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Abstract

We study continuous time linear dynamical systems of boundary control/observation type, satisfying a
Green—Lagrange identity. Particular attention is paid to systems which have a well-defined dynamics both
in the forward and the backward time directions. As we change the direction of time we also interchange
inputs and outputs. We show that such a boundary control/observation system gives rise to a continuous time
Livsic—Brodskii (system) node with strictly unbounded control and observation operators. The converse is
also true. We illustrate the theory by a classical example, namely, the wave equation describing the reflecting
mirror.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we give simple necessary and sufficient conditions for the (scattering) conser-
vativity of linear boundary control/observation systems described by differential equations of
form

u(t)=Gz(t), z(t)=Lz(t), y(t)=Kz(@), teRT=][0,00),
2(0) = zo. (1.1)
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These conditions are stated in terms of data given; namely the (unbounded) operators G, L,
and K. In a typical application L is a partial differential operator, and G and K are boundary
trace operators.

We shall assume throughout that the operators G, L, and K in (1.1) give rise to a boundary
node of the following type.

Definition 1.1. A triple & := (G, L, K) is a boundary node on the Hilbert spaces (U, X, ) if
the following conditions are satisfied:

(i) G, L, and K are linear operators with the same domain Z C X;
(i1) [I(Lj] is a closed linear operator mapping Z intold x X x V;

(iii) G is surjective and NV (G) is dense in X’;
(iv) The operator L|N (G) (interpreted as an operator in X with domain N (G)) has a nonempty
resolvent set.

This boundary node is internally well-posed (in the forward time direction) if, in addition,
(v) LIN(G) generates a Cy semigroup.

We call U the input space, X" the state space, ) the output space, Z the solution space, G the
input boundary operator, L the interior operator, and K the output boundary operator.

If & = (G, L, K) is internally well-posed, then (1.1) has a unique solution for sufficiently
smooth input functions u and initial states zg compatible with u(0). More precisely, as we show
in Lemma 2.6, for all zg € X and u € C2(R*; U) with Gzo = u(0) the first, second and fourth
of Egs. (1.1) have a unique solution z € CI(RJr; X)NC@Rt; Z),2 and hence we can define
ye CR";Y) by the third equation in (1.1). In the rest of this article, when we say “a smooth
solution of (1.1) on R™” we mean a solution with the above properties.

Definition 1.2. A boundary node = on (U, X, )) is energy preserving if it is internally well-
posed and all smooth solutions of (1.1) on R* satisfy

d
O+ ol = ol rer*. (1.2)

As we show in Proposition 4.2, this identity is equivalent to the Green—Lagrange identity
G
2Re(z, Lz)x + 1Kzl = IGzlly;,  z € Z=Dom ([ L D : (1.3)
K
Many boundary nodes defined by PDEs are time—flow invertible, i.e., they have the property

that they remain boundary nodes if we reverse the direction of time and interchange the roles of
K and G.

G
2 Here we use the graph norm of |: L j| in Z, see (2.9).
K
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Definition 1.3. A boundary node =& = (G, L, K) on (U, X, )) is time—flow invertible if the triple
E < :=(K,—L,G) is aboundary node on (Y, X', U). We call &< the time—flow inverse of E.

Definition 1.4. A boundary node = = (G, L, K) is conservative if it is time—flow invertible and
both Z itself and the time—flow inverse & <~ are energy preserving.

The following theorem is the first of our main results.

Theorem 1.5. Let & := (G, L, K) be a boundary node on (U, X,Y). Then E is conservative if
and only if the following three additional conditions hold.:

(1) K is surjective and N (K) is dense in X,
(i) p(LIN(G))NCT #0,
(i) p(=LIN(K)NCT #4,
(iv) the Green—Lagrange identity (1.3) holds.

As shown by the first author in [24, Theorem 5] using [26, Theorem 4.4], it is possible to re-
place condition (iv) of Theorem 1.5 by two slightly weaker conditions (with Z = Dom ([ I(L; ])):

(iv') 2Re(x, Lx)y + ||Kx||§, =0 for all x e N(G),
V) {z,Lx)x + {Lz,x)x = {(Gz,Gx)y forall z € Z and x € N'(K).

However, in practice it does not appear to be easier to check conditions (iv') and (v') than to
check the full Green—Lagrange identity (1.3).

The proof of Theorem 1.5 is based on the notion of a system node. In this work we do not just
study internally well-posed boundary nodes for their own sake, but we interpret them as system
nodes in a natural way. (See Definition 2.1 for the exact definition.) This opens up the possibility
of applying existing results for system nodes (e.g., on feedback, generalized solutions; see [38])
to internally well-posed boundary nodes. For example, in the conservative case it is possible to
use the theory of well-posed linear systems to replace the class of smooth solutions of (1.1) by
solutions where u and y belong locally to L? and z is continuous in the space X'

A system node is a special case of an operator node. By this we mean a closed densely
defined linear operator S = [ég‘g] : [5] D Dom(S) — [3‘;] with certain additional properties.
In the case of a system node it generates a dynamical system through the equations

z®) | _ o] 2(®) N B
[y(t)}_s[u(t)] teR™, 2(0) =z (1.4)

Here u € C2(R*; U) and [uz(%)] € Dom(S), and Eq. (1.4) has a unique solution z € C'(R*; X)
and output function y € C(R™; )) (see Lemma 2.2). If dim X’ < oo, then S can always be written
as § = [é g], where A, B, C, and D are bounded linear operators between the appropriate
spaces, and (1.4) takes the familiar form

z(t) = Az(t) + Bu(1),

y(t)=Cz(t) + Du(t), teR",

2(0) = zo. (1.5)
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Given a boundary node Z it is possible to construct a unique operator node S with the property
that, formally, the solutions of (1.1) coincide with those of (1.4). For an internally well-posed
boundary node & this correspondence is not only formal but actually valid for all smooth
solutions of (1.1), and S is then a system node. We give a complete description of those op-
erator/system nodes S that arise in this way from some boundary node =. We say that these
operator/system nodes are of boundary control type

The main result in Section 3 is the following theorem.

Theorem 1.6. A boundary node E is time—flow invertible in the sense of Definition 1.3 if and
only if the corresponding operator node S (see Theorems 2.3 and 2.4) is time—flow invertible in
the usual operator node sense (see Definition 3.1).

We call an operator node S energy preserving if it is a system node and the smooth solutions
of (1.4) satisfy (1.2). Clearly, if S arises from an internally well-posed boundary node &, then S
is energy preserving if and only if &' is energy preserving. However, since the dynamics is now
described by a different equation (1.4), also the Green identity (1.3) takes a different form.

The standard definition of a conservative system node involves also the dual node® $*. Ac-
cording to this definition, S is conservative if both S and S* are energy preserving. This is the
approach adopted in most systems theory papers, such as [2-4,6,10-12,26,34-40,42—44]. How-
ever, as we show in Proposition 4.3 below, this is equivalent to the requirement that S is time—flow
invertible and both S and its time—flow inverse S are energy preserving. This leads to the fol-
lowing conclusion.

Theorem 1.7. A boundary node E is conservative if and only if the corresponding operator
node S (see Theorems 2.3 and 2.4) is conservative in the usual operator node sense (see Defini-
tion 4.1).

