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Abstract

We describe an arrangement for simultaneous recording of speech and vocal tract geome-
try in patients undergoing surgery involving this area. Experimental design is considered
from an articulatory phonetic point of view. The speech signals are recorded with an
acoustic-electrical arrangement. The vocal tract is simultaneously imaged with MRI. A
MATLAB-based system controls the timing of speech recording and MR image acqui-
sition. The speech signals are cleaned from acoustic MRI noise by an adaptive signal
processing algorithm. Finally, a vowel data set from pilot experiments is qualitatively
compared both with validation data from the anechoic chamber and with Helmholtz
resonances of the vocal tract volume, obtained using FEM.

Keywords: Speech production, speech recording, MRI, noise reduction, formant
analysis, vocal tract resonance.

1. Introduction

A. M. Liberman suggested that speech is a special code [1]. Literate people are taught
to think that speaking is like writing, and that a speaker produces a distinctive acoustic
pattern of energy for every distinct vowel and consonant that we perceive, much as a
typewriter produces letters. If human speech were segmented at the acoustic level, the
task of speech perception would be simply a matter of identifying sounds one-by-one
from the speech signal, chaining them into words, and associating these with meanings
stored in memory.

Speech, however, is not perceived, produced, or neurally programmed on a segmental
basis. Such spelling out loud is far too slow and tedious for human communication.
Instead, utterances are produced and perceived as a whole. We perceive speech by virtue
of our tacit knowledge of how speech is produced. Thus, the elements of speech are
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articulatory gestures, not the sounds these phonetic gestures produce. The gestures are
the ultimate constituents of language which must be exchanged between a speaker and
a listener if communication through language is to occur.

The human articulatory system is the only one anatomically and neurally efficient
enough to produce acrobatic manoeuvres of speech organs fast, without errors, and with
minimal energy. The main vocal tract elements used in producing phonetic gestures are
the lips, tongue tip and tongue dorsum, soft palate, and the larynx. By combining their
movements in various ways meaningful linguistic units can be built up and conveyed
via sound. Observing as well as modelling the related biophysical features and dynamic
phenomena is far from a trivial matter even if state-of-the-art instruments and methods
(such as computational modelling based on modern medical imaging technologies) are
available. Challenging as they are, these approaches appear quite promising for adding
to our current understanding of what happens during normal or pathological speech.

Modelling based on multi-modal data sets
Perhaps the most important reason for modelling and simulations is the inherent

difficulty in observing speech biophysics in test subjects directly. Further compelling
motivation is provided by many situations where experiments cannot be arranged at
will: consider, e.g., the acoustic effect of tonsillectomy [2] or the suitability of the vocal
tract structures in Homo neanderthalensis for speech [3].

Mathematical models of human speech production have been used for speech analy-
sis, processing, and synthesis as well as studying speech production acoustics for a long
time; see, e.g., [4, 5, 6, 7]. Many of the earlier models were based on radical simplifi-
cations of the underlying physics and anatomic geometry such as the Kelly–Lochbaum
model [8] and many approaches of transmission line type; see, e.g., [9, 10, 11, 12, 13, 14].
Anatomic data for early models used to be rather scarce due to difficulties in data ac-
quisition as has been explained in [11, pp. 799–800]. The vocal tract geometry was
often determined approximately by extrapolation, based on the mid-sagittal section as
proposed in [15, 16]. Due to modern fast and cheap computing of large scale systems,
heavier computational acoustics models [17, 18, 19, 20, 21, 22] and Computational Fluid
Dynamics (CFD) models [23, 24] are replacing earlier approaches where higher precision
is required. The progress in modelling now depends crucially on getting a large number
of three-dimensional (3D) geometries of the whole speech apparatus in high resolution.

This article has background and motivation in anatomic data acquisition for acoustic
modelling of a stationary vocal tract by the 3D wave equation (or its resonance ver-
sion, the Helmholtz equation) and Webster’s horn model. Without being numerically as
prohibitively heavy as most CFD models are, these acoustics models are well-suited for
studying speech for medical purposes as well as for basic research. It is further expected
that after incorporating dynamic soft tissue response and muscle action into such models,
their usability would extend into studying normal and pathological speech production
from an articulatory point of view [2, 25, 26, 27]. However, even the high resolution
acoustic modelling based on static vocal tract geometries in 3D provides novel tools for
planning and evaluating oral and maxillofacial surgery and rehabilitation [28, 29].

Before a computational model for speech production (such as those that have been
described in our earlier work [17, 30, 32, 33, 31]) can be used for any practical or the-
oretical purpose, there are always some model parameters that need to be estimated
based on measurements from human subjects. Such parameters, of course, include the
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geometry of the vocal and the nasal tracts from the lips and nostrils to the beginning of
the trachea. To have a sufficient degree of confidence in the simulation results, any such
model must have been rigorously validated by extensively and methodically comparing
simulated speech sounds (or their characteristics) to measurements. One way of doing
the validation is by comparing the measured and the simulated formants that are related
to the acoustic Helmholtz resonances of the vocal tract; see [33, 34, 35]. In any case,
the validation of the computational model depends on recording a coupled, multi-modal
data set: speech sound and the precise anatomy which produces it.

Magnetic Resonance Imaging (MRI) has been a popular approach for acquiring geo-
metric data of the vocal tract for a long time, and the current literature is far too extensive
to present a full account of. Out of the pioneering work, we should mention at least the
seminal papers [10, 11, 12] as well as the more recent works [26, 36, 37, 38, 40] which
contain many further references. It is well known that recording speech samples during
MRI is challenging due to matters such as the high acoustic noise level [41, 42, 38]. Much
attention has been paid to the noise even for reasons that are not related to recording
speech [43, 44].

Purpose and outline of the article
We have developed an experimental arrangement to collect a large data set using

simultaneous MRI and speech recordings as reported in [45, 46]. The experimental
arrangement includes custom hardware, software, and experimental protocols.

