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Abstract. We consider certain speed estimates for Krylov subspace methods

(such as GMRES) when applied upon systems consisting of a compact opera-

tor K with small unstructured perturbation B. Information about the decay

of singular values of K is also assumed. Our main result is that the Krylov

method will perform initially at superlinear speed when applied upon such pre-

conditioned system. However, with large iteration numbers the effect of B is

seen to be dominant. As a byproduct, we present several upper speed estimates

with explicit constant that should be useful for numerical purposes.
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1 Introduction

Given a bounded linear operator L ∈ L(H), what kind of computational

problem is the inversion of equation

(1.1) x = Lx + g

by iterative means? How fast can it be done by Krylov subspace methods? How

to make good speed estimates for the iterations? The answers to these (and

related) questions give us much information about L.

In particular the properties for iteration of a compact operator are by now

rather well known, see [1]. In the theory of preconditioning and iterative inver-

sion of Toeplitz operators we meet another kind of problem, which is related to

the case of the compact operator — but not quite, see [2]. We get linear opera-

tors consisting of a large compact part K and a small non-compact perturbation

B to invert. In the Toeplitz context we have a complicated interaction between

K and B that we cannot lay our hands on. However, we may always generalize

and look at K with a small unstructured perturbation B, whose norm alone is

known. The study of such systems is the subject of this paper. Another aspect

on the properties for iteration of K + B can be found in [3].

We shall see that an abstract Krylov subspace method will start with a su-

perlinear convergence rate corresponding to the structure of the compact part

K. When the compact part has been depleted, solver will “attack” the unstruc-

tured small perturbation, and convergence rate is now linear. In applications

the small perturbation part could be a preconditioning error (see [2]) or a linear

operator arising from noise. In both cases, the compact part is what matters

and iteration should be stopped once it enters the linear phase - at least if the

small perturbation is noise. So we may say, that the properties for iteration of

K are in a sense preserved under small perturbations.

The notion of determinant is quite crucial in our approach. In our language,

the determinant of a compact operator K is an entire function φK(λ), which

has zeroes deep enough to remove the singularities of (λ − K)−1 other that the

origin. In the constructions of determinants we shall need convergence estimates

for the singular values of K. The additional requirement that K lies in some

Schatten class Sp(H), as defined below, can serve as such.

Definition 1.1. Let H be Hilbert, p ∈ (0,∞) and σj be the singular values

of K ∈ LC(H).

(i) By ||.||Sp
denote the number in [0,∞] given by:

(1.2) ||K||Sp
:= (

∞
∑

j=0

|σj |
p)

1
p

for each K ∈ LC(H).
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(ii) By Sp(H) denote the set of such K ∈ LC(H) that ||K||Sp
< ∞. We call

the space Sp(H) the Schatten p-class.

At the end, in Lemma 6.5, we have analytic (but no longer entire) functions

that we wish to call generalized determinants for the non-compact operators

K + B, where K ∈ Sp(H) and B is small.

The general organization of this paper is as follows: In Section 2 we give the

basic definitions of the theory of polynomial acceleration of iterations, following

the guidelines of [1]. In Section 3 we define a determinant for K ∈ Sp(H), p ∈

(0, 1] and use it prove a so called Carleman inequality (Theorem 3.8) for such

K. Section 4 is devoted to the study of determinants for K ∈ Sp(H), p ∈ (1,∞).

The results of Section 4 are used in Section 5 to prove the Carleman inequality

for K ∈ Sp(H), p ∈ (1,∞) (Theorem 5.4).

These Carleman inequalities (giving upper bounds for the resolvents of certain

compact operators) are by now classical (see [4]), but here we give precise proofs

with explicit, carefully analysed constants. These results are very useful for

numerical purposes, and to our knowledge not previously published.

Finally in Section 6 we apply the results of all previous sections in order to

produce our main results (Theorems 6.7 and 6.9) that show us what an iterative

solver can do on a compact operator with small perturbation. As a byproduct

we obtain a “generalization” of Carleman inequality for operators of form K +B

with K ∈ Sp(H) and B of small norm (formula 6.12).

The idea of studying this problem, and here presented approaches to solve is

originated from the author’s Master’s Thesis about certain properties for itera-

tion of Toeplitz operators, and are to our knowledge new. The construction of

the polynomial sequence in Theorem 6.7 has been separately published in [3].

2 Polynomial acceleration of iterations

By X denote a Banach space. Let L ∈ L[X ] such that 1 /∈ σ(L). Assume

that the following fixed point problem is to be solved:

(2.1) x = Lx + g

Given x0, define the sequence {xj}
∞
j=0 of elements of X by the recursion:

(2.2) xj+1 := Lxj + g

It is clear that if {xj} converges in the topology of X , then the limit x is

the solution on (2.1). This is how we have constructed a rudimentary iterative

solver for equation (2.1), called the method of successive approximations. Given

a sequence of iterates {xj}, the convergence of iteration (2.2) (and any other

iteration that we shall later study) can be studied in terms of the following two

sequences, which we shall call residuals and errors, respectively.

(2.3) dj := Lxj − xj + g
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(2.4) ej := x − xj

After n steps of iteration (2.2), we have a n + 1 elements {xj}
n
j=0 of X in hand.

Also we know n residuals {dj}
n−1
j=0 , but the error sequence is not known {ej}

n−1
j=0 ,

because we simply do not have x. What we have is some information about the

problem (2.1) — the Krylov data. One might justifiably ask three questions:

(i) Assuming that we want to calculate Krylov data in n steps, is it not true

that we can get a better approximation to the solution of (2.1) than the

last in the sequence {xj} of the iterates of the simplest iterative solver

of all?

(ii) If the above question can be answered in positive, how do we find a better

approximation than xn?

(iii) Assuming that we could use the Krylov data of the problem “optimally”,

how “good” an approximation to the solution x of (2.1) could we get?

In many cases, the first question can be answered positively, and further study

would reveal details that at least partially answer the latter two questions.