The results obtained in this article lead to the following two new theorems about time—flow
invertible or conservative operator nodes. Note that the statements of these two theorems contain
no reference to boundary nodes (in spite of the fact that their proofs depend heavily on such
nodes).

Theorem 1.8. If an operator node S of boundary control type is time—flow invertible, then the
time—flow inverse S* is also of boundary control type.

This follows immediately from Theorem 1.6.

Theorem 1.9. Let S be a conservative system node. Then S is of boundary control type if and
only if the dual S* is of boundary control type.

This follows from Theorem 1.8 and Proposition 4.3 below.

The outline of this paper is the following. In Section 2 we introduce operator nodes and
explain the relationship between a boundary node and an operator node of boundary control
type, roughly following [23,31,38]. In Section 3 we discuss time—flow invertibility of boundary

3IfSisa system node, then so is $*; see [26, Proposition 2.4] or [38].
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nodes, and connect this notion with the time—flow invertibility of operator nodes as presented
in [38,40]. Conservative operator nodes are studied in Section 4 in the spirit of [26]; see also
[34-38,40,43]. The proof of Theorems 1.5 and 1.7 are given in this section.

Finally, in Section 5 we apply Theorem 1.5 to a PDE describing a reflecting mirror, and
we conclude that it induces a conservative system node. The same example has been treated
earlier in [44] as an example of a “thin air” system. The strong and exponential stability of the
semigroup generated by the same PDE (take u = 0 in (5.2)) is studied by, e.g., Lagnese [19] and
Triggiani [41], but they do not pay attention to system theoretic properties of this example, such
as conservativity.

The boundary nodes that we present here have a long history. It started with the boundary
control of parabolic and hyperbolic PDEs; for the early history we refer to [21,30]. The two
volumes [20] contain a large collection of examples and references to more recent work, as
does [8]. The origin of our abstract formulation dates back to Fattorini [13], and significant
progress was made by Salamon [31].

Even earlier in the former Soviet Union, the study of Sturm—Liouville and related problems
led Neumark [27] and Krein [18] to the question of finding symmetric and self-adjoint extensions
of a symmetric operator, as described in [14, Chapter 3] and [15]. The final results have natural
interpretations in the context of conservative boundary nodes. We shall return to this in [25].

At the moment, not much has been written in the west on conservative boundary control
systems. Typical parabolic boundary control systems (arising, e.g., from thermodynamics) are
not time—flow invertible, hence not conservative. However, many hyperbolic systems (coming,
e.g., from continuum mechanics) are conservative. More specifically, conservative hyperbolic
boundary control systems (or parts of such systems where either the input or the output is either
implicit or missing) are found in [7,9,16,29,42,44].

2. Operator nodes versus boundary nodes

The purpose of this section is to explain the one-to-one connection between all boundary
nodes and all operator nodes with injective and strictly unbounded control operators. This con-
nection is known in principle (see, e.g., [31] or [38, Section 5.2]), but it cannot be found in the
literature in exactly the form that we need it.

2.1. Operator and system nodes

Let us first recall the notions of an operator node and a system node. This involves a densely
defined unbounded (main) operator A on a Hilbert space X with a nonempty resolvent set. We
define X to be the domain of A with the graph norm ||z[|3, = [[Azl|% + lIz]|%, and define X_;
to be the dual of Dom(A*) with the graph norm when we identify the dual of X with itself. Then
X1 C X C A_; with continuous and dense embeddings. The operator A has a unique extension
to an operator A_j € L(X; X_1).

Definition 2.1. Let ¢/, X and Y be Hilbert spaces. An operator

A&B X X
S = [C&Dj| :[u:| D Dom(S) — [y}

is called an operator node on (U, X, ) if it has the following structure:
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(i) A is adensely defined operator on X’ with a nonempty resolvent set (which we extend to an
operator A_; € L(X; X_}) as explained above).
(i) Be LWU; X_1).
(iii) Dom(S) ={[5]€ [\ ]: A_ix+ Bu e X}, and A&B =[A_; B]| Dom(S).
(iv) C&D € L(Dom(S); Y), where we use the graph norm

2]

If, in addition to the above, A generates a strongly continuous semigroup on X, then S is called
a system node.

A system or operator node is of boundary control type if its control operator B is injective and
strictly unbounded, i.e., it satisfies Ran(B) N X = {0}.

2

= lA_1x + Bull% + lx 13 + llullf, @2.1)
A&B

of A&B on Dom(S).

Every operator node is closed (as an operator from [ 7] to [ ]). This follows from the facts
that A& B is closed, that C & D has the same domain as A& B, and that C& D is continuous with
respect to the graph norm of A&B. It is also true that the graph norm of A&B on Dom(S) is
equivalent to the full graph norm

= ben ]+ feso[:]

We call A € L(X; X) the main operator of S, B € L(U; X_) is its control operator, and
C&D € L(Dom(S); Y) is its combined observation/feedthrough operator. From the last operator
we can extract C € L(X]; )), the observation operator of S, defined by

2 2
+ 1% + llell?, (2.2)
X

X

X

Cx:=C&D |:O

} e 2.3)

A short computation shows that for each o € p(A), the operator

[t @-A-n~'B
Ea._[o ) } (2.4)

X

is a bounded bijection from [ ] onto itself and also from [

u

for each u € U there is some x € X such that [} | € Dom(S). Since [?f}] is dense in [ 7Y ], this

implies that also Dom(S) is dense in [5] Since the second column of E, maps U/ into Dom(S),
we can define the transfer function of S by

] onto Dom(S). In particular,

PR _ —1
@(a)::C&D[(a Al—l) B], a e p(A), (2.5)

which is an L(U; ))-valued analytic function. Clearly, for any two «, 8 € p(A),

D@ -DPB)=Cl[l@—Aa)"'=(B-4-)""]B. (2.6)
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Each system node S = [ A&8] generates a family of smooth solutions of the differen-

tial/algebraic equation (1.4) of the following type:

Lemma 2.2. Let S = [ég‘g] be a system node on (U, X,)). Then for all zo € X and u €
C2(R:U) with [ 0, ] € Dom(S) the equation

z(1t)

z(t) = A&B |:u(t)

] teRT, z(0) = zo, 2.7

has a unique solution z € C'(RT; X) such that [,ﬁ] € C(R™; Dom(S)). Hence we can define
y € C(R™;Y) by

y(t):C&D[ftE?)] teRY. (2.8)

For a proof, see [26, Proposition 2.5] or [38, Lemma 4.7.8]. In the sequel, by “a smooth
solution of (1.4) on R™” we mean a solution with the above properties. Additional information
about system and operator nodes can be found in, e.g., [6,26,31-40,44].

2.2. The connection between operator and boundary nodes

We now show that there is an one-to-one correspondence between boundary nodes and oper-
ator nodes of boundary control type.

Let £ be a boundary node as in Definition 1.1. In that definition we denote the common
domains of K, L, and G by Z and call it the solution space. In the sequel we shall throughout

equip Z with the graph norm of [g ], ie.,

Z :=Dom(K) =Dom(L) = Dom(G),

Izl1% = llzll% + 1K zll5, + I LzI% + Gzl (2.9)

Clearly K € L(Z;)), L € L(Z;X), and G € L(Z;U). We call A := LIN'(G) the (forward)
main operator and A< := —L|N (K) the backward main operator.

As our following theorem shows, every boundary node induces as an operator node, and every

internally well-posed boundary node induces as a system node.* A converse to this theorem is
given in Theorem 2.4.