In contrast to many recent works that concentrate on dynamic MRI during natural
speech (see, e.g., [42, 47] in 2D and [48] in 3D using compressed sensing techniques),
our focus is in static 3D MRI during prolonged vowel utterance. This is the kind of
data that is most suitable for computational acoustics models utilising Finite Element
Method (FEM) for solving the required partial differential equations such as Eqs. (3)
below. Compared to earlier similar experiments such as [11, 12, 36, 49, 50], our objective
is to create a data set that is sufficiently large for statistically sound modelling and
model validation, ultimately comprising several thousands of simultaneous samples of
speech and MR images of the vocal tract. The scale, quality, and consistency of such
“big data” depends on the optimisation of experimental protocols, and standardisation of
measurement arrangements and acoustic details of sound samples during MRI as pointed
out in [47]. The requirements of acoustic modelling have been central in designing the
post-processing of image and sound data as well. For example, the noise cancellation
procedure described in Section 4 is optimised and validated for precise formant extraction
from static vowels as opposed to, e.g., the approach in [41] where carefully syncronised
samples of spontaneous speech and dynamic MRI are sought.

During a pilot stage in June 2010, a set of measurements were carried out on a
healthy 30-year-old male subject (in fact, one of the authors of this article), confirming
the feasibility of the arrangement and the high quality of the data obtained [51, 52]. These
pilot measurements also revealed a number of issues to be addressed before tackling the
main objective: obtaining a clinically relevant data set from a large number of patients.
The purpose of this article is to describe the final experimental arrangement including
the improvements which take into account these issues. A second pilot experiment was
carried out in June 2012 on a healthy 26-year-old male subject (one of the authors of
this article as well) in order to validate the final experimental setup. The geometric data
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in Fig. 3 as well as the recorded vowel data in Section 5 are from these experiments. All
patient data is excluded from this article.

This article consists of three parts that document the main aspects of MRI experi-
ments during speech. In Section 2 the experimental design is discussed from the phonetic
and physiologic points of view. Technical questions related to MRI and the simultaneous
speech recording are discussed in Section 3. The acoustic instrumentation is treated only
briefly, and we refer to earlier work [45, 46, 51, 52] for details. Instead, we concentrate
on the software and digital parts of the measurement system, optimisation of the MRI
sequences, and the automated control and timing of the experiments. Sections 4 and 5
are devoted to digital signal processing of the recorded signals: removing acoustic MRI
noise and artefacts, extracting formants, and validating the results.

The patient group
Since large data sets are notoriously expensive to create, the acquired data should

have multiple uses in addition to modelling of speech. For this reason, the experimen-
tal procedures have been designed to assess acoustic and anatomic changes in patients
undergoing oral or maxillofacial surgery which causes changes in the vocal tract. Pa-
tients of orthognathic surgery are a particularly attractive study group for mathematical
modelling of the speech production. Not only are these patients mostly young adults
without any significant underlying diseases, but there is a strong medical motivation for
a comparative study of their pre- and post-operative speech as well.

Orthognathic surgery deals with the correction of abnormalities of the facial tissues.
The underlying cause for abnormality may be present at birth, or it may be acquired
during the life as the result of distorted growth. Orthodontic treatment alone is not
adequate in many cases due to severity of the deformities. In a typical operation, the
position of either one jaw (mandible or maxilla) or both jaws is surgically changed in
relation to the skull base. The movement of the jaws in orthognathic surgical treatment
can cause noticeable changes in the relative position of the jaw in anteroposterior, vertical,
and lateral direction.

Change in anterior or posterior direction varies usually in the range of 5 to 12 mm.
This movement has a profound effect on the shape and volume of vocal tract, resulting in
detectable changes in acoustics [28] that can be measured from speech samples recorded
in optimal conditions. Although the surgery involves mandibular and maxillary bone,
changes occur also in the position and shape of the soft tissues defining the vocal tract.
This change is easily quantifiable using 3D MRI, and the typical change in the anatomy is
5–20 times as large as the accuracy of the resulting computational geometry for numerical
acoustics; see [53]. Any linear partial differential equation describing the vocal tract
acoustics (of which the Helmholtz model in Eqs. (3) is one example) can be solved using
FEM practically without introducing any numerical error. Thus, the acoustic change of
a typical orthognathic operation can be replicated or even predicted computationally by
using modified vocal tract geometries. However, the change may not be detectable in the
speech signals that have been recorded in pre- and post-operative MRI examinations1.

1The full set of simultaneous MRI and speech recordings is to be used for improving and validating
a computational acoustics model of speech, and not for detecting an acoustic change in a single patient.
To observe the effect of surgery in speech directly, one should carry out pre- and post-operative speech
experiments in an anechoic chamber under optimal conditions.
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At the time of writing of this article, ten orthognathic surgery patients (out of which
six are female) have undergone their pre-operative MRI examinations following the meth-
ods and protocols described here. We expect to enroll the total of 20 patients (10 adults
of both sexes) in this research. The study design has been approved by the Ethics
Committee of the Hospital District of Southwest Finland.

2. Experimental arrangement

Generally speaking, the experimental setting is similar to the setting in which the pilot
arrangement was tested [51, 52] but with numerous improvements. They are related to
instructing and cueing the patient, the role of the experimenter, and the automated
control and timing of MR imaging.

The creation of the original pilot data reported in [51] required 3 – 4 people working
simultaneously in the MRI control room. The improved arrangement described in this
article requires only two people: one for MR imaging and the other for running the
integrated experimental control system and sound recording. Moreover, it is now possible
to produce as many as 90 takes during a session of 1 h which is about four times as fast a
data collection rate as can be attained using a non-automated system. The streamlining
of all procedures is vital because laboratory downtime and cost must be minimised when
gathering a large data set. Overly long MRI sessions also compromise patient comfort
and performance.

2.1. Phonetic material
The speech materials have been chosen to provide a phonetically rich data set of

Finnish speech sounds. The chosen MRI sequences require up to 11.6 s of continuous
articulation in a stationary position. We use the Finnish speech sounds for which this
is possible: vowels [A, e, i, o, u, y, æ, œ], nasals [m, n], and the approximant [l]. A
long phonation is possible also for, e.g., [j, s, N] but these have been excluded because of
unpleasantness in supine production ([N]) and turbulences in the vocal tract ([j, s]).

Patients are instructed to produce each of the sounds at a sustained fundamental
frequency (f0). We use two different f0 levels (104 and 130 Hz for men, 168 and 210 Hz
for women) for the sounds [A] and [i] to obtain the vocal tract geometry with different
larynx positions. The rest of the sounds are produced at the lower f0 only. The f0 levels
have been matched with the acoustic MRI noise frequency profile to avoid interference.