We might wish to search for the solution of form:

(2.5) xn = x0 +

n−1
∑

j=0

γjnLj d0

for some coefficients γjn. For notational convenience, define two polynomials pn

and qn−1 as follows:

(2.6) qn−1(λ) :=

n−1
∑

j=0

γjnλj

and

(2.7) pn(λ) := 1 − (1 − λ)qn−1(λ)

Note that pn satisfies the normalization condition pn(1) = 1. Each polynomial

pn normalized in this way corresponds to some (not necessarily very efficient)

method of using Krylov data to produce an approximate solution to (2.1). Thus

the polynomials normalized in this way will be important, and so we shall give

the following definition:

Definition 2.1. By Pn denote the set of polynomials of degree ≤ n, with

complex coefficient, satisfying (∀pn ∈ Pn) : pn(1) = 1.

In the language of the polynomials qn−1, pn, formula (2.5) takes now form:

(2.8) xn = x0 + qn−1(L) d0

Furthermore, the following proposition in [1, Prop. 1.4.1] will show how the

residuals, iterates and errors (as defined in (2.3) and (2.4)) relate to polynomials

qn−1, pn:
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Proposition 2.2. Define the Krylov subspace method for the solution of (2.1)

method by (2.8), with polynomials qn−1, pn satisfying (2.7). By x0 ∈ X denote

the initial vector of the iteration. Then the residuals, iterates and errors satisfy:

(2.9) dn = pn(L)d0

(2.10) xn = pn(L)x0 + qn−1(L)g

(2.11) en = pn(L)e0

Proof. By definitions in formulae (2.3),(2.8) and (2.7) we get:

dn := −(I − L)xn + g = −(I − L)(x0 + qn−1(L) d0) + g(2.12)

= [I − (I − L)qn−1(L)] d0 + [g − (I − L)x0 − d0] = pn(L) d0

and (2.9) is proved. To attack (2.10), we calculate by using (2.8), (2.3) and (2.7):

xn := x0 + qn−1(L) d0 = x0 + qn−1(L) [(L − I)x0 + g](2.13)

= [I + (L − I)qn−1(L)] x0 + qn−1(L) g = pn(L)x0 + qn−1(L)g

Finally we use (2.4), (2.8) and (2.7):

en := x − xn = [(I − L)−1 − qn−1(L)]g − pn(L)x0(2.14)

= (I − L)−1[I − (I − L)qn−1(L)]g − pn(L)x0

= (I − L)−1pn(L)g − pn(L)x0

= pn(L)[(I − L)−1g − x0] = pn(L)(x − x0) = pn(L)e0

Formula (2.11) now follows. �

It is also true that the polynomials qn−1, pn related by (2.7) transform the

original problem (2.1) into a problem with the same solution. The following

proposition is from [1, Prop. 1.4.2]:

Proposition 2.3. Let qn−1 be an arbitrary polynomial and set pn(λ) :=

1 − (1 − λ)qn−1(λ). If x is the solution of

(2.15) x = Lx + g

then it also solves the problem

(2.16) x = pn(L)x + qn−1(L)g

Conversely, if additionally N(qn−1(L)) = 0, then (2.15) follows from (2.16) (N

denotes the kernel of a linear operator).

Proof. See [1, p. 4]

Proposition 2.3, in essence, can be regarded as the core of the theory of poly-

nomial acceleration in the inversion of linear operators. By choosing polynomial
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pn ∈ Pn in a clever way, we transform equation (2.15) into the equivalent equa-

tion (2.16) with more pleasant invertibility properties. It is of course desirable to

choose pn(L) to be as small in norm as possible. Then, by (2.16), the solution x

of (2.15) is about qn−1(L)g, provided that ||pn(L)x|| ≪ ||x||. If this is the case,

then also qn−1(L) is close to (I − L)−1, by (2.1).

So it is our task to search for polynomials pn such that pn(L) is small. In

practice we usually do not calculate with operators in order to minimize the

operator norm ||pn(L)||. This follows from the fact that typically operators on

large spaces are clumsy, if not quite impossible objects to handle. Even if that

was possible, operator powers for polynomials might be expensive to calculate,

or the calculation and minimization of the operator norms (that we need when

finding the optimal use for the Krylov information) might be an undesirable

task. Because of these reasons it is customary not to invert operators themselves,

but only equations (2.1) with given fixed g. Proposition 2.2 gives us the hint

to minimize the errors or residuals, instead. However, by formula (2.11), the

minimization of errors is not feasible, because the initial error e0 := x − x0 is

never known. However, the initial residual d0 := (L− I)x0 +g is known, because

it is determined by our initial guess x0 that does not contain information. This is

exactly what the GMRES (generalized minimal residual) algorithm does, giving

of course better performance with better initial guess x0.

3 The Carleman inequality for p ∈ (0, 1]

Let H be a separable Hilbert space and K ∈ LC(H). Certain conclusions

on the size of the resolvent can be made, providing we have some knowledge

on the distribution of the singular values σj(K) of K. The Schatten norm of

Definition 1.11 is this kind of information — the corresponding inequalities are

called Carleman inequalities. The natural starting point is a result concerning

operators on a finite dimensional Hilbert space, i.e. matrices. However, before

that let us define the determinant for operators in Sp(H), p ∈ (0, 1].

Definition 3.1. Let p ∈ (0, 1] and K ∈ Sp(H). Let λ ∈ C\{0} be arbitrary.

Then define the determinant of (I − K
λ

) by:

(3.1) det(I −
K

λ
) :=

∞
∏

j=1

(1 −
λj(K)

λ
)

where λj(K) is the sequence of eigenvalues for K.

It is well known that we must require some speed of decay from the eigenvalues

λj(K) in order to get the infinite product in (3.1) converge. One way to deal with

this is require that K lies in some Schatten class Sp(H) for p ∈ (0, 1]. Consider

the following definition and lemma:

1Actually we may speak about norm only if p ≥ 1. However, we shall not let this disturb
ourselves. To make the precise distinction here would only be a trick of technical nature.
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Definition 3.2. Let K ∈ LC(H) with eigenvalues λj(K). Let p ∈ (0,∞).