Theorem 2.3. Let = := (G, L, K) be a boundary node on (U, X,)). Then

—1
S:[égg}:[é}[é} , Dom(S):Ran([é]), (2.10)

is an operator node on (U; X; V) of boundary control type. This operator node is a system node
if and only if E is internally well-posed.

4 This theorem resembles [38, Theorem 5.2.13]. That theorem was added to [38] in the proof reading process, and it
was originally obtained as a part of the present work. A less precise version of this result is also found in [31, Section 2.2].
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More precisely, the operator node S can be constructed as follows:

(1) The main operator A of S is given by A := L|Dom(A), where Dom(A) = N (G). The spaces
X C X C X_| and the extended operator A_1 are constructed as described in the para-
graph before Definition 2.1. The norm in X (i.e., the graph norm of A) is equivalent to the
norm that X inherits from the space Z defined in (2.9).

(ii) The control operator B € L(U; X_1) of S is uniquely determined by the identity BG =
L—A_{|Z.
(iii) [ é] is a boundedly invertible operator from Z onto

| A )

equipped with the norm (2.1). In particular, V is continuously embedded in [ 5 ]
(iv) The observation/feedthrough operator C&D of S is given by C&D = [K 0]|Dom(S).
(v) The space Z can be written as the direct sum of the closed subspaces

Z =X +Ran((@—A_1)"'B), (2.11)
where « is an arbitrary number in p(A_1) = p(A), and
Gla—A_1)"'B=1, aep(A_)) =p(A). (2.12)

Moreover, (u,x,y) is a smooth solution of (1.1) if and only if (u,x,y) is a smooth solution

of (1.4).

Proof. We build the operator node S from its components as described in (i)—(v), and then, at
the end of the proof, we show that S is given by (2.10).

We begin with condition (i). By the definition of a boundary node, A = L|A/(G) has a non-
empty resolvent set. Let X := N (G) with the norm inherited from Z, and let X} := Dom(A) =
N (G) with the graph norm. Let @ € p(A). Then (e — A) € L(X]; X) is a bounded bijection,
and hence it has a bounded inverse in £(X’; X]). This implies that the norms in X| and X are
equivalent.

We continue by defining B = (L — A_])Gr_iglht’ where Gr_iglht € L(U; 2Z) is an arbitrary
right-inverse to G (such a right-inverse exists since G is bounded and surjective). Then B €
LU; X_1), since Z C X C X_1 with continuous embeddings. The operator B defined this way
satisfies BG = L — A_1|Z, and this equation determines B uniquely (since G is surjective).

Next we prove (2.11) and (2.12). We have

@—A_)'B=(a—A_)"N(L-A_DG;L, =G)

ient = g + (@ — AT (L =Gy, (2.13)

right?

where Gr_iglht € LU; Z) and L —«a € L(Z; X). This implies that (« — A_{)~! B maps I contin-
uously into Z. Moreover, since the last term in (2.13) belongs to X; = AN(G), we find that (2.12)
holds. In particular, B is injective and Ran((e¢ — A_1 y~1B) is closed in Z.

To complete our proof of (2.11), we still need to show that

X NRan((@ — A_1)~'B) = {0}
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and that X + Ran((@ — A_1)"'B) = Z.If x € X NRan((e — A_1) "' B), then Gx = 0 (since
X1 =N(G)), and x = (@ — A_;) ! Bu for some u € U. Therefore, by (2.12),

0=Gx=G(a—A_)) 'Bu=u,

hence also x = 0. Thus X} N Ran((a — A|X)~!B) = {0}, or equivalently, X N Ran(B) = {0}.
Given any z € Z, we can define u = Gz and x =z — (o — A_1)"'Bu. Then u € 4 and

Gx=Gz—G@—A_)) 'Bu=u—-u=0,

and so x € Xj. This completes the proof of the direct sum decomposition (2.11) and prop-
erty (2.12).
We proceed to prove (iii), and begin by showing that

ran([L]) =[] e[ e et 210

One direction of this inclusion is immediate: if z € Z and u = Gz, then, as we saw above,
w:=A_1z+ Bu=Lze X.Thus,

o (&)<l e

For the converse inclusion we take some z € X and u € U and suppose that w := A_1z+Bu € X.
Then by (2.11),

z=(@—A_) az—w)+(@—A_)"'BueZ.

This proves (2.14).

By the continuity of L, G, and the embedding Z C X, each of |w| v, ||zl]|x and |u|lz, are
dominated by [|z|| z up to multiplicative constants. Thus [ £ | is a bounded bijection from Z onto
V equipped with the norm (2.1). Therefore it also has a bounded inverse.

Since V = Ran([(];]), we find that V C [5] The embedding of V into [i{(] 1s continuous,
and since the range of this embedding operator is contained in [5 ] (where Z is continuously
embedded in &'), also the embedding V C [5 ] must be continuous.

We continue by defining C&D as described in (iv). Then C&D is bounded from V into Y
(because of the continuous embedding V C [ 5 ]). Finally, we define S = [ &5 ], where A&B =
[A_1 B]|V and Dom(S) = V. It follows from what we have proved so far that S is a system
node. It only remains to show that S is given by (2.10), or equivalently, that

A&B 1 L
[ )le]=[x] 219
The top row of this identity holds because

A_1z+BGz=A_1z+(L—A_\)z=Lz, zeZ.

The bottom row follows directly from our definition of C&D.
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The final claim about the equivalence of smooth solutions of (1.1) and (1.4) follows immedi-
ately from (2.10). O

In Theorem 2.4 we give a converse to Theorem 2.3. In this theorem we start with a system
node S of boundary control type and construct the corresponding boundary node Z'. This time
we define the solution space Z to be the range of (o — A_1)_1 [1 B]: [fj] — X, where A is the
main operator and B the control operator of S. Thus, B is injective and Ran(B) N X = {0}. This
implies that, for each fixed o € p(A), every w € Z has a unique representation

w=x+(@—A_1)"'Bu, xeX, uecl. (2.16)
We can therefore define a Hilbert space norm on Z by
lwii% = lIx1%, + llully, where w=x+ (a —A_1)~" Bu. (2.17)

With this norm the space Z is densely and continuously embedded in &', and (2.11) holds, so
that the complementary projections in Z onto X7, respectively (@ — A_;)~! BU are continuous.
Furthermore, the operator (@ — A_1)~' B is a bounded linear operator mapping { one-to-one
onto its closed range, and it has a bounded inverse defined on its range. Different values of «
gives different but equivalent norms in (2.17). For more details, see, e.g., [31, p. 389] or [38,
Lemma 5.2.2].

Theorem 2.4. Let S = [égg] be an operator node on (U, X, Y) of boundary control type with
main operator A, control operator B, observation operator C, and transfer function . Define
the spaces X1 and X_1| and the extended operator A_1 as described in the paragraph preceding
Definition 2.1. Then S induces a (unique) boundary node 5 = (G,L, K) on U, X,)) in the

following way:>

(1) The space Z is defined by (2.11) (as described above), with the norm defined in (2.17).
(ii) There exists a unique operator G € L(Z;U) such that

poms = an ([ 1]).

The operator G surjective and N(G) = X} is dense in X. The operator [ (1;] is a bounded
bijection of Z onto Dom(S) (with the graph norm (2.1) of A&B).
(iii) The operator L € L(Z; X) is defined by

L:=A_1|Z4+BG=[A_1 B] [é:|
In particular, LIN (G) = A has a nonempty resolvent set.