In a sustained phonation, the long exhalation causes contraction in the thorax and
hence a change in the shape of vocal organs. The stationary 3D imaging sequence which
is used to obtain the vocal tract geometry provides no information on this adaptation
process, so additional dynamic 2D imaging on the mid-sagittal section for the sounds [A,
i, u, n, l] is used to monitor articulatory stability.

Speech context data is also acquired by asking the patient to repeat 12 phonetically
rich sentences containing all Finnish monophones [54]. In addition, the cardinal vowels
[A] and [i] are produced in delexical nasal stop context (i.e., syllable repetition). These
continuous speech samples are imaged using the same dynamic 2D sequence which is
used for checking articulatory stability.

An instruction and cue signal is used to guide the patient through each measurement.
The signal consists of three parts as shown in Fig. 1: (i) recorded instructions specifying
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Figure 1: Patient instruction and cue signal structure.

the task with a sample of the desired f0, (ii) a 2 s pause and three count-down beeps one
second apart, and (iii) continuous f0 for 11.6 s. In case of speech context experiments,
the recorded instructions specify the sentence to be repeated and f0 is left empty in both
parts (i) and (iii). Audibility of the f0 cues over MR imaging noise is achieved by using
a sawtooth waveform.

2.2. Setting for experiments
The patient lies supine inside the MRI machine with a sound collector placed on

the Head Coil in front of the patient’s mouth. The patient can communicate with the
control room through the sound collector and the headphones of the MRI machine. The
patient can also hear his or her own (denoised) voice through the standard Siemens
MRI headphones (having 26 dB nominal damping of external noise) with a delay of
approximately 90 ms.

The patients familiarise themselves with the tasks and the phonetic materials before
the beginning of a measurement session. They also practice the tasks under the super-
vision and are given feedback on their performance. At the start of a measurement,
the experimenter selects the phonetic task following a pre-defined random order. The
patient then hears the recorded instructions. The instructions, the following pause, and
count-down beeps give the patient time to prepare for the speech production task. The
phonation is started immediately after the count-down beeps. The patient hears the
target f0 in the headphones added to his or her own (denoised) voice throughout the
phonation.

MR imaging for static 3D and dynamic stability check sequences is started 2 s after
the start of phonation and finishes approximately 500 ms before the end of phonation.
Thus “pure samples” of stabilised utterance are available before and after the imaging
sequence. Two 200 ms breaks are inserted into the MRI sequences to give two more pure
samples. The duration of these breaks has been determined based on the half-time of
the imaging noise in the MRI room, which was measured to be approximately 20 ms.
Sentence and syllable imaging sequences start simultaneously with phonation and end
after 3.2 s.

The experimenter listens to the speech sound throughout the experiment, allowing
unsuccessful utterances to be detected immediately. At the end of the experiment, the
experimenter writes comments and observations into a meta-data file. The recorded
sound pressure levels are also inspected. Unsuccessful measurements are repeated, at the
experimenter’s discretion, immediately.
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(a) (b)

Figure 2: (a) The sound collector with one of the two audio wave guides attached. (b) The microphone
array inside the Faraday cage.

3. Simultaneous MRI and speech recording

The MRI room presents a challenging environment for sound recording due to acoustic
noise and interference to electronics from the MRI machine. For safety and image quality
reasons, use of metal is restricted inside the MRI room and prohibited near the MRI
machine. Our approach is to use non-microphonic, passive acoustic instruments (without
moving or vibrating parts) for collecting the sound samples and transmitting them to
a safe distance from the MRI machine. Alternative solutions would be (i) using an
optical microphone inside the MRI machine [38, 41, 42, 55], (ii) recording by conventional
directional microphones sufficiently far away from the MRI machine that has an open
construction [56, 57], (iii) taking an electret microphone inside a low-field MRI machine
[11], and even (iv) using the internal microphone of the MRI machine itself [2].

3.1. Speech recording
We use instrumentation specially developed for speech recording during MRI [45, 46]:

A two-channel sound collector (Fig. 2a) samples the speech and primary noise signals
in a dipole configuration. The separation of these two channels is excellent because the
acoustic space inside the MRI head and neck coil is well separated from the exterior
acoustic space by the construction and placement of the sound collector; for experimen-
tation with optical microphones in dipole configuration, see [41, p. 1791]. The sound
signals are coupled to a microphone array inside a sound-proof Faraday cage (Fig. 2b)
by acoustic waveguides of length 3.00 m (the ends of which can be seen in Fig. 2a). The
microphone array contains four electret microphones of type Panasonic WM-62 (sensi-
tivity −45± 4 dB re 1 V/Pa at 1 kHz) provided with 5.0 V bias, of which two are used
for the signals coming from the sound collector. Two additional “ambient noise” samples
are collected: one from the microphone array inside the Faraday cage (by one of the two
reserve microphones in the array) and another from inside the MRI room using a custom
directional microphone (containing another Panasonic WM-62 unit) near the patient’s
feet, pointing towards the patient’s head and the MRI coil.

The four signals are coupled from the microphones to a custom RF-proof amplifier
that is situated in the measurement server rack (shown in Fig. 4a) outside the MRI
room. The amplifier contains additional circuitry (i.e., a long-tailed pair with a constant
emitter current source) for optimal, real time analogue subtraction of the primary noise
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(a) (b)

Figure 3: (a) The surface model of the tissue-air interface of a male vocal tract while pronouncing [œ].
(b) The centreline and intersection areas extracted from the same geometry.

channel from the speech channel. This is intended to produce the denoised signal played
back to the patient, and it is used for audio signal quality observation in the MRI control
room as well. The final, high-quality denoised signal is not produced this way but from
digitised component signals by the algorithm discussed in Section 4. We remark that
the hardware appears to be able to transmit good signal at least up to 10 kHz but we
use only the phonetically relevant frequency range below 4.5 kHz where the measured
frequency response is given in Fig. 4b.

Audio signals are converted between analogue and digital forms using a M-Audio
Delta 1010 PCI Audio Interface. A measurement server is used which has an Intel Core
i7-860 processor clocked at 2.80GHz, and is equipped with 4Gb RAM and a SSD drive
for fast booting. For immediate internal data backup, three additional 1.5TB discs are
set up in RAID1 configuration by a HighPoint RocketRaid 2302 controller. The whole
setup is powered by an APC Smart-UPS SC 450VA, and it is installed to a portable
10U rack as shown in Fig. 4a. All user access to the server is done with laptops (in fact,
MacBooks) running X11 servers, either via 1GB LAN or a wireless access point.

