

∫ R(s)

0

rdr

∫ 2π

0

dθ

)

= κ(s)2

(
1

4
R(s)4 ·

∫ 2π

0

cos2 θ dθ − R(s)2

4
· 1

2
R(s)2 · 2π

)
= 0

because
∫ 2π

0
cos2 θ dθ = π. Considering now the second time derivative ¯̄φtt = φtt of ¯̄φ in

(5.1), we see that also ¯̄φtt does not depend on the variables r and θ at all. Recalling that
φ satisfies the wave equation ∆φ = c−2φtt, we get

c2
∫

Γ(s)

E∆φ(t, s) dA =

∫
Γ(s)

E ¯̄φtt(t, s) dA = ¯̄φtt(t, s)

∫
Γ(s)

E dA = 0

for all s ∈ [0, 1]. Hence, we get the estimate∥∥∥∥∥ 1

A(s)

∫
Γ(s)

E∆φdA

∥∥∥∥∥
L2(0,1)

=

∥∥∥∥∥ 1

A(s)

∫
Γ(s)

E ·
(

∆φ−∆φ
)
dA

∥∥∥∥∥
L2(0,1)

≤ ‖κ‖L∞(0,1)

∥∥∥∥A(Eκ · (∆φ−∆φ
))∥∥∥∥

L2(0,1)

≤ ‖κ‖L∞(0,1)CH,3

∥∥∥∆φ−∆φ
∥∥∥
L2(Ω)

where CH,3 := ‖A‖L(L2(Ω);L2(0,1))‖E/κ‖L∞(Ω); the boundedness of A is by [15, Proposi-
tions 5.2].
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