Define:

(3.2) Λp(K) :=

∞
∑

j=1

|λj(K)|p

There is relation between the Schatten norm ||K||Sp
of a given compact op-

erator K and Λp(K), which encodes the decay of the eigenvalues of K. The

following classical result is by H. Weyl:

Lemma 3.3. Let p ∈ (0,∞) and K ∈ Sp(H). Then the series
∑∞

j=1 |λj(K)|p

converges absolutely and

(3.3) Λp(K) ≤ ||K||pSp

Proof. This is [4, Corollary 1, p. 1093].

It can be proved by standard argument that the product (3.1) defining the

determinant converges uniformly on compact subsets of C \ {0} with respect to

λ ∈ C if K ∈ Sp(H). In particular this implies that det(I − K
λ

) is a holomorphic

function in C \ {0}.

Proposition 3.4. For all x ∈ R+ and p ∈ (0, 1]):

(3.4) 1 + x ≤ e
xp

p

Proof. Write f(t) := e
t
p − 1 − t

1
p . For t > 0,

(3.5) f ′(t) =
1

p
(e

t
p − t

1−p
p )

Quite easily f ′(t) > 0 if t > 0, and consequently f is an increasing function if

t ∈ [0,∞). Clearly f(0) = 0. It follows that f is a positive function in [0,∞)

which is equivalent with the inequality:

(3.6) e
t
p ≥ 1 + t

1
p

By setting t = xp formula (3.4) follows. �

The following lemma is the first in the series of Carleman inequalities. It is a

finite dimensional statement that will be generalized later in Theorem 3.8.

Lemma 3.5. Let 0 < p ≤ 1 and K ∈ L(Ed), where Ed is a d-dimensional

Hilbert space. Then for ∀λ /∈ σ(K):

(3.7) | det(I −
K

λ
)| ||(I −

K

λ
)−1|| ≤ e

||K||
p

Sp

p|λ|p

Proof. Let S ∈ Ed be invertible. Let us first show that:

(3.8) || det(S)S−1|| ≤

d−1
∏

j=1

σj(S)
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where σj(S) are the singular values of S in non-increasing order.

We may diagonalize S by unitary matrices U ,U ′ to get S = UMU ′, where M

is diagonal and contains the singular values of S in non-increasing order. Now

because the determinant of a unitary matrix has modulus 1:

||det(S)S−1||(3.9)

≤| det(U)| | det(M)| | det(U ′)| ||U ′−1|| ||M−1|| ||U−1||

≤| det(M)| ||M−1||

Clearly it suffices to show (3.8) for diagonal invertible matrices M only. Be-

cause det(M) is the product of its singular values, det(M)M−1 is a diagonal

matrix with nth diagonal element equal to
∏d

j=1;j 6=n σj(M). By the fact that

the operator norm on finite dimensional Hilbert space equals the largest singular

value:

(3.10) || det(M)M−1|| = max
n∈{1,2... ,d}

d
∏

j=1;j 6=n

σj(M) =
d−1
∏

j=1

σj(M)

and (3.8) has been proved for invertible diagonal matrices, and hence for all

invertible matrices. To prove the claim of the lemma, set S := I − K
λ

, λ /∈ σ(K).

We get:

| det(I −
K

λ
)| ||(I −

K

λ
)−1|| ≤

d−1
∏

j=1

σj(I −
K

λ
)(3.11)

≤

d−1
∏

j=1

(I −
σj(K)

λ
) ≤

d−1
∏

j=1

(I +
σj(K)

|λ|
)

≤

d−1
∏

j=1

e
σj(K)p

p|λ|p ≤ e

Pd−1
j=1

σj(K)p

p|λ|p ≤ e
||K||

p
p

p|λ|p

where we have used Proposition 3.4. The lemma has been proved. �

It is our intention to generalize the previous lemma to any separable Hilbert

space H . The following lemma and proposition are tools that we shall need.

Lemma 3.6. Let p ∈ (0, 1] and K ∈ Sp(H), where H is a separable Hilbert

space. Then:

(3.12) | det(I −
K

λ
)| ≤ e

||K||
p

Sp

p|λ|p

Proof. This is a direct consequence of Lemma 3.3 and Proposition 3.4 �
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Proposition 3.7. Let X be a Banach space and assume Wn, W ∈ L(X) such

that

(i) (∀n ≤ N) : ||Wn|| ≤ Cn

(ii) (∀x ∈ X) : limn→∞ Wnx → Wx

(i.e. Wn → W in strong operator topology)

(iii) limn→∞ Cn = C

Then ||W || ≤ C.

Proof. For contradiction, assume that there is x0 ∈ X ; ||x0|| = 1 such that

||Wx0|| > C + ǫ for some ǫ > 0. Then by (ii) (∃N1 ∈ N) :

(3.13) (∀n > N1) : ||Wnx0|| > C +
ǫ

2

Furthermore, by (iii) (∃N2 ∈ N) :

(3.14) (∀n > N2) : Cn < C +
ǫ

2

Now, if n > max (N1, N2) we have:

(3.15) ||Wnx0|| > Cn

The contradiction against (i) proves the proposition. �.

Now we are ready to state and prove the Carleman inequality for Schatten

classes Sp(H), p ∈ (0, 1]. For parallel expositions, see [1] Section 5.6 and [4].

Theorem 3.8. Let p ∈ (0, 1] and K ∈ Sp(H). For each λ /∈ σ(K) ∪ {0} we

have:

(3.16) | det(I −
K

λ
)| ||(I −

K

λ
)−1|| ≤ e

||K||
p

Sp

p|λ|p

Proof. Fix λ /∈ σ(K) ∪ {0}. Pick a sequence Sp(H) ∋ Kn → K in Sp(H)

such that dimKn(H) = n. Define the Hilbert subspace Hn of H by:

(3.17) Hn := Kn(H) + K∗
n(H)

Clearly dimHn ≤ 2n. By Pn denote the orthogonal projector onto Hn. One

easily checks that Kn = PnKnPn and

(3.18) (I −
Kn

λ
)−1 = Pn(I −

Kn

λ
)−1Pn + (I − Pn)

because Hn is the smallest reducing subspace of Kn, outside of which Kn van-

ishes. So we may regard Kn as a matrix of dimension at most 2n× 2n, and use
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Lemma 3.5. By Lemmas 3.5, 3.6 and the definition of operator norm we have:

| det (I −
Kn

λ
)| ||(I −

Kn

λ
)−1||(3.19)