5 Thisis a slightly simplified version of [38, Theorem 5.2.6]. A slightly less precise version of this result is found in
[31, Proposition 2.8].
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(iv) The operator K € L(Z;)) is defined by

1
K._C&D[G:|.

The node E is an internally well-posed boundary node if and only if S is a system node. The
operator node that we obtain by applying Theorem 2.3 to E coincides with the given operator
node S.

Our proof of Theorem 2.4 uses the following alternative characterisation of a boundary node,
which is also of independent interest (see Section 5).0

Proposition 2.5. A triple E := (G, L, K) is a boundary node on the Hilbert spaces (U, X, Y) if
and only if the following conditions are satisfied:

(i) There exists a Hilbert space Z, such that the embedding Z C X is dense and continuous,
) LeL(Z,X),GeL(Z;X)and K € L(Z;));
(iii) G is surjective and N'(G) is dense in X; and
(iv) (a — L)|IN(G) maps N (G) one-to-one onto X for some a € C.

Proof. It is clear that (i)—(iv) are necessary conditions when Z is the solution space of &. For
the sufficiency part we note that conditions (i), (ii) and (iv) imply (iv) of Definition 1.1 since
bounded bijections have bounded inverses.

We complete the proof by showing that [g] is closed with domain Z. Suppose that z, € Z,
Zn—>zin X, x,: =Lz, > xinX, u, =Gz, > uinld and y, := Kz, — y in ). Choose
a as in condition (iv). Then [ _ G, ] € £(Z;[¥]) is a bijection (see conditions (i) and (ii) for
boundedness, and conditions (iii) and (iv) for bijectivity), and it has a bounded inverse. As z,, =
[70[G+L]_l [_afn"ﬂn ] we find that z € Z, 7, — zin Z and z = [ﬂxqu]_l [_a‘;ﬂ]. Thus u =
Gz and x = Lz, and by the continuity of K, y = Kz. Thus (ii) of Definition 1.1 holds. O

Proof of Theorem 2.4. We begin by proving (ii). Fix some « € p(A). As we observed
in the paragraph preceding Theorem 2.4, each w € Z has a unique decomposition w =
x4+ (@ — A_1)"'Bu where x € X; and u € Y. Define Gw := u. Then G € L(Z:U) and
N(G) = X (G is the projection of Z onto (o — A_; Y-l BU along & followed by the inverse of
(@—A_1)"'B).

We next show that [é]Z = Dom(S), and begin with the inclusion [(l;]Z C Dom(S). Let
w € Z, and split w as in (2.16). Then

A_iw+BGw=A_1(x+(@—A_)"'Bu)+ Bu=Ax+a(@—A_)'BueX.

Thus, [(l;]Z C Dom(S). Conversely, suppose that [lu”] € Dom(S),ie,we X, ueld,and 7 :=
A_jw+ Bu € X. Then

w=@—-A_) Naw—-2)+@—A_)'BueXi+(@—A_)"'BU=Z,

6 This characterisation resembles the one used by Salamon [31].
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and Gw = u. Thus, Dom(S) = [é] Z. The same argument shows that G is surjective (as S is an
operator node, for each u € U there is some x € X such [jﬁ] € Dom(S), and Gx = u).

Allof |[A_jw + BGw| x, |w| x, and ||u|| are dominated by ||w]|| z up to multiplicative con-
stants, so the mapping [é] from Z into Dom(S) is continuous with respect to the graph norm
(2.1) of A& B, hence a bounded bijection. This is a graph representation of Dom(S) over Z, and
hence it determines G uniquely. This completes our proof of (ii).

The claim (iii) is obvious, and so is (iv). Since G, L and K, satisfy (i)—(iv) it follows from
Proposition 2.5 that (G, L, K) is a boundary node. It is also clear that & is internally well-posed
if and only if § is a system node. The final claim of Theorem 2.4 is also easily verified. O

We end this section by using the one-to-one correspondence between internally well-posed
boundary nodes and system nodes of boundary control type to get an existence result for solutions
of (1.1).

Lemma 2.6. Let E := (G, L, K) be an internally well-posed boundary node on (U, X, Y). Then,
forall zoe X andu € C2(R*: U) with Gzo = u(0) the first, second and fourth equation in (1.1)
have a unique solution z € C'(R*; X) N C(RT; Z). Hence we can define y € C(R™;Y) by the
third equation in (1.1).

Proof. This follows immediately from Lemma 2.2 and Theorem 2.3 (define z = [ (1; ]_1 [’,j ] and
use (2.10) to convert (1.4) into (1.1)). O

3. Time-flow invertibility

We now define what we mean by the time—flow invertibility of an operator node and prove
Theorem 1.6.

Definition 3.1. Let S = [ A5 ] be an operator node on (U, X, V). We call this operator node

time—flow invertible if there exists an operator node

« | [A&B]™
ST = [[C&D]‘— on (Y, X,U)
which together with S satisfies the following conditions: the operator [ lc & B] maps Dom(S)
continuously onto Dom(S <), its inverse is [[IC & B]F ], and

« -1
[égg} - [_[1?)&31] } [[é&g]e} (on Dom(S)), (3.1)
<~ _ -1
[[[éig}_} = |: (I;‘&f} [é&g] (on Dom(S)). (3.2)

In this case we call S and S time—flow inverses of each other.

For more details, see [38, Section 6.5].
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Proof of Theorem 1.6. Suppose that = is time—flow invertible. Define the operator node S by
(2.10), and define S by

- 3 -1
Sﬁz[[[égg]](_]:zl: GLi||:Il(i| , Dom(S(_)zRan<|:Il<i|>. (3.3)

By Theorem 2.3, S is an operator node. Clearly [

1
c
one onto Dom(S <) with the bounded inverse [ L ][ }

&8] [Il(] [(17]_1 maps Dom(S) one-to-
]—1

[[C&B « ] Moreover,
—A&B[1 01" _([-L1T1 L1 7!
-7 177" [14&BI-
and a similar computation shows that also (3.1) holds. Thus, S is time—flow invertible with time—

flow inverse S<.

Conversely, suppose that S is time—flow invertible with time—flow inverse S*. We claim that

Z is then time—flow invertible. The time—flow invertibility of S implies that [ L¢ 5] is a bijection

between Dom(S) and Dom(S<). It follows from (2.10) that [ Le S]=[ 1} ] [(1;]71, and hence
[ ]Z Dom(S*). Since S is an operator node, for every y € ) there is some x € X’ such
that [} ] € Dom(S<). Thus K is surjective. By (2.10) and (3.2), S is given by (3.3).

Denote the main operator of S~ by A*". It follows from part (iii) of Definition 2.1 that

Dom(A<) = {x cX: [ﬂ c Dom(S(_)} .

