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Abstract

We study the relation between the growth of sequences ‖Tn‖ and ‖(n + 1)(I −
T )Tn‖ for operators T ∈ L(X) satisfying variants of the Ritt resolvent condition
‖(λ− T )−1‖ ≤ C

|λ−1| in various subsets of {|λ| > 1}.

1. Introduction

Let T ∈ L(X); a bounded linear operator on a (complex) Banach space X. It was
R. K. Ritt himself who �rst studied the Ritt resolvent condition

‖(λ− T )−1‖ ≤ C

|λ− 1|
(1.1)

for |λ| > 1. He proved that if T satis�es (1.1) for |λ| > 1, then limn→∞ ‖Tn/n‖ = 0,
see [17]. Clearly (1.1) implies that σ(T ) ⊂ D ∪ {1} but, in fact, even σ(T ) ⊂
Kc

δ ∩ (D ∪ {1}) for some δ > 0, where

Kδ := {λ = 1 + reiθ : r > 0 and |θ| < π

2
+ δ}; (1.2)

see O. Nevanlinna [13, Theorem 4.5.4] and Yu. Lyubich [9].
An operator T ∈ L(X) is power bounded if supn≥1 ‖Tn‖ < ∞. Y. Katznelson

and L. Tzafriri proved in 1986 that for a power bounded T , we have σ(T ) ⊂ D∪{1}
if and only if limn→∞ ‖(I − T )Tn‖ = 0, see [8]. Related to this, J. Zemánek asked
in 1992 whether (1.1) implies limn→∞ ‖(I − T )Tn‖ = 0, too. This was answered in
positive by O. Nevanlinna, and he also noted that if (1.1) holds in the larger set
Kδ ∪Dc for some δ > 0, then T is power bounded, see [13, Theorem 4.5.4], [14] and
[21].

It was observed in 1998 independently by Yu. Lyubich [9], B. Nagy and J. Zemánek
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[12], and O. Nevanlinna that if (1.1) holds for all |λ| > 1, then the same estimate
holds for all λ ∈ Kδ ∪Dc for some δ > 0 (with another possibly larger constant Cδ

in place for C). Hence, if T satis�es (1.1) for all |λ| > 1, then T is power bounded.
The upper bound supn≥1 ‖Tn‖ ≤ (eC2)/2 was given by N. Borovykh, D. Drissi
and M. N. Spijker, see [1]. A tighter estimate supn≥1 ‖Tn‖ ≤ C2 was shown by
O. El-Fallah and T. Ransford in [3].

Much of these developments culminate in the following fundamental result con-
necting power boundedness, the Ritt resolvent condition and the Tauberian condi-

tion (1.3):

Proposition 1.1. The following are equivalent:

(i) T satis�es (1.1) for all |λ| > 1,
(ii) σ(T ) ⊂ D ∪ {1}, and there exists δ > 0 and C = C(δ) such that (1.1) holds

for all λ ∈ Kδ, and

(iii) T is power bounded, and it satis�es the Tauberian condition

sup
n≥1

(n + 1)‖(I − T )Tn‖ ≤ M (1.3)

for some M < ∞.

Proof. The equivalence (i) ⇔ (ii) has already been discussed above. The implica-
tion (ii) ⇒ (iii) is given in [13, Theorem 4.5.4]. That (iii) implies (i) was reported
in [14, Theorem 2.1]. The proof relies on the theory of analytic semigroups, and it
follows closely [15, Theorem 5.2]; note that the restrictive assumption 0 ∈ ρ(A) can
be removed from [15, Theorem 5.2] by a more careful analysis. The equivalence (i)
⇔ (iii) is explicitly given in [12, p. 147].

The conditions of Proposition 1.1 can be combined in another way. We shall
prove the following Tauberian theorem and discuss its consequences:

Theorem 1.2. Assume that T ∈ L(X) satis�es Tauberian condition (1.3), and

‖(λ− 1)(λ− T )−1‖ ≤ C (1.4)

for all λ ∈ (1, 1 + ε) for some ε > 0. Then T is power bounded with the estimates

‖Tn‖ ≤ 2 + C‖T‖+ 2M and lim sup
n→∞

‖Tn‖ ≤ 2 + C‖T‖+ (1 + 1/e) M. (1.5)

The proof of this theorem is given in Section 2 below.

2. Equivalent conditions

under the Tauberian condition

Let us remind the results of the classical Tauberian theorem in the scalar case. Let
{an} be a complex sequence and sn = a0 +a1 + ...+an for n ≥ 0. A. Tauber proved
in 1897 that if
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(i) limn→∞(n + 1)an = 0, and
(ii) limr→1− f(r) = s, where f(r) =

∑∞
0 anrn for 0 < r < 1,

then limn→∞ sn = s follows. J. E. Littlewood showed in 1910 that condition (i)
can in fact be replaced by the weaker Tauberian condition supn n|an| < ∞ but the
proof with this modi�cation becomes considerable harder. Good references to this
and other related Tauberian theorems are [16] and [22].