= max
{

| det (I −
Kn

λ
)| ||Pn(I −

Kn

λ
)−1Pn||, || det (I −

Kn

λ
)(I − Pn)||

}

= max
{

| det (I −
Kn

λ
)| ||Pn(I −

Kn

λ
)−1Pn||, | det (I −

Kn

λ
)|
}

≤ max
{

e
||Kn||

p

Sp

p|λ|p , e
||Kn||

p

Sp

p|λ|p
}

= e
||Kn||

p

Sp

p|λ|p

Denote:

(3.20) Wn(λ) := Pn(I −
Kn

λ
)−1Pn + (I − Pn)

As n → ∞,

(3.21) Wn(λ) → W (λ) := det (I −
K

λ
)(I −

K

λ
)−1

in strong operator topology for each fixed λ /∈ σ(K) ∪ {0}. Denote:

(3.22) Cn := e
||Kn||

p

Sp

p|λ|p

Because Kn → K in Sp(H), we have:

(3.23) lim
n→∞

Cn = C := e
||K||

p

Sp

p|λ|p

Now the hypotheses of Proposition 3.7 have been fulfilled, and it follows:

(3.24) ||W || = | det(I −
K

λ
)| ||(I −

K

λ
)−1|| ≤ e

||K||
p
Sp

p|λ|p = C

This proves the theorem. �.

Remark 3.9. Note that in Theorem 3.8 the Carleman inequality has been

proved only for λ /∈ σ(K)∪{0}. The spectrum on K, however, consists of discrete

points (with the exception of the origin), and by continuity we may expand the

result to apply for all λ 6= 0.

4 Generalized determinants

We have stated in Section 3 that the requirement K ∈ Sp(H) for p ∈ (0, 1]

enforces sufficient amount of decay on the eigenvalues so that product (3.1)

converges. On the contrary, it is true that a weaker requirement K ∈ Sp(H) for

p ∈ (1,∞) alone does not guarantee the convergence of the classical determinant.

So it must be accepted that the classical determinant of Definition 3.1 simply

will not do for spaces Sp(H), p > 1. However, the concept of an analytic function

whose zeroes kill the singularities in the resolvent of K seems very appealing
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to us. Fortunately, it is possible to construct generalized determinants that

satisfy our requirements. The building blocks for these new determinants are the

Weierstrass elementary factors whose definitions and certain growth estimates

are given in the following:

Definition 4.1. Let m ∈ N. The Weierstrass elementary factor is the entire

function defined by:

(4.1) Em(z) := (1 − z) e
Pm

j=1
zj

j

The study convergence questions of the above products are to be found in

almost any book of basic function theory, see for example [5, Theorem 15.9].

The following propositions will be used in the proof of Lemma

Proposition 4.2. For any m ∈ N we have:

(4.2)
∣

∣

sin mθ

sin θ

∣

∣ ≤ m

Proof. We shall give an induction proof. Clearly (4.2) holds for m = 1.

Assume that it holds for m ∈ N. Then:

∣

∣

sin (m + 1)θ

sin θ

∣

∣ =
∣

∣

sinmθ cos θ + cosmθ sin θ

sin θ

∣

∣(4.3)

≤
∣

∣

sin mθ cos θ

sin θ

∣

∣ + | cosmθ| ≤
∣

∣

sin mθ

sin θ

∣

∣ + 1 ≤ m + 1

This proves the claim. �

Certain radial size estimates for the Weierstrass elementary factors will be

needed in the study on the generalized determinants. The following lemma is a

result of O. Blumenthal and E. Lindelöf, see [6, p. 131 - 147].

Lemma 4.3. Let m ∈ N and α ∈ [0, 1]. Then:

(4.4) |Em(z)| ≤ eCm,α |z|m+α

where

(4.5) Cm,α ≤
mα(m + 1)1−α

m + α
≤ 2

Proof. The modulus of the Weierstrass elementary factor can be written in

form:

(4.6) |Em(r eiθ)| = elog |1−r eiθ|+
P

m
j=1

rj

j
cos jθ

So our task is clearly equivalent with finding an upper bound for the expression:



GENERALIZED DETERMINANTS 13

Gm,α(r, θ) :=
log |1 − r eiθ| +

∑m
j=1

rj

j
cos jθ

rm+α
(4.7)

=

1
2 log (1 − 2r cos θ + r2) +

∑m

j=1
rj

j
cos jθ

rm+α

In order to maximize this function Gm,α, we calculate the partial derivatives.

By a straightforward calculation we get the following identities:

(4.8)
∂Gm,α

∂r
(r, θ) = −

m + α

r
Gm,α(r, θ) +

1

rα

r cosmθ − cos (m + 1)θ

1 − 2r cos θ + r2

and

(4.9)
∂Gm,α

∂r
(r, θ) = −r1−α r sin mθ + sin (m + 1)θ

1 − 2r cos θ + r2

where we have used the helpful sum formulae:

(4.10)

m
∑

j=1

rj−1 cos jθ =
rm+1 sin mθ − rp cos (m + 1)θ − r + cos θ

1 − 2r cos θ + r2

and

(4.11)

m
∑

j=1

rj sin jθ =
rm+2 sin mθ − rm+1 sin (m + 1)θ + s sin θ

1 − 2r cos θ + r2

Let (r0, θ0) satisfy
∂Gm,α

∂r
(r0, θ0) =

∂Gm,α

∂r
(r0, θ0) = 0. From (4.8) we get:

(4.12) Gmax =
r1−α
0

p + α

r0 cosmθ0 − cos (m + 1)θ0

1 − 2r0 cos θ0 + r2
0

where Gmax := Gm,α(r0, θ0). Formula (4.9) implies

(4.13) r0 =
sin (m + 1)θ0

sin (m)θ0

(or r0 = 0, which is not a valid maximum). By inserting this into (4.12) we find:

Gmax =
r1−α
0

m + α

sin (m + 1)θ0 cosmθ0 − cos (m + 1)θ0 sin mθ0

sinmθ0(1 − 2r0 cos θ0 + r2
0)

(4.14)

=
1

m + α

sin θ0 cos1−α (m + 1)θ0

sin2−α mθ0(1 − 2r0 cos θ0 + r2
0)

=
1

m + α

sinα mθ0 sin1−α (m + 1)θ0

sin θ0

where the last equality follows from:

(4.15) 1 − 2r0 cos θ0 + r2
0 =

sin2 θ0

sin2 mθ0
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Now we have immediately

Gmax =
1

m + α

( sin mθ0

sin θ0

)α( sin (m + 1)θ0

sin θ0

)1−α
(4.16)

≤
1

m + α
mα(m + 1)1−α

where the last upper estimate is by Proposition 4.2. The upper bound 2 in

formula (4.5) is easy to show. This proves the lemma. �

The following corollary is nothing but the result of the previous Lemma in a

form that will be useful for our purposes.