3.2. Magnetic resonance imaging
Measurements are performed on a Siemens Magnetom Avanto 1.5T scanner (Siemens

Medical Solutions, Erlangen, Germany). Maximum gradient field strength of the system
is 33 mT/m (x,y,z directions) and the maximum slew rate is 125 T/m/s. A 12-element
Head Matrix Coil and a 4-element Neck Matrix Coil are used to cover the anatomy of
interest. The coil configuration allows the use of Generalized Auto-calibrating Partially
Parallel Acquisition (GRAPPA) technique to accelerate acquisition. This technique is
applied in all the scans using acceleration factor 2.

3D VIBE (Volumetric Interpolated Breath-hold Examination) MRI sequence [58] is
used as it allows for the rapid static 3D acquisition required for the experiments. Sequence
parameters have been optimized in order to minimize the acquisition time. The following
parameters allow imaging with 1.8 mm isotropic voxels in 7.8 s: Time of repetition
(TR) is 3.63 ms, echo time (TE) 1.19 ms, flip angle (FA) 6◦, receiver bandwidth (BW)
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3D static 2D stability 2D sentence/syllable
Pulse separation 240 ms 140 ms 150 ms

Number of sequence parts 35 69 20
Pause after sequence part 12 and 24 23 and 43 no pause

Table 1: External triggering parameters used in MRI scans. In 3D scans, the sequence parts are slice
encoding segments. In 2D scans, the parts refer to the number of measurements.

600 Hz/pixel, FOV 230 mm, matrix 128x128, number of slices 44 and the slab thickness
of 79.2 mm. Running the sequence with these settings creates broadband acoustic sound
with pitch at 275.5 Hz.

Dynamic MRI scans are performed using segmented ultrafast spoiled gradient echo
sequence (TurboFLASH) where TR and TE have been minimized. Single sagittal plane
is imaged using parameters TR 178 ms, TE 1.4 ms, FA 6◦, BW 651 Hz/pixel, FOV
230 mm, matrix 120x160, and slice thickness 10 mm. For this sequence, the acoustic
MRI noise has a more variable sound profile with less clear pitch compared to the 3D
VIBE sequence discussed above.

In many earlier experiments, the MRI sequence and other parts of the experiment
have been syncronised by special arrangements for different reasons: see, e.g., [41] where
speech recording was precisely syncronised with dynamic MRI using the 10 MHz clock
signal from the MRI machine. We use external triggering of the MRI machine in all
three different types of experiments not only for syncronisation of the experiment but
also for introducing pauses during which the acoustic noise is greatly reduced. Siemens
Magnetom Avanto 1.5T units have inputs that accept external syncronisation signals for
timing the MRI sequences. The triggering signal is always a train of 12 ms TTL level 1
pulses separated by TTL level 0 of variable duration. The pulse train is generated with
a custom-made device which converts 1 kHz analogue sine signal from the sound system
to the logic pulses in the same time base as the cue signals. External triggering with the
additional pauses increases the 3D imaging time to 9.1 s. The details of triggering are
given in Table 1.

Post-processing of the MR images and the resolution of the obtained vocal tract
geometries have been discussed in [53, 59].

Visibility of teeth
Teeth are not visible in MRI but they are an important acoustic element of the vocal

tract. Hence, it is necessary to add teeth geometry into the soft tissue geometry obtained
from the MR images during post-processing. Optical scans of teeth or digitalised dental
casts can be readily obtained from the patients but automatic alignment of the two
geometries is a non-trivial problem. Markers containing vegetable oil attached to the
surface of the teeth appear to be a practical approach that produces sufficient MRI
visibility; see also [38] where Gd-based markers were used. Further work is still required
to get a solution for alignment that does not require extensive manual work.

3.3. Control of measurements
Measurements are controlled with a custom code in MATLAB [39] 7.11.0.584 (R2010b)

running on the portable server with operating system Ubuntu 10.04 LTS on Linux
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Figure 4: (a) The measurement server with the RF-proof four-channel amplifier, M-Audio Delta 1010
Audio Interface, and networking facilities. The laptop is used for remote access. (b) The measured
frequency response of the whole audio signal path from the sound collector to the amplifier input. The
non-flat frequency response is compensated by DSP in post-processing stage.

2.6.32.38 kernel (Fig. 4a). Access from MATLAB to the Audio Interface is arranged
through Playrec (a MATLAB utility, [60]), QjackCtl JACK Audio Connection Kit (v. 0.3.4),
and JackEQ 0.4.1.

The custom code computes the input signal to the MRI triggering device, reads the
patient instruction and cue audio file, and assembles the two signals into a playback
matrix. Recording is started simultaneously with playback and carried on for an equal
number of samples. In addition to the speech and the three noise signals, recording also
includes the analogically denoised signal and the patient instruction signal.

Both digital and acoustic parts of the audio configuration cause delays. Speech and
noise signals are transmitted acoustically with identical delays from near the patient to
the microphone assembly, and the instruction and cue signal is also transmitted acous-
tically to the patient headphones that are part of the Siemens Avanto 1.5T unit. The
noise produced by MR imaging is first recorded approximately 60 ms (MRI machine
delays excluded) after the onset of a trigger pulse in MATLAB. This is accounted for by
the method of locating the “pure samples”. The corresponding delay in the cue-patient-
record -loop is approximately 90 ms (patient reaction time excluded). The difference
in the delays causes the MRI machine to start and finish the tasks 30 ms ahead of the
patient. However, as the patient is asked to begin phonation 2 s before and carry on
500 ms after imaging, the impact is negligible in practice. The patients also hear their
own voices with the delay of 90 ms which may cause an echo effect. If this disturbs the
patient, particularly during sentence repetition tasks, speech feedback may be turned off
or its volume reduced independent of the cue signal.

The control code automatically saves the recorded sounds as a six-channel Wave-
form Audio File. A separate file containing meta-data is also saved automatically. The
meta-data file contains all experimental parameters, including task specification, and the
locations of the pure samples in the sound file.