If we take an = (I−T )Tn, we see that the weaker Tauberian condition supn n|an| <
∞ corresponds to assumption (1.3), and the partial sums are simply sn = I−Tn+1.
We remark that the stronger Tauberian condition (i) above is too restrictive in
operator context because a power-bounded T 6= I with σ(T ) = {1} satis�es
lim infn→∞ (n + 1)‖(I − T )Tn‖ ≥ 1/e; see [4], [7], and [10] for various proofs.

In this paper, we are not interested in the limit behaviour of {sn} (in other
words, the ergodicity of T ) but in the boundedness of this sequence when (1.3)
holds. For this reason, we may adapt the original simple approach by Tauber to
prove Theorem 1.2, without having to deal with the more complicated technique
by Littlewood; see also [16, Remark 2 on p. 67]. For a related ergodicity result, see
[18, Theorem III-1 on p. 150].

Proof of Theorem 1.2. De�ne

sn :=
n−1∑
j=0

(I − T )T j = 1− Tn, fn(r) :=
n−1∑
j=0

(I − T )T jrj and

f(r) :=
∞∑

j=0

(I − T )T jrj = I + T (r − 1)(1− rT )−1.

Then for all r ∈ (0, 1) and n ≥ 0, we have

‖sn‖ ≤ ‖sn − fn(r)‖+ ‖fn(r)− f(r)‖+ ‖f(r)‖. (2.1)

By condition (1.4), the last term on the right hand side of (2.1) is bounded by
1 + C‖T‖ uniformly for all r ∈ (0, 1). For the second term, we have

‖fn(r)− f(r)‖ = ‖
∑

j≥n(I − T )T jrj‖ ≤
∑

j≥n
M

j+1rj

= M
n+1

∑
j≥n

n+1
j+1 rj ≤ M

n+1rn(1− r)−1

by (1.3). From now on, we choose rn := 1− 1/n in (2.1). Then

M

n + 1
rn
n (1− rn)−1 =

M

n + 1

(
1− 1

n

)n

n

{
→ M/e as n →∞;
≤ M for all n ≥ 1.

So the second term on the right hand side of (2.1) is bounded with this choice of
r = rn.
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The �rst term of the right side of inequality (2.1) (when choosing r = rn) we
have

sn − fn(rn) =
n−1∑
j=0

(I − T )T j(1− rj
n).

By the mean value theorem, there exists rj
0 ∈ [rn, 1) for any j > 0, such that we

can estimate

1− rj
n = jrj−1

0 (1− rn) ≤ j(1− rn) =
j

n
.

This together with (1.3) yields

‖sn − fn(rn)‖ ≤
n−1∑
j=0

j

n
‖(I − T )T j‖ ≤

n−1∑
j=0

j

n

M

j + 1
≤ M

1
n

n−1∑
j=0

1 = M.

So the sequence {sn}n≥0 is uniformly bounded from above, which is equivalent to
the power boundedness of T . It is also clear from this argument that the constants
in (1.5) are as claimed.

If T ∈ L(X) satis�es the Tauberian condition (1.3), then a number of conditions
are equivalent. The following theorem is analogous to [14, Theorem 2.1], except that
now (1.3) is a standing assumption instead of power boundedness. We remark that
condition (iv) constitutes a slight improvement to Theorem 1.2.

Theorem 2.1. Assume that T ∈ L(X) satis�es the Tauberian condition (1.3).
Then the following are equivalent:

(i) T is power bounded,

(ii) there exists 0 < δ ≤ 1 ≤ C < ∞ such that T satis�es the Ritt resolvent

condition (1.1) for all λ ∈ K ′
δ := {λ = 1 + reiθ|r > 0, |θ| < π

2 + δ},
(iii) there exists CK < ∞ such that T satis�es the iterated Kreiss resolvent

condition

‖(λ− T )−k‖ ≤ CK

(|λ| − 1)k
for all |λ| > 1 and k ∈ N,

(iv) for some k ∈ N there exists 0 < ηk ≤ 1 ≤ Ck < ∞ such that T satis�es the

kth order resolvent condition

‖(λ− 1)k(λ− T )−k‖ ≤ Ck for all λ ∈ (1, 1 + ηk),

(v) there exists CHY < ∞ such that A = T − I satis�es the Hille�Yosida

resolvent condition

‖(λ− 1)k(λ− T )−k‖ ≤ CHY for all λ > 1 and k ∈ N,

(vi) A = T−I generates an uniformly bounded, norm continuous, analytic semi-

group t 7→ eAt of linear operators,
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(vii) the operators Mn := 1
n+1

∑n
j=0 T j are uniformly bounded, and

(viii) there exists CUA < ∞ such that T is uniformly Abel bounded, i.e.,

‖(λ− 1)
n∑

k=0

λ−k−1T k‖ < CUA for all n ∈ N and λ > 1.