Since [Il<] Z =Dom(S*), this means that Dom(A <) = N (K). Finally, from (3.3) we also see
that A< = —L|N/(K). By the assumption that S is time—flow invertible, Dom(A <) = N (K) is

K
dense in X, and A< = —L|N(K) has a nonempty resolvent set. Clearly, [—GL] is closed since

[ IIE ] is closed (with the same domain). By definition, & is time—flow invertible. O

The preceding proof gives us a little more that what is explicitly stated in Theorem 1.6.
Corollary 3.2. Suppose that the boundary node & is time—flow invertible, and denote the cor-
responding time—flow invertible operator node by S. Then the time—flow inverse S~ of S is the
operator node induced by the time—flow inverse E < in the way described in Theorem 2.3.
Proof. See (3.1)-(3.3). O

4. Conservative systems

We now define what we mean by the conservativity of an operator node and prove Theo-
rems 1.5 and 1.7.
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Definition 4.1. An operator node S on (U, X, Y) is energy preserving if it is a system node and
all smooth solutions of (1.4) on R satisfy (1.2). It is conservative if both S and S* are energy
preserving.

In the case of an energy preserving operator node, the Green—Lagrange identity (1.3) becomes

2Re<z,A&B|:Z:|> =||u||124—HC&D|:Z:|
u X u

Proposition 4.2. Let Z = (G, L, K) be a boundary node, and let S = [ég‘g] be the corre-

sponding operator node S (see Theorems 2.3 and 2.4) with main operator A. Then the following
conditions are equivalent:

2

, [;] € Dom(S). .1
R

(1) & is energy preserving (in the sense of Definition 1.2).

(ii) S is energy preserving (in the sense of Definition 4.1).
(iii) p(LIN(G)) NC+ # @, and (1.3) holds (here CT = {a € C | Rea > 0}).
@iv) p(A)NCTt £, and (4.1) holds.

Proof. (i) < (ii). The equivalence of (i) and (ii) is an immediate consequence of Definitions 1.2
and 4.1, and the one-to-one correspondence between solutions of (1.1) and solutions of (1.4)
established in Theorem 2.3.

(i1) = (@iv). Assume (ii). Clearly the internal well-posedness of S implies that p(A) N Cc+ #40.
Let [ff(’)] € Dom(S), and let u be the constant function u(t) = ug for all t > 0. Let z be the
solution of (2.7) with z(0) = zo given by Lemma 2.2, and define y by (2.8). Then (1.2) with
¢ = 0 implies that (4.1) holds with [ Z ] replaced by [ ;9 ] (since % lz()13 =2Re(z(1), 2(1)) )

(iv) = (ii). Taking z € Dom(A) and u = 0 in (4.1) we find that A is dissipative, i.e.,
Re(z, Az) <0 for all z € Dom(A). This together with the condition p(A) N C*+ # @ implies that
A generates a contraction semigroup; see, e.g., [28, Theorem 4.3, p. 14] or [38, Theorem 3.4.8].
Thus, S is a system node. It follows from (4.1) that all smooth solutions of (1.4) satisfy (1.2),
and hence S is energy-preserving.

(iii) < (iv). This follows directly from Theorem 2.3 and 2.4 (take u in (4.1) to be u = Gz,
and use (2.10)). O

Proof of Theorem 1.5. The necessity of (i)—(iv) for the conservativity of & follows directly from
Definitions 1.1 and 1.3, and Proposition 4.2. Conversely, if these conditions hold, then according
to Definitions 1.1 and 1.3, & is time—flow invertible. Proposition 4.2 can be applied both to &
and to the time—flow inverse & <" : conditions (ii) and (iv) imply that Z' is energy preserving, and
conditions (iii) and (iv) imply that & is energy preserving. Thus, = is conservative. O

Our proof of Theorem 1.7 is based on the following characterization of a conservative system
node.

Proposition 4.3. Let S be a system node. Then the following conditions are equivalent:

(i) S is conservative.
(ii) S is time—flow invertible, and the time—flow inverse S is given by S = S*.
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(iii) S is energy preserving and time—flow invertible, and the time—flow inverse S~ is a system
node.
(iv) S is time—flow invertible, and both S and the time—flow inverse S~ are energy preserving.

This proposition is of some independent interest. It can be derived fairly easily from the results
presented in [26], but unfortunately it was not included in [26]. Since a self-contained proof is
would be rather long we assume below that the reader has access to [26].

Proof of Proposition 4.3. (i) = (ii). Let (i) hold. We denote the dual system node by S§* =

[[[éi‘g] ] By [26, Theorem 4.2] (and its proof), [C&D] is a bijection of Dom(S) onto Dom(S*)
1

with inverse [[C &D]? ] The operator [C & 8] is continuous from Dom(S) into [y] with range

equal to Dom(S*), so it is a bounded bijection between Dom(S) and Dom(S*) (both domains
being equipped with the respective graph norms). By [26, Theorem 4.2],

o _[—A&B][1 0 -
0 1 || C&D '
Applying the same argument to the dual system we get the same identity where S and S* have

changed places. This implies that S is time—flow invertible, with time—flow inverse S = S*.
(i) = (i). Let (i) hold. Then, by Definition 3.1, [ L¢ 3] maps Dom(S) onto Dom(S*) =

Dom(S<) and
—1
¥ _ o | —A&B 1 0
s=s==| 07| [¢en] -

By [26, Theorem 3.2], S is energy preserving. We can then apply [26, Theorem 4.2] to conclude
that S is conservative.

(1)&(ii) = (iv) = (iii). These two implications follow directly from the definition of conser-
vativity of an operator node.

(iii) = (ii). Assume (iii). By Definition 1.3, [lc & 8] maps Dom(S) onto Dom(S<") and

[ 1 0]_[-4&B
C&D | o 1]
By [26, Theorem 3.2], [C&D] maps Dom(S) into Dom(S*), and hence Dom(S<) C Dom(S*).

Moreover, by the same theorem,
g 1 0 _ —A&B
C&D 0o 1|

Thus, S = S*|Dom(S*), and, in particular, A< = A*|Dom(A<") where A< and A* are the
main operators of S~ and S*, respectively. But both A<~ and A* are the generators of C semi-
groups on X, and so their resolvent sets have a nonzero intersection. This implies that their
domains coincide; hence A<~ = A*, and the extended state spaces X ‘__1 and X ‘_11 also coincide.
Recall that the control operator of $* is C*. Both [AS; B~ ] and [ A*, C*] are bounded operator
from [)u( ] to X, = X*,, and they coincide on the dense subset Dom(S<"). This implies that
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[AZ; BT ] =[A, C*]. Since these two operators determine the domains of S and $*, we have
Dom(S<) =Dom(S§*) and S =S5*. O

Proof of Theorem 1.7. Theorem 1.7 follows immediately from Theorem 1.6 and Proposi-
tions4.2and4.3. O

5. The reflecting mirror

In this section we apply Theorems 1.5 and 1.7 to a PDE describing a reflecting mirror, and
we conclude that it induces a conservative system node. This example is classical. A more gen-
eral version has been treated as an example of a “thin air” system in [44, Section 7] by means
of a construction that bears some resemblance to feedback techniques appearing in [41]. Our
approach resembles the techniques of [19].

Suppose that n > 2 and let £2 C R"” be a bounded domain (open connected set) with
C2—b0undary 9£2. We assume that 952 = I'y U I with Iy N I7 = @ where both I and 17
are nonempty.” Thus £2 is not simply connected. A simple example of this geometry in R? is
provided by the annulus

Q={¢.&)eR: 1/4<E +8 <1} (5.1

with I = {(§1,&) € R%: &2 + &7 = 1/4} and I = {(1, &) € R%: &} + &7 = 1}, or the other
way around.
We consider the linear system described by the system of equations

24 (t,E) = Az(t, &) foréeandr >0,

V2u(t, §) =z,(t,&) + 35(1,&) forg el andt >0,
V2y(t,8) =~z (t,&) + £(1,6) foréeMandr>0, (5.2)
z(t,€)=0 for& e Iyandr >0, and

2(0,8) =z0(5), z(0,§) =wo(§) for§ € 2.

