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Abstract

A state-of-the-art 1D acoustic synthesizer has been
previously developed, and coupled to speaker-specific
biomechanical models of oropharynx in ArtiSynth. As
expected, the formant frequencies of the synthesized
vowel sounds were shown to be different from those
of the recorded audio. Such discrepancy was hypothe-
sized to be due to the simplified geometry of the vocal
tract model as well as the one dimensional implemen-
tation of Navier-Stokes equations. In this paper, we
calculate Helmholtz resonances of our vocal tract ge-
ometries using 3D finite element method (FEM), and
compare them with the formant frequencies obtained
from the 1D method and audio. We hope such compar-
ison helps with clarifying the limitations of our current
models and/or speech synthesizer.

1 Introduction

Articulatory speech synthesisers generate sound based
on the shape of the vocal tract. Vibration of the vo-
cal folds under the expiratory air flow is the source
in the system; and the vocal tract, consisting of the
larynx, pharynx, oral and nasal cavities, constitutes a
filter where sound frequencies are shaped. This creates
a number of resonant peaks in the spectrum, known
as formants. The first and second formants (F; and
F5) are used to distinguish the vowel phonemes, where
the value of F; and Fj is controlled by the height and
backness-frontness of the tongue body respectively.
Traditionally, the acoustic system is approximated
by a one-dimensional wave equation that associates
the slow varying cross-sectional area of a rigid tube
to the pressure wave for a low-frequency sound. How-
ever, complex shape of the vocal tract, with its side
branches and asymmetry, has motivated higher dimen-
sional acoustic analysis. The 3D analysis methods were
shown to produce a better representation of the sound
spectrum at the price of higher computational cost.
However, some studies suggested that the spectrum
yielded by 1D acoustic analysis matches closely that of
the 3D analysis for frequencies less than 7TKHz (Take-
moto et al., 2014; Arnela and Gausch, 2014). Aalto
et al. (2012) suggested that the discrepancy between
the resonance frequencies computed by 3D analysis

of the vocal tract and the formant frequencies of the
recorded audio is a result of insufficient boundary con-
ditions in the wave equation especially in case of the
open lips and/or velar port.

In this paper, we follow Aalto et al. (2014) in cal-
culating the Helmholtz resonances of our vocal tract
geometries using 3D FEM analysis. The resonances
are then compared to the formant frequencies obtained
from the 1D acoustic synthesizer proposed by Doel and
Ascher (2008) and those of the recorded audio.

2 Material and Methods

We use static MRI images acquired with a Siemens
Magnetom Avanto 1.5 T scanner. A 12-element Head
Matrix Coil, and a 4-element Neck Matrix Coil, allow
for the Generalize Auto-calibrating Partially Parallel
Acquisition (GRAPPA) acceleration technique. One
speaker, a 26-year-old male, was imaged while he ut-
tered four sustained Finnish vowels. The MRI data
covers the vocal and nasal tracts, from the lips and
nostrils to the beginning of the trachea, in 44 sagit-
tal slices, with an in-plane resolution of 1.9mm. Fig-
ure 1 shows the VT surface geometries extracted from
MRI data using an automatized segmentation method
(Aalto et al., 2013).

For our 1D acoustic analysis, we describe the vocal
tract by an area function A(z,t) where 0 < z < L is
the distance from the glottis on the tube axis and t
denotes the time. We take the similar notion of Doel
and Ascher (2008) in defining the variables u(z,t) =
A(z,t)a/c and p(x,t) = p/po — 1 as the scaled versions
of volume-velocity @ and air density p respectively. pg
is the mass density of the air and ¢ is the speed of
sound. We solve for u(z,t) and p(z,t) in the tube us-
ing derivations of the linearised Navier-Stokes equation
(1a) and the equation of continuity (1b) subject to the

Figure 1: VT geometries extracted from MRI data (Aalto
et al., 2013).



boundary conditions described in equation 1c:
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where d(A) = dgA=3/? and D(A) = DyA=3/? with
the wall loss coefficient dy = 1.6 ms~! and Dy = 0.002
m3s~1; and u,(t) is the source volume velocity at the
glottis. We couple the vocal tract to a two-mass glottal
model (Ishizaka and Flanigan, 1972) and solve equation
1 in the frequency domain using a digital ladder filter
defined based on the cross-sectional areas of 20 seg-
ments of the vocal tract. We refer to Doel and Ascher
(2008) for full details of the implementation.