The control system requires user input for three tasks. First, the experimenter selects
the next phonetic task (target sound or sentence and f0) and MR imaging sequence. Sec-
ond, comments and observations may, if necessary, be written about each measurement
separately. They are saved automatically in the meta-data file in JSON format. And
third, patient headphone volume and recorded sound pressure levels may be adjusted
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Figure 5: (a) Block diagram of the noise reduction algorithm. (b) The spectral noise peaks detected
during the phonation of [A] . Note the regular harmonic structure defining the stop bands.

manually based on feedback from the patient and rudimentary post-experimental sound
data checks. The sound data checks consist of histograms of recorded signal levels, and
they are displayed to the experimenter automatically at the end of each measurement.
This allows detection and correction of settings for which the recorded signal levels, which
vary for different speech sounds, are outside the optimal range.

A single measurement takes on average 30-40 s, including task selection by the exper-
imenter and writing additional information and observations in the meta-data file. At
the time of writing of this article, ten patients of orthognathic surgery have taken part in
the experiments, and the times spent inside the MRI machine were between 50–95 min.
When running the experiment at a comfortable pace for the patient, between 93 and 107
MRI scans have been produced in a single session.

4. Post-processing of speech signals

As explained in Section 3.1, two sound channels are acoustically transmitted from
near the test subject inside the MRI machine. One of the channels provides the speech
sample s(t) (which is contaminated by acoustic MRI noise), and the other is reserved for
the acoustic MRI noise sample n(t) (which, in turn, is contaminated by speech). The
analogically produced weighted difference of these signals is fed back to the subject’s
headphones during the experiment in almost real time. Both the signals s(t) and n(t) are
also recorded separately, so that more refined numerical post-processing can be performed
later.

Because of the multi-path propagation of the noise in particular around the MRI
coil surfaces, the recorded noise sample is a weighted sum of more simple signals with
distributed delays. As a further complication, the chassis of the MRI machine acts
as a spatially distributed acoustic source, and its dimensions are large compared to
wavelengths in air at frequencies of interest. Hence, some residual higher frequency noise
will remain after an optimised subtraction of the noise n(t) from the contaminated speech
signal s(t). To reduce this residual noise, adaptive spectral filtering is used. The approach
is based on the observation that the typical noise spectrum of a MRI machine consists of
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narrow and high peaks with significant harmonic overtones; see [43] for a good treatment
of such noise. Adaptivity is desirable because the peak positions depend on the MRI
sequence used, and they are not invariant of time even within a single MRI sequence.

The noise reduction algorithm is outlined in Fig. 5a, and it consists of the following
Steps 1–7 that have been realised as MATLAB code:

1. LSQ: Noise is removed from speech using linear, least squares optimal subtraction
as detailed below. This reproduces roughly the same quality of speech signal that
was produced analogically during the experiment for patient’s headphones in real
time.

2. Frequency response compensation: The measured non-flat frequency response
of the measurement system, shown in Fig. 4b, is compensated.

3. Noise peak detection: The noise power spectrum is computed by FFT, and the
most prominent spectral peaks of noise are detected.

4. Harmonic structure completion: The set of noise peaks is completed by its
expected harmonic structure to ensure that most of the noise peaks have been
found; see Fig. 5b.

5. Chebyshev peak filtering: Each of the noise peaks defines a centre frequency of
a corresponding stop band. The width of the stop band is a function of the centre
frequency given by Eq. (2). The corresponding frequencies are attenuated from the
denoised speech signal (that has been produced in Step 2 above) by Chebyshev
filters of order 20 at these stop bands.

6. Low pass filtering: The resulting signal is low pass filtered by a Chebyshev filter
of order 20 and cut-off frequency 10 kHz.

7. Spectral subtraction: A sample of the acoustic background of the MRI room
(without patient speech and the noise during the MRI sequence) is extracted from
the beginning of the speech recording. Finally, the averaged spectrum of this is
subtracted from the speech signal in frequency plane using FFT and inverse FFT;
see [61].

The optimal linear subtraction in Step 1 is carried out by producing denoised signals
s̃(t), ñ(t) from the original signals s(t) and n(t) according to

ñ = n− 〈n, s〉
||n|| · ||s||

s and s̃ = s− 〈s, ñ〉
||s|| · ||ñ||

ñ (1)

where 〈n, s〉 =
∫
n(t)s(t) dt and ||s||2 = 〈s, s〉. The bandwidths w(·) in Step 5 are defined

as a function of the centre frequency f by the empirical formula

w(f) = C ln f satisfying w(550 Hz) = 50 Hz. (2)

The numerical parameters values (i.e., the bandwidth parameter C in Eq. (2), the filter
order, and the cut-off frequency) have been determined by trial and error to get audibly
good separation of speech and noise in prolonged vowel samples. In particular, choosing
the bandwidth parameter C for Step 5 is crucial for the outcome. The cut-off frequency
of 10 kHz in Step 6 is chosen well above the phonetically relevant part of the frequency
range that extends up to 4.5 kHz corresponding to Fig. 4b.

The algorithm produces denoised speech signals where the S/N ratio is audibly much
improved compared to the mere optimal subtraction as defined in Eq. (1). Each speech
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sample contains 2 s of undisturbed speech before acoustic MRI noise starts, and com-
paring the amplitude of the speech channel signal just before and right after the noise
onset, we can get an estimate for the S/N ratio (assuming that the speech amplitude
remains reasonably constant at the MRI noise onset, and that speech and noise are un-
correlated). As a rule of thumb, we obtain cleaned-up vowel signals whose S/N ratio lies
between 1.9 dB and 3.6 dB, the average being 2.8 dB. The S/N ratio depends on the
vowel because the emitted acoustic power tends to be larger for vowels with larger mouth
opening area. The Chebyshev filtering in Step 5 creates an audible “musical noise” arte-
fact to speech signals but we have not carried out perceptual evaluation of the denoised
signals as was done in [62].