Here z,(¢, &) stands for the time derivative and g—f) (t, &) for the normal derivative of z at time 7 at
the boundary point £. Before going any further, let us recall the definitions of the Sobolev spaces
and the boundary trace mappings that we need.

The spaces H™ (£2) = Wzm (82) for m =1, 2, are defined as usual, i.e.,

H™(2):={f € L*(2): D*f € L*(£2) for all multi-indices || < m} (5.3)

where the differentiation D is understood in the sense of distributions; see, e.g., [17, Definition
1.3.2.1] or [22, p. 1]. There is yet another equivalent closure definition for H™(£2), see, e.g.,
[1, p. 60]. We use the Hilbert space norm || £ |3m (o) = > jaj<m ||D°‘f||%2(9) in H™(£2).

We shall also need the fractional Sobolev space H*(£2) with s = 3/2. This space can be de-
fined in several different but equivalent ways. It can, for example, be characterized (for any s > 0)

7 The sets T} 1 and I are allowed to have zero distance in [44], and there §2 can be simply connected. The analysis in
[44] is based on stronger background results from [29].
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as the restriction H*(§2) := {f|§2: f € H*(R")} to £2 of the set of all functions in H¥(R"),
where

AR :={f e L2®R"): (1+1-17)*F() e L2 (RY))
is defined on the Fourier transform side; see [17, Definition 1.3.1.3] or [22, p. 30]. By Plancherels
theorem (see [17, comment on p. 16]), H*(R") = W2’ (R™), where

o _ Do 2
W;(R“)::{feWZm(R”): // [DT/&) = D7) dédv<oo},

|€: _ v|n+20

R x R"

s=m+o,meZ;iando € (0,1) forall s e R\ Z,; see [17, Definition 1.3.1.1]. We denote by
V_VE(SZ) ={f182: f € Wi(IR")} the restrictions to §2 of the set of functions in W5 (R"), and de-
fine W3 (£2) in the same way as W5 (R") with R" replaced by £2. Then, by [17, Theorem 1.4.3.1],
HY(£2)=W;(2) = W%(Q) for all s > 0 and for all domains £2 that have a C2-boundary. Still
another way to characterize the same space H*(§2) is to interpolate between two spaces of type
H'™(£2) with integer m as is done in [22, Theorem 9.1, p. 401.% A Hilbert space norm for H*(£2)
can be introduced in a number of equivalent ways’ so that the embedding H*(£2) C L%(£2)
becomes continuous.

The boundary spaces L2(8_Q), L2(Fo) and LZ(FI) are defined using the standard (n — 1)-
dimensional Hausdorff measure for (n — 1)-dimensional hypersurfaces in R". We shall write
L%(32) = L*(I'y) ® L*(I) by extending functions in L2(Ip) or L?(I') by zero on the other
component of I'. The boundary Sobolev spaces H*(352), H*(Iy), and HS(I) are defined for
s > 0 by covering the manifold 02 with charts (O}, ¥;) of R" such that ¢;(O; N 9£2) C
R*~ ! x {0} for j =1,...,m. Let aj € D(0£2) be a partition of unity satisfying Z?:l ajé)=1
and suppa; C O; for j =1,...,m. Given f € L?(382) and y’ € R"~!, we define w;f’f(y’) =

(ajf)(lpj_l(y/, 0)) if (y',0) € ¥;(O;) and w}k’f(y’) := 0 otherwise. Then
H'(082):={feL*®R): ¥}, e H'(R" ") forall j=1,...,m}

with the H_ilbert_space norm ||f||%1,s(39) = 27:1 ||1//j,f||i1x(Rn_l). Recalling our standing as-
sumption Iy N I'T = ¢, we may choose the charts so that either O; N 32 C [por O; NI C I
for all j, and thus H‘/Z(asz) = HI/Z(FO) ® H]/Z(Fl). For further details, see [22, pp. 34-35]
for domains having a C*°-boundary. Additional complications arise in the case of C2-boundary,
see [17, Definition 1.3.3.2] and the discussion following it.

If the domain £2 is the annulus in (5.1), then a more intuitive description can be given for
H'/2(I') (and similarly for H'/?(I7)) using the fact that the associated Laplace—Beltrami op-
erator is now given by (A, f)(cose,sing) = =372 j*ajel® for all f e C®(I}) and
¢ € (—m, ] where Y52 a; €l := f(cos¢, sing). Indeed, then f € H'/2(I") if and only if
{1j1"%a;} € £*(Z) by [22, Remark 7.6, p. 37].

8 Note that £ has a C*-boundary in [22] but this assumption can be often relaxed.
9 For example, by interpolation theory, or by restriction of the natural norm of the space WZS (R™) above. The particular
choice of the norm is irrelevant in this paper.
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The Dirichlet trace operator y is first defined for functions f € C*®(£2) by setting y f :=
£18£2. This operator has a unique extension to a bounded operator from H'(£2) to L?(9£2) that
actually satisfies y € L(H'(£2); H'/?(32)) by [17, Theorem 1.5.1.3]. Let 7 be the orthogo-
nal projection of L?(3£2) onto its subspace L2(I). Since y € L(H'(2); L*(3£2)), we have
(I — )y € LIHY(2); L>(382)) and the space HI]“O (£2) :=N( — m)y) is a closed subspace
of H'(£2). With a slight misuse of notation, we write henceforth 7 f = f|I', (I — ) f = f| I,
and

H} (2)={feH'(2): fI[h=0}. (5.4)

Similarly, the operator yy := 7ry|H11-0 (£2) is in L(H}-0 (£2); L2(I)), and we abbreviate it by
writing yo f = f|I1.

The Neumann trace operator yaa—u is first defined on C®(£2) (with values in L2(8£2)) by
setting (y%f)(é) =v(§) - Vf(&) for all £ € 952 where v(§) denotes the outward unit normal
vector of 082 at €.

For £2 having a C2-boundary, the operator y -> 8 has an extension from C*(£2) to a bounded
operator (also denoted by y +&) mapping Dom(A; L2(2)) := {f € L*(2): Af € L*(£2)} into
H~3/2(3$2); see [17, discussion on p 54]. Here Dom(A; L2(£2)) is equipped with the norm
||f||§)0m(A;L2(m) ||f||L2(9) + ||Af||L2(m, and the space H ~3/2(3£2) is the dual of H3/%(3$2).