For our 3D acoustic analysis, we calculate the vowel
formants directly from the wave equation by finding the
eigenvalues, A, and their corresponding velocity poten-
tial eigenfunction, ®,, from the Helmholtz resonance
problem:
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where 0 € R? is the air column volume and 9 is
its surface including the boundary at mouth open-
ing (T'1), at air-tissue interface (I'2) and at a virtual
plane above glottis (I's); and ag; 2 denotes the exterior
normal derivative.The value of « regulates the energy
dissipation through tissue walls, and the case a = 0
corresponds with hard, reflecting boundaries. We cal-
culate the numerical solution of equation 2 by Finite
Element Method (FEM) using piecewise linear shape
functions and approximately 10° tetrahedral elements.
The imaginary parts of the first two smallest eigenval-
ues A1 and Ag give first two Helmholtz resonances of
the vocal tract. We refer to Aalto et al. (2014) and
Kiveld et al. (2013) for details of implementation.

In order to distinguish the effects of dimensional-
ity (1D vs. 3D) from the effects of different boundary
conditions in equations 1 and 2, we also compute the
Webster resonances by interpreting equation 2 in one
dimension:
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where ¥ denotes the sound speed correction factor
that depends on the curvature of the vocal tract; A(x)
is the area function and s is the implicit parameter to
@y, A, W and 3. We refer to Kiveld (2015) for details
of implementation and parameter values.
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Figure 2: Simulation results for first and second for-
mant/resonance frequencies for different vowels: Helmholtz
resonances (Hg), Webster resonances (Wr) and their scaled
version (Sgr), Webster formants (Wg) and formants from
audio signal (Ap).

3 Results and Discussion

Figure 2 shows the first two formant/resonance fre-
quencies, computed for the four Finnish vowels. Web-
ster formants (W) are calculated by solving Equation
1, as suggested by Doel and Ascher (2008). Helmholtz
(Hg) and Webster resonances (Wg) are obtained from
equations 2 and 3, respectively (Aalto et al., 2014). Sg
denotes the scaled version of Wg. The figure also in-
cludes the formant frequencies (Ar) computed from
audio signals recorded in an anechoic chamber (Aalto
et al., 2014). The values are averaged over 10 repeti-
tions of each vowel utterance.

As we can see in Figure 2, the resonance values (Hg,
Wr and Sg) lie close together for vowels /i/ and /e/,
with Si being closer to Hg, as expected. For vowels
/o/ and /a/ there is more difference in the first reso-
nances of Hg and Wg; For /o/, although Sg lies closer
to Hp, its first resonance is surprisingly low. For all
of the vowels in Figure 2, the second formant of the
audio is less than the computed results. The vowel /i/
is expected to be very sensitive to glottal end position,
which, in turn, suggests the significance of adequate
MRI resolution and accurate geometry processing for
its spectral analysis.

Interestingly, the Webster formants (Wg) remain
closer to the audio formants (Ar) than any of the
resonances in the case of /i/, /e/, and /a/. For /o/
the distance to the Ap is almost equal for Wg and
Hpg, with both having similar values for the second for-
mant /resonance; however, the first Hg is lower, and
the first W is higher, than the first Ap.

The time-domain Webster analysis (Doel and As-
cher, 2008) accounts for the VT wall-vibration phe-
nomenon that is missing in the resonance analysis.
This is done by substituting A(x, t), from equation 5.3,
with A(z,t) + C(z,t)y(z,t): where C(z,t) is the slow-
varying circumference and y(z,t) is the wall displace-
ment governed by a damped mass-spring system. Set-
ting y(x,t) to zero, the Webster formants move along
the arrows in Figure 2, reducing in their first formants.
This moves the Wg closer to the Hr as both acousti-



cal models now ignore the wall vibration. Meanwhile,
Wpr moves away from the audio formants in the case
of /i/, /e/, and /a/. The distance between Wr and
Wpr remains large, despite the fact that both acous-
tical models solve the Webster equation. The results
imply that 3D Helmholtz analysis is more realistic than
its 1D Webster version, as expected.

Overall, our experiments suggest that the time-
domain interpretation of acoustic equations provides
more realistic results — even if it requires reducing from
3D to 1D. This may be partially due to the fact that
time-domain analysis allows for more complexity in the
acoustical model such as inclusion of lip radiation and
wall loss. Certainly unknown parameters always re-
main (such as those involved in glottal flow, coupling
between fluid mechanics and acoustical analysis, etc.),
which are estimated indirectly, based on observed be-
haviour in simulations.

It should be noted that our experiments are solely
based on data from a single speaker. A larger database
— inclusive of more speakers from different genders and
languages — is needed in order to confirm the valid-
ity /generality of our findings.
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