The subtraction of noise with a “spiky” power spectrum from, e.g., speech is a classical
problem in audio signal processing. In [42], sufficient noise reduction was achieved by
time-domain subtraction of carefully syncronised speech and noise samples. The non-
linear cepstral transform is a popular procedure, and it has been used successfully in
[56] for MRI noise cancellation. This algorithm is based on computing the logarithm
of the power spectrum (in order to compress all high spectral peaks “softly” and non-
adaptively), returning to time domain by FFT, and reconstructing the phase information
from the original signal. The cepstral transform does not take into account the harmonic
structure of noise at all. The multi-path propagation of noise would seem to invite an
approach based on deconvolution. However, an accurate estimation of the convolution
kernel (i.e., the delays and the weights in multi-path propagation) does not seem to be
feasible even though the autocorrelation of the noise signal is easy to compute. The
multi-path propagation of noise was treated by using a continuously adjusted, adaptive,
non-causal FIR filter in [41] where the noise sample was collected from outside the MRI
machine or, alternatively, generated artificially by a MRI noise model. In contrast to
[41], our approach does not tune the causal Chebyshev filter “on the run” but once the
filter has been optimised for a given sample, it is then applied to the entire sample as
such. This more simple approach makes the noise cancellation procedure tractable: if an
unexpected artefact appears in the cleaned-up signal, it is always possible to exclude the
post-processing algorithm as its source.

5. Evaluation of the audio measurement system using pilot data

The purpose of the audio measurements is to obtain precise estimates for formant
frequency values from the speech signal gathered during a noisy MRI recording. The
acoustic MRI noise induces two sources of uncertainty in measured values. Firstly, the
speaker receives somewhat noisy auditory feedback. Secondly, the ambient noise and
possible post-processing artefacts may increase the formant error. To analyse the impact
of confounding factors (such as the ambient noise) to vocal production and general mea-
surement precision, two comparison data sets are analysed: a set of similar recordings
in an anechoic chamber and computational analysis of MR images obtained during the
vowel production.

5.1. Extracting power spectra and spectral envelopes
Formants are the main information bearing component of vowel sounds. They can be

understood as acoustic energy concentrations around discrete frequencies in the power
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spectrum of the speech signal. The measured formant frequencies F1, F2, . . . are related to
the acoustic resonance frequencies R1, R2, . . . of the vocal tract. In contrast to harmonic
overtones of the fundamental frequency f0 of the glottal excitation, the formants have
a much wider bandwidth. Thus, the extraction of formants from speech can be carried
out by a frequency domain smoothing process that downplays the narrow bandwidth
harmonics of f0.

Perhaps the most popular formant extraction tool is Linear Predictive Coding (LPC);
see, e.g., [63, 64]. LPC is mathematically equivalent to fitting a low-order rational func-
tion R(s) to the power spectrum function defined on the imaginary axis, and the pole
positions of R(s) give the estimated formant values. Hence, plotting the values of |R(iω)|
for real ω yields LPC envelopes whose peaks indicate the formant frequencies F1, F2, . . ..

All data for this article has been recorded from a healthy 26-year-old male in supine
position, and it includes sound samples during an MRI scan as well as comparison samples
that have been recorded in an anechoic chamber. Formants and LPC envelopes from these
sound samples have been produced by the MATLAB function lpc for each of the eight
Finnish vowels [A, e, i, o, u, y, æ, œ]. The formant values from comparison measurements
are given in Table 2, and the spectral envelopes of all signals are given in Figs. 7–8.
Formants for Fig. 6a have been extracted using Burg’s method [65] (MATLAB function
arburg) which was observed to give better resolution for sound data having some residual
MRI noise. Acoustic resonances under 5 kHz have been computed by FEM from Eqs. (3)
using the vocal tract geometries obtained by MRI, and they are shown in Figs. 7–8 as
vertical lines. Formant frequencies F1, F2, F3, and the corresponding Helmholtz resonance
frequencies R1, R2, R3, are compared in Table 3 by their discrepancies in logarithmic
semitone scale.

Further observations and details concerning the data are explained below.

Sound data during MRI
As pointed out in Section 1, a second set of pilot MRI experiments was carried out

in 2012. The test subject was able to produce 107 speech samples during a single MRI
session of 1.5 h according to the experimental specifications given in Section 2. Out of
these speech and MRI samples, 69 are vowels imaged by static 3D MRI, out of which
40 with f0 ≈ 104 Hz were chosen as the data for this article. The vowel samples were
processed by the noise reduction algorithm detailed in Section 4, and their formants F1,
F2, F3 as well as their LPC envelopes (shown in Figs. 7–8) were produced by MATLAB
using lpc with filter order 40, applied on a 3 s interval taken from the middle of each
sample.

The noise reduction algorithm does not spoil the extraction of first formants as can
be seen in Fig. 6a. For this figure, F1 and F2 have been estimated from the noisy parts
of the speech signal as well as from those parts where the MRI sequence was paused.
We note that in many but not in all cases, the lowest formants F1, F2, and F3 could
be correctly revealed by Praat [66] (using default settings) from the denoised signals.
Reflections from the MRI coil walls produce spurious “external formants” to measured
speech signals, which is likely the cause of the extra peaks (such as the one appearing at
≈ 1 kHz) that can be seen in many of the upper curves in Figs. 7–8.

The test subject had occasional difficulties in producing the prolonged [A] during the
MRI which results in a large internal variation of F1[A] and F2[A]. However, there are
many “good” samples of [A] during MRI whose spectral envelopes resemble those that
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Figure 6: (a) Sample means and standard deviations of F1 and F2 that were extracted using Burg’s
method from speech samples recorded (i) during the MRI noise after denoising, and (ii) during the
intermediate pauses in MRI as explained in Section 3.2. The means are depicted as the center points
of ellipses, and standard deviations as their semi-axes. (b) F1 and F2 extracted from denoised samples
recorded during MRI. They have been classified using the Linear Discriminants Analysis and formant
data from the anechoic chamber as training data.

were recorded in the anechoic chamber. None of the samples were rejected since even the
less successful vowel productions reflect correctly the physical relation of speech and the
anatomy that produces it.

Comparison sound data from anechoic chamber
To obtain high-quality comparison data, vowel samples were recorded in the anechoic

chamber from the same test subject in supine position. The recordings were carried out
about one year after the MRI experiments, and the subject was now more skilled in
producing prolonged vowels and following a pitch reference.