After these preparations, let us return to Eqs. (5.2). We obtain first order equations of the form
(1.1) by noting that z;, = Az is equivalent to the first order equation % [ 5]=[94][ 5] Let

a
2y = {feH}O(Q); AF € L*(£2) and a—f‘n eLz(Fl)} (5.5)
v
with the norm ||f||22 ”f”Hl(.Q) + IIAfIIL2 @) + | (,f |1 ||L2(F) Here the Neumann trace g—’;

is understood distributlonally in the sense of [17 p- 54] as explained above ;
The operator y; :=mwy = 30 IZO isin L(Zyp; Lz(Fl)) and we write y; f =
X and operator L are defined by

= av |F1 The spaces Z,

0 1 .
L'_[A 0].Z—>X with
Z:=Zyx H(2) and X:=H]J, (2)x L*(£2)

where H 11-0 (£2) and Zy are given by (5.4) and (5.5), respectively. For the space X, we use the

energy norm
20
wo

By the Poincaré inequality, [|zoll;2(o) < M[[Vzol 12(g) for 20 € H}. , (£2). Therefore (5.6) defines
anorm on X, equivalent to the norm

H)

HY(2)xL2(2)

2

L= IV2001 720, + lwol 72 - (5.6)

2 2 2
= ”ZOHLZ(_Q) + ”vZO”LZ(Q) + ||w0||L2(.Q)’
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see, e.g., [19, p. 168]. Thus Z C X with a continuous embedding and L € L(Z; X) with respect
to the Z-norm

<
H[ 0 }H = llzo0l%, + wol}2 g, + IVwol;2q)-

Defining U/ = ) := L?(I}), the above properties of the trace mappings imply that G € L(Z;U)
and K € L(Z;)) when

20 1 aZO’ 1 (820’ >
G =— I't + wol I d K =— I — I
[wo} f( Lol 1) o [wo} 2 Lol

We have now constructed the triple = = (G, L, K). To show that Z is a boundary node on
Hilbert spaces (U, X, ), some facts from the elliptic regularity theory will be required. Follow-
ing [41, p. 444], we denote the Neumann mapping N by

Azp=0 in £2,
w=Ng & z20/lo=0 in Iy, (5.7
BZO DI =g inl7,

where zo € H 11"0 (£2) is the unique variational solution. By the elliptic regularity theory, N €
L(L*(IN); H32(2)) N L(H'2(IM); H2(£2)). Moreover, if zg € H}O(Q) is the unique varia-
tional solution of

azo’

Azo= f € LX), 20/l =0, =

then zg € H 2(.{2), see [19, Section 4]. Hence, the unique variational solution of
2 320
An=felX®@).  llb=0. =g

belongs to H3/2(£2) (or to H2(£2)) ifge L2(I) (or g€ HYZ(m, respectively).
It is an interesting fact that both the spaces Zy and N'(G) have additional regularity:

Proposition 5.1. Under the standing assumptions on §2, we have
a
N(G) = {[j}%} e (H}, (2) N HX($2)) x HE (82): %‘n — wo| T } (5.8)

Proof. That Zy C H>/?(2) follows from elliptic regularity.
To verify (5.8), we argue as follows: If [ 32 | € V'(G), then wy € H'(£2) and hence wo|I' €

H'2(I"}). But then zg is the variational solution of

N =woll € HY?(I),

a9z
Azo= f € L*(R2), 20l =0, 0‘

and thus zo € H?(£2) by the elliptic regularity theory. O
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Proposition 5.2. Let the operators L, G, K and spaces Z, X be defined as above. Then E =
(G, L, K) is a time—flow invertible boundary node that satisfies 0 € p(L|N(G)) N p(—LIN (K)).

Proof. It has been already shown in the above discussion that conditions (i) and (ii) of Proposi-
tion 2.5 are satisfied.

Since N € L(L2(); H¥*(£2)), we have NLZ(Fl) C Zy. Furthermore, for any g € LX)
we have leg g. Thus y1 Zg = L3(I")) and G is surjective. It follows from (5.8) that V' (G) is
dense in X = H, L (£2) x L?($2), which can be seen as follows. Let € > 0, [ ;% ] € X and choose
[w] € (Hlo(.Q) ﬂ H2(.Q)) X HIO(.Q) with ||[ 0] [u”)]”X < e. It is possible to construct w €
HILO(.Q) satisfying || 2oy < € and W[ = w|[ — %U‘l; indeed, such w could be made to
vanish in almost all of £2 except for points very close to '] by using a suitable smooth “mollifier.”

Now
[%o]:[%]_[‘}}emc) and H[}_[]H <2
wo w w wo wo || x

Thus condition (iii) of Proposition 2.5 is satisfied.

We proceed to show that LA/(G) = X. Let [ ;| | € X be arbitrary. By (5.8), [ &4 | = L[ 4% ] =
[ Ae ] for [ ] € N'(G) if and only if wo = z; and the variational solution z € H1 , (§2) of the
problem

Azo=wi, 20/1p =0,

9z0
—=|n=-uln

satisfies zg € H2(.Q). Since w; € L2(£2) and z1ll € Hl/z(l“l), this follows from the same
elliptic regularity result as Proposition 5.1.
Finally, [ 0 | € V(L) N N(G) if and only if wo = 0 together with

9
0€ HX(R), Az=0, z|lb=0 and grpwom:o
V

if and only if wg =0 and z9 = NO=0in (5.7). Condition (ii) of Proposition 2.5 is now satisfied
with @ =0, and thus & = (G, L, K) is a boundary node. A similar argument shows that & =
(K, —L, G) is a boundary node, too. O

It is now almost trivial to check that & = (G, L, K) is conservative.
Proposition 5.3. Let the operators L, G, and K together with spaces U, X, and ) be defined as
above, and use the energy norm (5.6) for X. Then the boundary node Z = (G, L, K) associated

to (5.2) is conservative. Consequently, it induces a conservative system node S.

Proof. For an arbitrary [ ] € Z, Green’s formula [17, p. 62] implies

owef[ 2] ]) —ane[2] [ 22])

2
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020 d
:2Re( / ﬂwodw> :2Re<ﬂ’1“1,wo|1“1> (5.9)
ov ov LZ(Fl)
Tourn
because wg| Iy = 0. By the definition of operators G and K we obtain
19z . |° 320 1
G[ZO},G[ZOD == —‘FI +Re<—‘1“1,wolfl + = llwol I 117,
< wo wo LQ(FI) 21 dv LZ(F]) av LZ(FI) 2 L)
(5.10)
and also
L)L)
wo wo LZ(FI)
19z |? 320 1
= —‘ DU —re( 2| mwoln) ol S
21 ov LZ(Fl) av L2(1-v1) 2

Putting (5.9)—(5.11) together yields the Green—Lagrange identity (1.3). Using then Proposi-
tion 5.2 and Theorem 1.5 completes the proof. O

We remark that the conservativity of the system node S in Proposition 5.3 opens up the possi-
bility to apply operator theory techniques, developed especially for conservative systems, to this
PDE, such as canonical realizations and unitary similarity of different conservative realizations.

The example discussed above has some additional important properties not mentioned above,
such as the strong bi-stability of its semigroup. A more complete discussion is found in
[23, Section 7.3].

References

[1] R.A. Adams, J. Fournier, Sobolev Spaces, second ed., Academic Press, New York, 2003.

[2] D.Z. Arov, Passive linear stationary dynamic systems, Sibirsk. Mat. Zh. 20 (1979) 211-228; translation in: Sib.
Math. J. 20 (1979) 149-162.

[3] D.Z. Arov, Stable dissipative linear stationary dynamical scattering systems, J. Operator Theory 1 (1979) 95-126,
translation in [5].

[4] D.Z. Arov, Passive linear systems and scattering theory, in: Dynamical Systems, Control Coding, Computer Vision,
in: Progr. Systems Control Theory, vol. 25, Birkhduser, Boston, 1999, pp. 27-44.