Corollary 4.4. Let m ∈ N and p − 1 ≤ m ≤ p. Then

(4.17) |Em(z)| ≤ ecm,p|z|
p

where

(4.18) cm,p :=
mp−m(m + 1)1−p+m

p
≤ 2

Proof. Trivial. �

Now we know enough about the nature of things to define the generalized

determinants detm for each m ∈ N:

Definition 4.5. Let m ∈ N and p − 1 ≤ m < p. Let K ∈ Sp(H) and by

λj(K) denote the jth eigenvalue of K, ordered in the non-increasing order of

absolute values, with multiplicities. Let λ 6= 0. Then

(4.19) detm (I −
K

λ
) :=

∞
∏

j=1

Em(
λj(K)

λ
)

is called the generalized determinant of order m.

The product defining the generalized determinant of order m converges uni-

formly on compact subsets of C \ {0}. It follows that the limit is a holomorphic

function in C \ {0}.

It should not arrive as a surprise that the growth estimates on the Weierstrass

elementary factors will imply corresponding growth estimates on the generalized

determinants. The following lemma will state the immediate consequences of

Corollary 4.4:

Lemma 4.6. Let m ∈ N and p − 1 ≤ m < p. Let K ∈ Sp(H). Then

(4.20) | detm (I −
K

λ
)| ≤ ecm,p

||K||
p

Sp

|λ|p

where

(4.21) cm,p :=
mp−m(m + 1)1−p+m

p
≤ 2
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Proof. Use Corollary 4.4 as follows:

| detm (I −
K

λ
)| =

∞
∏

j=1

|Em(
λj(K)

λ
)| ≤ e

P∞
j=1 cm,p|

λj(K)

λ
|p(4.22)

= ecm,p
Λp(K)

|λ|p ≤ ecm,p

||K||
p

Sp

|λ|p

where the final conclusion is by Lemma 3.3. �

5 The Carleman inequality for p ∈ (1,∞)

In this section we shall use the tools of Section 4 to prove Theorem 5.4; the

Carleman inequality for compact operators in Sp(H) for p ∈ (1,∞).

Lemma 5.1. Let m ∈ N and K, B ∈ Sm(H). Let λ /∈ σ(K) ∪ {0}. Then the

following determinant is analytic and satisfies:

d

dz
detm (I −

K

λ
+ zB)|z=0(5.1)

= detm (I −
K

λ
)Tr [{(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}B]

Proof. See [4, Lemma 23, p.1110]

Lemma 5.2. Let m ∈ N and p − 1 ≤ m < p. Then

(5.2) || detm (I −
K

λ
){(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}||Sq

≤ ecm,p

||K||
p
Sp

|λ|p

where cm,p satisfies (4.21) and 1
p

+ 1
q

= 1.

Proof. Let B ∈ Sp(H),||B||Sp
= 1 and 1

p
+ 1

q
= 1. By Lemma 5.1 and the

Residue Theorem:

detm (I −
K

λ
)Tr[{(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}B](5.3)

= −
1

2πi

∫

|ξ|=ν

ξ−2 detm (I −
K

λ
+ ξB) dξ

for all ν > 0. By Lemma 4.6 (set λ = −1):

(5.4) | detm (I + S)| ≤ e
cm,p ||S||p

Sp

for any S ∈ Sp. Now take S := −K
λ

+ ξB and apply this upon (5.3):

| detm (I −
K

λ
) Tr [{(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}B]|(5.5)

≤ e
cm,p max|ξ|=ν ||−K

λ
+ξB||p

Sp ≤ ecm,p [
||K||Sp

|λ|
+ν ||B||Sp ]p
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Now let ν → 0. Then the previous formula gives:

(5.6) | detm (I −
K

λ
) Tr [{(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}B]| ≤ ecm,p

||K||
p

Sp

|λ|p

By the inverse Hölder inequality ([4, Lemma 14, p. 1098]) we have:

(5.7) ||A||Sq
= sup

||B||Sp≤1

|Tr(AB)|

This and (5.6) give:

(5.8) || detm (I −
K

λ
){(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}B||Sq

≤ ecm,p

||K||
p

Sp

|λ|p

This proves the lemma. �

One more constant will have to be calculated, before we are able to prove the

Carleman inequality.

Proposition 5.3. For all x ≥ 0 we have:

(5.9) xj ≤ e
j

pe
xp

Proof. Trivial. �

Theorem 5.4. Let m ∈ N and p − 1 ≤ m < p. Let K ∈ Sp(H). Then

(5.10) | detm (I −
K

λ
)| ||(I −

K

λ
)−1|| ≤ m e(cm,p+ 1

e
)
||K||

p
Sp

|λ|p

where

(5.11) cm,p =
mp−m(m + 1)1−p+m

p
≤ 2

Proof. By Lemma 5.2:

|| detm (I −
K

λ
){(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}||(5.12)

≤ || detm (I −
K

λ
){(I −

K

λ
)−1 − 1 − . . . − (

K

λ
)m−2}||Sq

≤ ecm,p

||K||
p

Sp

|λ|p

By the triangle inequality, we get immediately:

| detm (I −
K

λ
)| ||(I −

K

λ
)−1||(5.13)