The Brüel & Kjæll 2238 Mediator integrating sound level meter was used as a mi-
crophone, coupled to RME Babyface digitiser with software TotalMix FX v.0.989 and
Audacity v.1.3.14 running on MacBook Air OSX 10.7.5. The microphone was placed
0.5 m from the mouth of the test subject, at 45◦ angle on the right-hand side. The
test subject heard from headphones (Bose QuietComfort 15) his own, algorithmically
denoised vowel signal from pilot MRI experiments as a pitch reference (one sample for
each vowel). The vowels were given in a randomised order and also shown on a computer
screen. The statistics from these experiments are reported in Table 2.

[A] [e] [i] [o] [u] [y] [æ] [œ]
# 10 10 10 9 10 10 6 14
F1 580±23 465±14 276±38 494±23 323±93 394±51 563±23 465±21
F2 1018±63 1608±52 1849±57 861±35 822±148 1527±53 1442±37 1400±50

Table 2: Number of vowel samples as well as their sample means and standard deviations of F1 and
F2, extracted (by LPC, as explained in the text) from the comparison data recorded in the anechoic
chamber.
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Figure 7: Spaghetti plots of LPC envelopes from Finnish vowels [i, y, u, e]. In each panel, the upper
graphs have been produced from recordings during the MRI using the noise reduction detailed in Sec-
tion 4. The lower graphs have been produced from recordings in the anechoic chamber from the same
test subject. The vertical lines indicate the resonance frequencies R1, R2, . . . computed by FEM from
the Helmholtz model Eqs. (3). Some of the resonances were identified as purely longitudinal, and they
have been marked using a solid line.

The spectral envelopes of the anechoic chamber data were produced in the same way
as described above for vowel samples during MRI. The results have been included in
Figs. 7–8 where they appear as the lower and more regular family of curves. In Fig. 6b,
the vowel samples during MRI were classified in (F1, F2) space by MATLAB function
classify using the anechoic chamber data (whose statistics are given in Table 2) as the
training set. Most of the data gets classified correctly but there is some mixing of [i] with
[e], and [A] with [o]. That [i] is not correctly separated from [e] is due to the systematic
error in the extraction of F1[i] from speech during MRI as discussed in Section 6. A
perceptual classification experiment on similarly recorded data (but without using the
noise reduction algorithm of Section 4) was reported in [62].

As expected, the recordings during the MRI have more formant variation than the
recordings in the anechoic chamber. It can be seen in Figs. 7–8 that, for example,
productions of [A] are much more consistent in the anechoic chamber: the variance of
F1[A] is significantly smaller there (F-test, F = 8.2 with p = 0.0031). However, the
test subject had similar problems controlling F2[u] during both types of the experiments
whereas all spectral envelopes of [œ] are remarkably similar.

Even though experiments in the anechoic chamber were designed to resemble the
conditions during the MRI scan in many respects, there are significant differences. Firstly,
the acoustic noise of the MRI machine was not replicated in the anechoic chamber.
Secondly, the test subject fatigue played lesser role in the anechoic chamber since the
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Figure 8: Spaghetti plots of LPC envelopes of Finnish vowels [œ, o, A, æ]. The presentation is similar
to Fig. 7.

total duration of a single experimental session was only about 10 minutes. Thirdly, the
head and neck MRI coil is a rather closed acoustic environment whereas there was no
similar acoustic load present in the anechoic chamber.

5.2. Computation of the Helmholtz resonances
For each vowel presented in Figs. 7–8, the corresponding MRI scans were processed

as described in [53] to produce the corresponding air-tissue interface surface Γ2 as shown
for [œ] in Fig. 3. However, three geometries of both [A] and [i] could not be processed
without manual intervention, and they were discarded from computational resonance
analysis (leaving 33 that are presented in Table 3). Completing the air-tissue interface
Γ2 with the mouth opening Γ1 and the (virtual) control surface Γ3 right above the
glottis, we obtain the air column volume Ω ⊂ R3 of the vocal tract whose boundary
satisfies ∂Ω = Γ1 ∪ Γ2 ∪ Γ3. The models did not include teeth geometries.

As detailed in [17], eigenvalues λ and the corresponding (velocity potential) eigen-
functions Φλ were computed from the Helmholtz resonance problem{

λ2Φλ = c2∆Φλ on Ω, Φλ = 0 on Γ1,
∂Φλ

∂ν = 0 on Γ2, and λΦλ + c∂Φλ

∂ν = 0 on Γ3

(3)

where c = 350 m/s and ∂Φλ

∂ν denotes the exterior normal derivative. As explained in [33],
the numerical solution of Eqs. (3) was carried out by Finite Element Method (FEM)
with piecewise linear shape functions and tetrahedral meshes with approximately 105

elements, using a MATLAB-based FEM solver and the eigenvalue function eigs. The
17



imaginary parts of the smallest eigenvalues λ give resonance frequencies R1, R2, . . . of the
vocal tract air column in increasing order of frequency. The chosen number of elements
was observed to be large enough so that all computed resonances can be regarded as
accurate, given Eqs. (3).

One of the surface models was randomly selected to represent each vowel [A, e, i, o,
u, y, æ, œ], and some of the lowest Helmholtz resonances R1, R2, . . . are represented by
vertical lines in Figs. 7–8. Some of the resonances were identified as purely longitudinal
by using a MATLAB-based FEM solver for Webster’s model [33, Eq. (3)] on the area
function from the same vocal tract geometry. These have been marked using solid vertical
lines in Figs. 7–8. As expected, the FEM computation reveals a cloud of higher Helmholtz
resonances R4, R5, . . . near the expected fourth formant position as reported in [33, 34,
35].

The rather trivial Dirichlet boundary condition Φλ = 0 was used at the mouth opening
Γ1 in Eqs. (3), leading to an overestimation of F2 and F3 by the respective R2 and R3 as
explained2 in [17]. There is a particularly striking discrepancy between F2[A] and R2[A]
even when they are extracted from the same MRI and speech data pair. The Helmholtz
model in Eqs. (3) gives consistently the result that R2[A] ≈ 1.5 · F2[A], and the same
observation holds in the data reported in [51] obtained from a different test subject. We
conclude that the Dirichlet boundary condition is at its worst for vowels such as [A] that
have largest mouth cavity volumes or opening areas.