[5] D.Z. Arov, Stable dissipative linear stationary dynamical scattering systems, in: Interpolation Theory, Systems The-
ory, and Related Topics. The Harry Dym Anniversary Volume, in: Oper. Theory Adv. Appl., vol. 134, Birkhéuser,
Basel, 2002, pp. 99-136; English translation in: J. Operator Theory 1 (1979) 95-126.

[6] D.Z. Arov, M.A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral
Equations Operator Theory 24 (1996) 1-45.

[7] C. Bardos, L. Halpern, G. Lebeau, J. Rauch, E. Zuazua, Stabilisation de I’équation des ondes au moyen d’un feed-
back portant sur la condition aux limites de Dirichlet, Asymptot. Anal. 4 (4) (1991) 285-291.

[8] A. Bensoussan, G. Da Prato, M.C. Delfour, S.K. Mitter, Representation and Control of Infinite-Dimensional Sys-
tems, vols. 1 and 2, Birkhéuser, Basel, 1992.

[9] C.I. Byrnes, D.S. Gilliam, V.I. Shubov, G. Weiss, Regular linear systems governed by a boundary controlled heat
equation, J. Dynam. Control Systems 8 (3) (2002) 341-370.

[10] M.S. Brodskii, Triangular and Jordan Representations of Linear Operators, Transl. Math. Monogr., vol. 32, Amer.
Math. Soc., Providence, RI, 1971.



J. Malinen, O.J. Staffans / J. Differential Equations 231 (2006) 290-312 311

[11] M.S. Brodskit, Unitary operator colligations and their characteristic functions, Russian Math. Surveys 33 (4) (1978)
159-191.

[12] V.M. Brodskii, On operator colligations and their characteristic functions, Soviet Math. Dokl. 12 (1971) 696-700.

[13] H.O. Fattorini, Boundary control systems, STAM J. Control 6 (1968) 349-385.

[14] V.I. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Math. Appl. (So-
viet Series), vol. 48, Kluwer Acad. Publ., Dordrecht, 1991; translation and revised from the 1984 Russian original.

[15] V.I. Gorbachuk, M.L. Gorbachuk, A.N. Kochubel, The theory of extensions of symmetric operators, and boundary
value problems for differential equations, Ukrain. Mat. Zh. 41 (10) (1989) 1299-1313; translation in: Ukrainian
Math. J. 41 (10) (1990) 1117-1129.

[16] B.-Z. Guo, Y.-H. Luo, Controllability and stability of a second-order hyperbolic system with collocated sen-
sor/actuator, Systems Control Lett. 46 (2002) 45-65.

[17] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.

[18] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications I,
Sb. Math. N.S. [Mat. Sb.] 20 (62) (1947) 431-495.

[19] J.E. Lagnese, Decay of solutions of wave equations in a bounded region with boundary dissipation, J. Differential
Equations 50 (1983) 163-182.

[20] I. Lasiecka, R. Triggiani, Control Theory for Partial Differential Equations: I-II, Encyclopedia Math. Appl.,
vols. 74-75, Cambridge Univ. Press, Cambridge, 2000.

[21] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Die Grundlehren der mathema-
tishen Wissenschaften in Einzeldarstellungen, vol. 170, Springer, Berlin, 1971.

[22] J.L. Lions, E. Magenes, Nonhomogenous Boundary Value Problems and Applications I, Die Grundlehren der mathe-
matischen Wissenschaften in Einzeldarstellungen, vol. 181, Springer, Berlin, 1972.

[23] J. Malinen, Conservativity of time—flow invertible and boundary control systems, Technical report A479, Institute
of Mathematics, Helsinki University of Technology, Espoo, Finland, 2004.

[24] J. Malinen, Conservativity and time—flow invertiblity of boundary control systems, in: Proceedings of CDC-ECC’05,
2005.

[25] J. Malinen, O.J. Staffans, Semigroups of impedance conservative boundary control systems, in: Proceedings of the
MTNSO06, Kioto, 2006.

[26] J. Malinen, O.J. Staffans, G. Weiss, When is a linear system conservative?, Quart. Appl. Math. 64 (2006) 61-91.

[27] M. Neumark, Self-adjoint extensions of the second kind of a symmetric operator, Bull. Acad. Sci. URSS Ser. Math.
[Izvestia Akad. Nauk SSSR] 4 (1940) 53-104.

[28] A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, Springer, Berlin,
1983.

[29] A. Rodriguez-Bernal, E. Zuazua, Parabolic singular limit of a wave equation with localized boundary damping,
Discrete Contin. Dyn. Syst. 1 (3) (1995) 303-346.

[30] D.L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and
open questions, SIAM Rev. 20 (1978) 639-739.

[31] D. Salamon, Infinite dimensional linear systems with unbounded control and observation: A functional analytic
approach, Trans. Amer. Math. Soc. 300 (1987) 383—431.

[32] D. Salamon, Realization theory in Hilbert space, Math. Systems Theory 21 (1989) 147-164.

[33] Y.L. Smuljan, Invariant subspaces of semigroups and the Lax—Phillips scheme, Deposited in VINITI, No. 8009-B86,
Odessa, 1986, 49 pages.

[34] O.J. Staffans, J-energy preserving well-posed linear systems, Int. J. Appl. Math. Comput. Sci. 11 (2001) 1361-
1378.

[35] O.J. Staffans, Passive and conservative continuous-time impedance and scattering systems. Part I: Well-posed sys-
tems, Math. Control Signals Systems 15 (2002) 291-315.

[36] O.J. Staffans, Passive and conservative infinite-dimensional impedance and scattering systems (from a personal
point of view), in: Mathematical Systems Theory in Biology, Communication, Computation, and Finance, in: IMA
Vol. Math. Appl., vol. 134, Springer, New York, 2002, pp. 375-414.

[37] O.J. Staffans, Stabilization by collocated feedback, in: Directions in Mathematical Systems Theory and Optimiza-
tion, in: Lecture Notes in Control and Inform. Sci., vol. 286, Springer, New York, 2002, pp. 261-278.

[38] O.J. Staffans, Well-Posed Linear Systems, Cambridge Univ. Press, Cambridge/New York, 2005.

[39] O.J. Staffans, G. Weiss, Transfer functions of regular linear systems. Part II: The system operator and the Lax—
Phillips semigroup, Trans. Amer. Math. Soc. 354 (2002) 3229-3262.

[40] O.J. Staffans, G. Weiss, Transfer functions of regular linear systems. Part III: Inversions and duality, Integral Equa-
tions Operator Theory 49 (2004) 517-558.



312 J. Malinen, O.J. Staffans / J. Differential Equations 231 (2006) 290-312

[41] R. Triggiani, Wave equation on a bounded domain with boundary dissipation: An operator approach, J. Math. Anal.
Appl. 137 (1989) 438-461.

[42] M. Tucsnak, G. Weiss, How to get a conservative well-posed linear system out of thin air. Part II. Controllability
and stability, STAM J. Control Optim. 42 (2003) 907-935.

[43] G. Weiss, O.J. Staffans, M. Tucsnak, Well-posed linear systems—A survey with emphasis on conservative systems,
Int. J. Appl. Math. Comput. Sci. 11 (2001) 7-34.

[44] G. Weiss, M. Tucsnak, How to get a conservative well-posed linear system out of thin air. I. Well-posedness and
energy balance, ESAIM Control Optim. Calc. Var. 9 (2003) 247-274.