≤ || detm (I −
K

λ
){1 + . . . +

(K

λ

)m−2
}|| + ecm,p

||K||
p

Sp

|λ|p

≤ | detm (I −
K

λ
)|

m−2
∑

j=0

||Kj ||

|λ|j
+ ecm,p

||K||
p

Sp

|λ|p
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Let us study more closely the sum in the previous expression. We have by

Proposition 5.3:

(5.14)
||Kj ||

|λ|j
≤

||K||j

|λ|j
≤ e

j
pe

||K||p

|λ|p ≤ e
j

pe

||K||
p

Sp

|λ|p

and moreover:

(5.15)

m−2
∑

j=1

||Kj||

|λ|j
≤ (m − 1) e

m−2
pe

||K||
p
Sp

|λ|p ≤ (m − 1) e
1
e

||K||
p
Sp

|λ|p

From Lemma 4.6 we remember:

(5.16) | detm (I −
K

λ
)| ≤ ecm,p

||K||
p

Sp

|λ|p

To conclude the proof, let us combine (5.13), (5.15) and (5.16) in the following

manner:

| detm (I −
K

λ
)| ||(I −

K

λ
)−1||(5.17)

≤ ecm,p

||K||
p

Sp

|λ|p + ecm,p

||K||
p

Sp

|λ|p
(

(m − 1) e
1
e

||K||
p

Sp

|λ|p
)

= ecm,p

||K||
p

Sp

|λ|p
(

1 + (m − 1) e
1
e

||K||
p

Sp

|λ|p
)

or a more beautiful upper bound:

≤ ecm,p

||K||
p

Sp

|λ|p
(

m e
1
e

||K||
p

Sp

|λ|j
)

= m e(cm,p+ 1
e
)

||K||
p

Sp

|λ|p

This proves the theorem. �

6 On the polynomial acceleration of a compact operator

with a small perturbation

By availing the Carleman inequalities and certain points of vector valued

function theory, conclusions on the polynomial acceleration properties of oper-

ator L := K + B (as presented in Section 2) can be drawn, where K ∈ LC(H)

for a separable Hilbert space H , B ∈ L(H) is small when compared to K and

1 /∈ σ(K+B). Everything before Theorem 6.7 will be just technical preparations.

Definition 6.1. Let K ∈ LC(H) and B ∈ L(H). Denote:

(6.1) Kλ := (λ − B)−1K

for all λ /∈ σ(B).

Remark 6.2. In this section we are keeping the small perturbation B always

the same. That is the reason why we have chosen not to write the dependency

of Kλ on B explicitly.



18 6 ON THE POLYNOMIAL ACCELERATION

The ideal structure of the set of finite dimensional operators and the fact that

the singular values of a given compact operator K ∈ LC(H) are equal to the

approximation numbers makes it possible to prove that the information about

the Schatten class of K is preserved under the mapping K 7→ Kλ. The following

Proposition makes this point precise.

Proposition 6.3. Let p ∈ (0,∞), K ∈ Sp(H), B ∈ L(H) and λ /∈ σ(B).

Then Kλ ∈ Sp(H) and it applies

(6.2) ||Kλ||Sp
≤ ||(λ − B)−1|| ||K||Sp

Proof. Let λ /∈ σ(B). The core of the proof is in the following calculation:

σj(Kλ) = inf
rankF≤n

||Kλ − F ||(6.3)

= inf
rankF≤j

||(λ − B)−1(K − (λ − B)F )||

≤ ||(λ − B)−1|| inf
rankF≤j

||K − (λ − B)F ||

≤ ||(λ − B)−1||σj(K)

because rank (λ − B)F ≤ rank F . Raising to power p and summing up the

singular values give formula (6.2). �

Lemma 6.4. Let m ∈ N. Let Kn ∈ LC(H) be an operator with n-dimensional

range. Then

(6.4) φ(n)
m (λ) := detm (I − Kn λ)

is a holomorphic function of λ ∈ C \ σ(B).

Proof. For brevity, denote D := C \ σ(B). Because dim Kn(H) = n, we

have dim (Kn)λ(H) ≤ n for all λ ∈ D. Moreover, there is an r: 1 ≤ r ≤ n + 1

such that r := maxλ∈D card σ((Kn)λ).

By E ⊂ D denote the set of such λ’s that card σ((Kn)λ) < r. By [7, Theo-

rem 6.25] we know that E is a discrete closed set. Pick any λ0 ∈ D\E. Because

E is closed, we have a neighborhood N1(λ0) of λ0 such that

(6.5) (∀λ ∈ N1(λ0)) : card σ((Kn)λ) = r

It follows that in N1(λ0) the operator (Kn)λ has exactly r − 1 non-zero distinct

eigenvalues {λj((Kn)λ))}n
j=1. Define ǫ > 0 to be the minimum distance between

any two eigenvalues in {λj((Kn)λ))}n
j=1. By [7, Theorem 6.4] there exists a

δ > 0 such that

(6.6) |λ − λ0| < δ =⇒ {λj((Kn)λ))}n
j=1 ⊂ ∪n

j=1B(λj(Kn λ0),
ǫ

3
)

Now by [7, Theorem 6.20] we see that each mapping λ 7→ λj((Kn)λ) is holo-

morphic in N(λ0) := {λ| |λ − λ0| < δ}. From the holomorphicity of Weierstrass
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elementary factors and the definition of detm we conclude that φ
(n)
m (λ) is indeed

holomorphic in N(λ0) and consequently in D \ E.

Because φ
(n)
m (λ) is a continuous function on D, the Rado extension theorem

([5, Theorem 12.14]) implies that φ
(n)
m (λ) is in fact holomorphic in whole D.

This proves the lemma. �

In the following lemma we present an analytic function φm that can be re-

garded as a generalized determinant of the non-compact operator K + B.

Lemma 6.5. Let m ∈ N and p − 1 ≤ m < p. Take K ∈ Sp(H). Then

φm(λ) := detm (I − Kλ) is a holomorphic function of λ ∈ C \ σ(B).