The discrepancy between measured and computed formants has been reported in
many works: the digital simulator of S. Maeda [67] was used in [50], and the Kelly–
Lochbaum model or its generalisation was used in [11, 12, 36]. Various model improve-
ments have been used to explain or to reduce the discrepancy: tuning the area function
[12]; inclusion and exclusion of piriform sinuses and valleculae [11, 50]; energy dissipation
to tissues [36, 50]; and tuning the termination impedance at mouth and glottis [12]. For
higher resolution acoustics models such as Eqs. (3), the exterior space should be mod-
elled as faithfully as the vocal tract volume. Hence, the Dirichlet boundary condition
in Eqs. (3) should be regarded only as a minimal assumption, giving a baseline for the
discrepancy and a starting point for proper exterior space acoustics modelling. Instead of
tuning the boundary conditions in Eqs. (3), a preferred approach is to model the exterior
space by FEM as in [34] but the high computational cost makes alternative approaches
attractive [68, 69].

The discrepancy between measured formants and computed resonances has been es-
timated from the set of 33 vowel geometries and sound samples in Table 3. Given in
semitones, the average discrepancy is 2.2 for F1 (excluding [i] where a crude error in
algorithmic formant extraction remains), 3.1 for F2, and 2.1 for F3. This is in line with
the discrepancy of 3.5 semitones reported in [17] (based on a single geometry of Swedish
[ø] using the data from [70]), and the discrepancy of 2.1 semitones given in [71] (based
on four vowel geometries of Finnish [A, i, u, œ] from experiments reported in [62]).

2Considering the resonances of a tube with one end x = 0 closed and the other x = 1 having a mixed
boundary condition, we may solve the modes from vxx + k2v = 0, vx(0) = 0, and vx(1) + bv(1) = 0
where b, k ≥ 0. We get b/k = tan k whose positive solutions k = kj(b), j = 1, 2, . . ., (proportional to
resonance frequencies) increase with increasing b. When b → ∞, the boundary condition becomes the
Dirichlet condition v(1) = 0.
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[A] [e] [i] [o] [u] [y] [æ] [œ]
# 5 3 7 4 5 3 3 3
D1 -2.8 -1.5 (-10.1) 3.4 -3.3 1.5 1.4 1.4
D2 7.1 1.8 1.2 4.4 5.2 1.5 1.8 2.0
D3 2.6 -0.8 -1.0 4.2 1.3 2.6 -1.7 2.2

Table 3: Discrepancies D1, D2, D3 (in semitones) of measured vowel formants F1, F2, F3, and computed
Helmholtz resonances R1, R2, R3, estimated from 33 simultaneously recorded MRI/speech data pairs at
f0 = 104 Hz. The discrepancies are given by D = 12 ln (R/F )/ ln 2, and a positive discrepancy implies
that the Helmholtz resonance is higher. The number of data pairs is given on the topmost row.

6. Conclusions

We have described experimental protocols, MRI sequences, a sound recording system,
and a customised post-processing algorithm for contaminated speech that, in conjunction
with previously reported arrangements [45, 46, 51, 52], can be used for simultaneous
speech sound and anatomical data acquisition not only on healthy test subjects but also
on a large number of oral and maxillofacial surgery patients.

The data set obtained from such measurements are primarily intended for parameter
estimation, fine tuning, and validation of a computational acoustics model for speech
production. However, these methods and procedures may be used in a wider range of
applications related to anatomy and physiology of the vocal tract, including medical
research and clinical use.

Collecting such multi-modal data from numerous patients is far from a trivial task
even when suitable instrumentation is available. Several phonetic aspects must be taken
into account to ensure that the task is within the ability of the patients, regardless of
background and skills. It must be possible to monitor the quality of articulation and
phonation despite the acoustic noise in the MRI room, and data collection procedures
must be reliable to minimise the number of repetitions and the amount of useless data
obtained. All this must be achieved in as short a time as possible to minimise cost and
maintain patient interest in the project.

The experimental setting and phonetic tasks require the patients to have abilities
in concentration, remaining still, and sustaining prolonged phonation not significantly
reduced from young adults in good health. At the time of writing of this article, ten
patients (out of which six are female) have already undergone such MRI examinations
preceding their orthognathic procedures, and they are expected to take part in a similar
examination after their post-operative treatment will have been completed. All of these
examinations have succeeded without major troubles, and the resulting MRI image and
the speech sound data quality is very satisfactory as well. Applications to other patient
groups are under consideration but may require adaptations to the required time of
phonation and the total number of measurements.

Some questions and problems in the measurement arrangements remain open, in par-
ticular, involving acoustic noise and its impact on articulation. Acoustic noise during
measurements remains a problem from two points of view. Firstly, formant extraction
from denoised, prolonged vowel samples is sometimes problematic as observed in Sec-
tion 5.1. Note that reliable formant extraction may be difficult for reasons unrelated to
noise contamination: consider, e.g., vowels with low F1 in high pitch speech samples such
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as [i] pronounced by female subjects. Secondly, the onset of MRI noise may cause a signif-
icant adaptation in the patients’ articulation. It may be possible to reduce this problem
by running the 3D MRI sequence once while the patient receives the task instructions to
adapt the patient to the noise, and a second time during phonation to obtain the vocal
tract geometry. For the 2D sequences, the sequence may be started before phonation.
It is likely that there is adaptation in patient’s speech during MRI noise because of the
Lombard effect. A possible counter measure is to use MRI-proof acoustic earmuffs, and
lead the cue and instruction signal to the patient using an arrangement described in [44].

Automatic formant extraction from denoised vowel data requires further refinement.
Perhaps, the computed resonances of the vocal tract could be used as a priori data
when sorting out the peaks in the spectral envelopes of vowel signals. Low formants
such as F1[i] are particularly difficult to extract from the recordings during MRI, leading
to a quite high statistical variance irrespective of the method chosen. In Figs. 6a, 6b,
and 7, the positions for F1[i] are systematically too high, and an artificial pre-emphasis
filter for frequencies under 300 Hz should be determined by trial and error to make
the formant extraction algorithm place a pole in the right position. Computing the
Helmholtz resonances from all vocal tract geometries of [i] from the test subject gives
the following sample means and standard deviations: R1[i] = 180 ± 56 Hz and R2[i]
= 2064 ± 40 Hz. These standard deviations are of the same magnitude as those given
in Table 2 for recordings in the anechoic chamber, and they may reflect the underlying
natural variation in vowels produced by this test subject.
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