Proof. Claims (i) and (ii) are equivalent by Proposition 1.1 and an extension
result that can be found, e.g., in [12]. By estimating the Neumann series it follows
that (i) ⇒ (iii). It is trivial that (iii) ⇒ (iv).

We argue next that if condition (iv) holds with some k ∈ N, then it holds with
k = 1, too. Using the identity (λ − T )−k−1 =

∑∞
j=0 ( n+j

n ) T jλ−n−j−1 for |λ| > 1
we get from (1.3) the estimate

‖(I − T )(λ− T )−k−1‖ ≤ C

k

(
1

(λ− 1)k
− 1

(λ)k

)
for λ > 1,

see [14, Theorem 2.1]. From this it follows for all k ≥ 1 that

‖(λ− 1)k(λ− T )−k − (λ− 1)k+1(λ− T )−k−1‖ ≤ C

λ
for all λ > 1.

Having shown this, it follows directly from Theorem 1.2 that (iv) ⇒ (i) because
(1.4) is only used near point 1 in the proof of Theorem 1.2.

Assume (i). The semigroup generated by T − I is norm continuous since T ∈
L(X), and it is uniformly bounded since ‖etT ‖ ≤

∑
j≥0

‖T j‖tj

j! ≤ supj≥0 ‖T j‖ ·
et for all t ≥ 0. Moreover, it is not di�cult to see that (1.3) implies ‖AetA‖ ≤
Mt−1 (1− e−t) where A := T − I. This implies that etA is analytic, by a slight
generalization of [15, Theorem 5.2]. We conclude that (i)⇒ (vi). We have (vi)⇒ (v)
the classical theorem of E. Hille and K. Yosida on strongly continuous semigroups;
see, e.g., [6]. The implication (v) ⇒ (iv) is trivial. We have now shown that all the
conditions (i) � (vi) are equivalent.

It is trivial that (i)⇒ (vii). The implication (vii)⇒ (viii) is given in [5, Theorem
2]. That (viii) ⇒ (iv) with k = 1 is trivial, and the proof is now complete.

A number of remarks are now in order. That (iii) with k = 1 implies (i) was
�rst proved by using a Cauchy integration argument, see [20]. It is shown in [11,
Theorem 3.1], conditions (vii) and (viii) are equivalent even without assuming (1.3).
Likewise, condition (vii) implies always (iv) (with k = 1) by [14, Theorem 4.2].

If T satis�es the following weaker form of Tauberian condition

sup
n≥0

√
n + 1‖(I − T )Tn‖ < ∞,

then (i)⇔ (v) follows from [16, Theorem III.5 on p. 68]. However, then the bounded
semigroup generated by I −T need not be analytic as can be seen by applying [14,
Theorem 2.3] on a contraction T with σ(T ) = D.
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Recall from the ergodicity theory the identity (n+1)(Mn−Mn−1) = Tn−Mn−1

where Mn is de�ned as in claim (vii). Thus claims (i) and (vii) are equivalent if
lim supn→∞ (n + 1)‖Mn −Mn−1‖ < ∞. Note that (1.3) implies

lim sup
n→∞

(n + 1)‖Mn −Mn−1‖ < ∞.

All this was pointed out in [19, Proposition 6.1].
If the Banach space X is re�exive, condition (i) implies that the operator se-

quence Mn in claim (vii) converges in strong operator topology to a bounded pro-
jection without assuming (1.3); see, e.g., [2, Corollary III.5.4]. Then (vii) holds by
the Banach�Steinhaus theorem.

We remark that the Tauberian condition (1.3) implies ‖Tn‖ = O(lnn), and
by [7, Theorem 3.3], the growth can really be there for an operator in a Banach
space. Condition (1.3) �almost� implies condition (iv) of Theorem 2.1, too. Indeed,
as (1−r)(I−rT )−1 = I−r(I−T )(I−rT )−1 for all |r| < 1, we obtain the estimate

‖(1− r)(I − rT )−1‖ ≤ 1 + M
∑
j≥0

|r|j+1

j + 1
= 1 + M ln

1
1− |r|

for all 0 ≤ |r| < 1. Setting r = 1/λ for λ > 1 gives now

‖(λ− 1)(λ− T )−1‖ ≤ 1 + M ln
λ

λ− 1
.

Hence ‖(λ − T )−1‖ = O ((λ− 1) ln (λ− 1)) as λ → 1+. Again, the logarithmic
term can really be present on the right hand side, as can be seen by studying more
carefully the example given in [7, Theorem 3.3].

Finally, the Tauberian condition (1.3) �almost� implies condition (vi) of Theorem
2.1. Indeed, as ‖AetA‖ ≤ Mt−1 (1− e−t) where A := T − I, and the function
t 7→ t−1 (1− e−t) is decreasing for t ≥ 0, it follows that

‖etA‖ ≤ 1 +
∫ t

0

‖AetA‖ dt ≤ 1 + M + M(1− e−1) ln t for all t ≥ 1.
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