Proof. Pick a sequence of n-dimensional operators Kn → K in Sp(H). Then

by a continuity argument for the determinant we may show that for all λ ∈

C \ σ(B):

(6.7) φm(λ) = lim
n→∞

φ(n)
m (λ)

If we are able to show that {φ
(n)
m } is a normal family of holomorphic functions,

then the limit φm(λ) itself is holomorphic by [5, Definition 14.5 and Theorem

10.28], thus proving the lemma. By Lemma 6.4 we already know that {φ
(n)
m } is

a family of holomorphic functions. By [5, Theorem 14.6] it suffices to show

that {φ
(n)
m } is uniformly bounded on the compact subsets of C \ σ(B).

The following calculation makes the trick:

|φ(n)
m (λ)| = | detm (I + (λ − B)−1Kn)|(6.8)

=

∞
∏

j=1

|Em(−λj((λ − B)−1Kn))| ≤

∞
∏

j=1

ecm,p|λj((λ−B)−1Kn)|p

= ecm,p Λp((λ−B)−1Kn)

where the inequality has been written by Corollary 4.4. We may continue the

estimation by Lemma 3.3 as follows:

ecm,p Λp((λ−B)−1Kn) ≤ e
cm,p ||(λ−B)−1Kn||p

Sp(6.9)

≤ e
cm,p ||(λ−B)−1|| ||Kn||p

Sp

for all λ /∈ σ(B); the last inequality is by Proposition 6.3. Because Kn → K in

Sp(H), it follows that the family {Kn} is uniformly bounded in the norm ||.||Sp
.

Now the upper bound for each φ
(n)
m given by the right side of (6.9) is uniformly

bounded on compact subsets of C \ σ(B) because the resolvent of B is. This

proves the lemma. �

In the similar way we may proceed to prove also the following analogous

lemma to Lemma 6.5:



20 6 ON THE POLYNOMIAL ACCELERATION

Lemma 6.6. Let 0 < p ≤ 1. Take K ∈ Sp(H). Then φ(λ) := det (I − Kλ) is

a holomorphic function of λ ∈ C \ σ(B).

Proof. Omitted.

It is time to present a lemma that has something to do with the polynomial

acceleration of the operator K + B. We shall construct a sequence of non-

normalized polynomials {p̃k}
∞
k=0 such that these polynomials “see” the operator

K + B small with increasing k. The existence of such non-normalized sequence

itself is naturally a triviality, but later (in Lemma 6.8) we shall see that almost

all of these polynomials in fact are almost normalized in the sense of Definition

2.1; i.e. {p̃k(1)}∞k=0 remains bounded from some k on. The approach presented

here is due to O. Nevanlinna ([[]3]):

Theorem 6.7. Let m ∈ N and p − 1 ≤ m < p. Take K ∈ Sp(H) and let

B ∈ L(H) be small such that 1 /∈ σ(K + B). Then there exists a sequence of

essentially monic polynomials {p̃k}
∞
k=1 such that for all β ∈ (0, 1]:

||p̃k(K + B)||
1
k(6.10)

≤ m
1
k

(

||B|| + ||K||Sp
k− β

p

)( ||B|| k
β
p

||K||Sp

+ 1
)

1
k e

cm,p+1
e

k1−β

where cm,p is defined in (4.21).

Proof. Let us start with the easily proved fact for |λ| > ||B||:

(6.11) ||(λ − (K + B))−1|| ≤
1

|λ| − ||B||
||(I − Kλ)−1||

We also have by Theorem 5.4 and Proposition 6.3:

|φm(λ)| ||(I − Kλ)−1|| ≤ me
(cm,p+ 1

e
)||Kλ||

p

Sp(6.12)

≤ me(cm,p+ 1
e
)(

||K||
p

Sp

|λ|−||B||)p

On the other hand we can show that (I−Kλ)−1 is a holomorphic operator valued

function outside σ(K+B) by studying the identity λ−(K+B) = (λ−B)(I−Kλ).

Also note that σ(K + B) ⊂ σ(B) ∪ σp(K + B) — for details see [1, Theorem

2.2.15]. Estimate (6.12) together with the fact that φm is holomorphic outside

σ(B) (Lemma 6.5) allow us to conclude that φm(λ) (I − Kλ)−1 is holomorphic

in C \ σ(B) and same applies also for:

(6.13) φm(λ) (λ − (K + B))−1 ≡ φm(λ) (I − Kλ)−1 (λ − B)−1

Now the following estimate is a direct consequence of (6.12) and (6.13) for |λ| >

||B||:

(6.14) |φm(λ)| ||(λ − (K + B))−1|| ≤
m

|λ| − ||B||
e(cm,p+ 1

e
)(

||K||
p

Sp

|λ|−||B||)p
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Because φm is holomorphic in C\σ(B), we may write for λ > ||B|| the convergent

Laurent series:

(6.15) φm(λ) =

∞
∑

j=0

aj

λj

Moreover, if λ > ||K + B||, we may write the resolvent of K + B in form:

(6.16) (λ − (K + B))−1 =

∞
∑

j=0

(K + B)j

λj+1

By multiplying the two previous formulae we get:

(6.17) φm(λ) (λ − (K + B))−1 =

∞
∑

k=0

p̃k(K + B)λ−k−1

where the polynomials {p̃k}
∞
k=0 are defined by:

(6.18) p̃k(ξ) :=

k
∑

j=0

ak−jξ
j

Formula (6.17) represents a convergent series for λ > ||K + B||. On the other

hand, we know by the argument preceding formula (6.13) that the left side

of (6.17) is holomorphic for all λ > ||B||; not just for those λ’s that satisfy

λ > ||K + B||. It follows that the right side of (6.17) converges for all λ > ||B||.

Now formula (6.17) and the standard theorem of residues gives:

(6.19) p̃k(K + B) =
1

2πi

∫

|λ|=r

λkφm(λ) (λ − (K + B))−1 dλ

for any r > ||B||. This gives immediately:

||p̃k(K + B)||(6.20)

≤
1

2π

∫

|λ|=r

|λ|k|φm(λ)| ||(λ − (K + B))−1|| d|λ|

≤
1

2π
rk m

r − ||B||
e(cm,p+ 1

e
)(

||K||
p
Sp

r−||B||)p 2πr

where the first inequality is justified by formula (6.14).

By setting r := ||B|| + ||K||Sp
k− β

p and taking the kth root from the both

ends on the previous formula gives (6.10). This proves the theorem. �

In Section 2 we found out that the polynomials pk(λ) satisfying the normal-

ization condition pk(1) = 1 are of special interest when studying the polynomial

acceleration properties of a given linear system. On the other hand, polynomials

p̃k are clearly not normalized in this manner - one might consider as a poor

consolation that the coefficient of the highest degree term of p̃k is always a0 of

formula (6.15). In this sense these polynomials are monic.
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It follows from formula (6.18) that

(6.21) p̃k(1) =
k

∑

j=0

aj

where aj ’s have the same meaning as in formula (6.15). It also follows that

(6.22) lim
k→∞

p̃k(1) = φm(1)

From the assumed nonsingularity of the problem (i.e. 1 /∈ σ(K + B)) and the

general properties of the generalized determinant φm it follows that φm(1) 6= 0.

For large enough k’s, p̃k(1) is bounded away from the origin, and we may define

the correctly normalized polynomial sequence:

(6.23) pk(λ) :=
p̃k(λ)

p̃k(1)

This is exactly what we mean by stating before Theorem 6.7 that “almost all of

the polynomials p̃k are almost almost normalized”.

It would be very satisfactory indeed to be able to give powerful results on

the convergence properties of the sequence |p̃k(1)| with only relatively general

conditions imposed on the operators K and B. In particular, we would like to

know how small the nonzero entity |φm(1)| actually is. In order to study this

question we should make further assumptions about K and B; this is no longer

under the subject of this paper. We are satisfied with giving a lemma that

collects the asymptotic result of the above discussion and Theorem 6.7:

Lemma 6.8. Let m ∈ N and p − 1 ≤ m < p. Take K ∈ Sp(H) and let

B ∈ L(H) be small such that 1 /∈ σ(K +B). Then there exist an integer m and a

sequence of polynomials {pk}
∞
k=m satisfying pk(1) = 1 such that for all β ∈ (0, 1]:

||pk(K + B)||
1
k(6.24)

≤ (m Ck)
1
k

(

||B|| + ||K||Sp
k−β

p

)( ||B|| k
β
p

||K||Sp

+ 1
)

1
k e

cm,p+ 1
e

k1−β

where cm,p is defined in (4.21) and Ck satisfies:

(6.25) lim
k→∞

Ck = C < ∞

Proof. Define pk(λ) := p̃k(λ)
p̃k(1) as in (6.23). Theorem 6.7 gives now formula

(6.24), where Ck := 1
|p̃k(1)| . The existence of the finite C in formula (6.24) follows

from the assumed nonsingularity of the problem as proposed just after formula

(6.23). This proves the lemma. �

We could prove a theorem quite similar to Theorem 6.7 by using the deter-

minant and Schatten classes p ∈ (0, 1]. Nothing essential would change in the
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proof, we would just use Theorem 3.8 instead of Theorem 5.4. The result is

stated without proof.

Theorem 6.9. Let p ∈ (0, 1]. Take K ∈ Sp(H) and let B ∈ L(H) be small

such that 1 /∈ σ(K + B). Then there exists a sequence of essentially monic

polynomials {p̃k}
∞
k=1 such that for all β ∈ (0, 1]:

||p̃k(K + B)||
1
k ≤ (||B|| + ||K||Sp

k− β
p )(

||B||k
β
p

||K||Sp

+ 1)
1
k e

1

p(k1−β)(6.26)

7 Concluding remarks

Given a bounded linear operator L, the optimal reduction factor η(L) defined

by

(7.1) η(l) := inf
k≥0;pk∈pk

||pk(L)||
1
k

limits the attainable asymptotic speed of the all Krylov subspace methods ap-

plied upon L. It can be proved that η(L) is a function of the set σ(L), and

furthermore that it does not depend on the isolated spectral values of L (see

[1;Theorem 3.3.4]). Now, if L := K + B, then η(K + B) = η(B), because a

compact perturbation can only add isolated points to the spectrum of the oper-

ator B. So it is true, that even a large compact part dies, because it cannot be

seen in the optimal reduction factor.

There is certain interest to look at the asymptotics of ||pk(K+B)||
1
k of Lemma

6.8 as k → ∞. It is true that our sequence is asymptotically optimal in the sense

that one cannot construct another sequence p′k(K + B) whose limit is always

smaller for all B of fixed size. For such B whose spectrum fills the disk of radius

||B||, the optimal reduction factor would equal ρ(B) = ||B||, by [1;Theorem

3.3.4(v)] and [1;Theorem 3.6.3(iii)].

So the asymptotic effect of K is inessential, but on the other hand we are

not so interested in the asymptotics — it is only the small number of iterations

that should ever get calculated in the real life. Lemma 6.8 should tell us that

in the first stages the iteration the convergence factor ||pk(K + B)||
1
k of order

||B||+||K||sp
k

β
p decreases (the “superlinear” stage) and is asymptotically only of

order ||B|| (the “linear” stage). Moreover, the rate of decrease of the convergence

factor is dictated by the Schatten class of K.

Note that the concept “superlinear” is usually used to describe something

that happens in the asymptotics of the speed estimates. Here we are a bit

unorthodox and regard “superlinear” stage of an iteration as those iteration

steps when “speed is being gained”. By the “linear” stage we of course refer at

the analogous phenomenon.
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The GMRES method for the inversion of non-symmetric problems can be

regarded as a minimization algorithm that (at least implicitly) generates poly-

nomial sequences to approximate the values of resolvents at given points; this

is the minimization of residuals. If the GMRES generates the polynomial se-

quence sk (corresponding to our sequence p̃k), then the residual dk after k steps

is proportional to ||sk(K + B)d0|| (see Proposition 2.2), and we have:

(7.2) ||sk(K + B)d0|| ≤ ||p̃k(K + B)d0|| ≤ ||p̃k(K + B)|| ||d0||

The former inequality is true because sk is optimal at d0, and p̃k is superoptimal

for the initial residual d0. This is to say that the upper estimates we have for

p̃k are as well upper estimates for the GMRES residuals. The same kind of

result is true so as to the error sequences with quite obvious modifications for

the reasoning — we again refer at Proposition 2.2.
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