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Notation

The sets of complex and real numbers are denoted by C and R, respectively.
The right and left half planes are denoted by C+ := {s ∈ C | ℜs > 0}
and C− := {s ∈ C | ℜs < 0}. The positive and negative real numbers are
R+ := {x ∈ R | x > 0} and R− := {x ∈ R | x < 0}. The imaginary
axis is iR. The open unit disc and the unit circle are D and T, respectively.
Natural numbers, integers, nonnegative integers and negative integers are
denoted by N := {1, 2, . . .}, Z, Z+ and Z− := Z \ Z+.

The letters U , X and Y denote separable Hilbert spaces. For any such
U , its inner product is denoted by 〈·, ·〉U , its norm by ‖ · ‖U , and its identity
operator by IU . The closure and the orthogonal complement of any set S ⊂ U
are denoted by S and S⊥, respectively. Sometimes we write also S⊥ = U⊖S,
to emphasize that the orthogonal complement is to be taken in U .

The (external) orthogonal direct sum of Hilbert spaces X1 and X2 is

denoted by
X1
⊕
X2

, and it is a Hilbert space with inner product

〈[
x1

x2

]
,

[
z1

z2

]〉

X1
⊕
X2

:= 〈x1, z1〉X1
+ 〈x2, z2〉X2

.

For any Hilbert space U and d ∈ N, the d-fold (external) orthogonal sum
[U ⊕ · · · ⊕ U ]T is denoted by Ud, for brevity.

The set of bounded linear operators between Hilbert spaces U and Y is
denoted by L (U ; Y ), and L (X; X) =: L (X). The L (U ; Y )-valued bounded
analytic functions on D are H∞(D;L (U ; Y )), equipped with norm

‖F‖H∞(D;L(U ;Y )) := sup
z∈D

‖F (z)‖L(U ;Y ).

Its unit ball, the L (U ; Y )-valued Schur class, is defined by

S(D;L (U ; Y )) := {F ∈ H∞(D;L (U ; Y )) | ‖F‖H∞(D;L(U ;Y )) ≤ 1}.

If U = Y = C, then we write simply L (U) = C, H∞(D;L (U ; Y )) = H∞(D),
and S(D;L (U ; Y )) = S(D).
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1 Introduction

The classical (scalar) Carathéodory interpolation (or extension) problem is
formulated as follows: Given the Carathéodory data w := {wk}

d
k=0 ⊂ C,

find necessary and sufficient conditions for the existence of a Schur function
F ∈ S(D), called the interpolant, whose Taylor series are of the form

F (z) = w0 + w1z + · · ·+ wdz
d + O(zd+1). (1)

Necessary and sufficient conditions for the solvability of the Carathéodory
interpolation problem can be found e.g. in [12, Theorem 1.5]. Furthermore,
when such solvability conditions are satisfied, the set of all interpolants F ∈
S(D) is to be parameterized. Classical references to various methods for the
solution of the Carathéodory interpolation problem are [1, 8, 9, 22, 23, 28],
and more modern treatments are [3, 20].

We shall assume henceforth from the data w that the interpolation prob-
lem has more than one (then, in fact, infinitely many) solutions. Necessary
and sufficient conditions for this to happen can be found in [12, Theorem
1.5], too. We now describe superficially the original approach by Schur, give
some names to things, and explain the techniques and purposes of this paper.
Schur presented a recursive algorithm, comprising in the generic case d + 1
forward steps, followed by equally many backward steps.

Let us first outline the recursive forward steps, parameterized by j =
1, . . . , d+1. The recursion is started with the original data v0 := w = {wk}

d
k=0

of length d+1, and it is terminated when all the data has been depleted after
d + 1 steps1. (The precise definition of these forward steps is immaterial for
now, and it will be given later.) After having computed the jth forward step,
the old Carathéodory data vj−1 of length d− j + 2 has been replaced by the
new, updated Carathéodory data vj of length d − j + 1.

Indeed, the updated data vj defines another Carathéodory interpolation
problem, but this “new problem” is “easier” than any of the “old problems”,
as it has fewer interpolation conditions. When all d + 1 forward steps have
been taken, a trivial interpolation problem (with an empty Carathéodory
data vd+1 = ∅) is obtained. As no interpolation conditions are imposed, any
function g ∈ S(D) is its solution.

In the course of carrying out the forward steps, a sequence of scalars r =
{rj}

d
j=0 is extracted from the original Carathéodory data w. The elements

of r are called the reflection coefficients or Schur parameters. In the context
of this paper, we shall always assume that these parameters satisfy |rj| < 1

1...or the algorithm becomes impossible to continue earlier at some step, in which case
infinitely many solutions do not exist. We assume that this situation does not occur.
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for all j = 0, . . . , d. In this case (and only in this case), the Carathéodory
interpolation problem has more than one (hence, infinitely many) solutions.

The latter part – the backward steps – of the Schur algorithm provides us
with all the interpolants solving the problem. For a Schur parameter rj−1,
the corresponding backward step is defined by

Fj−1(z) = ωrj−1
(zFj(z)) where ωr(z) :=

z + r

1 + rz
, z ∈ D. (2)

It is easy to see that

Fj ∈ S(D) if and only if Fj−1 ∈ S(D) and Fj−1(0) = rj−1.

After all d + 1 backward steps, we recover the interpolant from

Fg,r(z) := F0(z) = ωr0 (zωr1 (· · · , (ωrd
(zg(z))) · · · )) , z ∈ D. (3)

As we see, the interpolant depends on the arbitrarily chosen function g ∈
S(D) that is used as the initial condition Fd+1 = g for computing the back-
ward steps (2) recursively. The function g is called the free parameter, defin-
ing the interpolant Fg,r. It is well known that the full solution set of the
Carathéodory interpolation problem are obtained by varying g in the set
S(D).

The purpose of this paper is to present a state space realization theory
(of a rather particular kind) for the solutions Fg,r of a number of interpola-
tion problems, including the Carathéodory problem. Using this theory, we
proceed to characterize the interpolants having a finite McMillan degree; see
the main result of this paper, Theorem 5.1.

More precisely, we want to write the free parameter g ∈ S(D) (corre-
sponding to the interpolant Fg,r ∈ S(D)) as a transfer function of a discrete
time linear system (shortly: DLS) φ, described in the scalar case by the
difference equations

φ :

{
xj+1 = Axj + buj

yj = 〈c, xj〉X + duj, j ≥ 0.
(4)

Here X is a separable Hilbert space, A ∈ L (X), b, c ∈ X and d ∈ C. The
sequence {uj}j≥0 ⊂ C is the input, {xj}j≥0 ⊂ X is the state and {yj}j≥0 ⊂ C

is the output of the system. The operator A in (4) is called the main operator
of φ. The transfer function of φ is defined as

D̂(z) := d + z
〈
c, (I − zA)−1b

〉
X

for z ∈ D,

4



and the linear system φ is called the state space realization of D̂. Moreover,
the linear system φ is called energy preserving if the energy balance equations

‖xj+1‖
2
X − ‖xj‖

2
X = |uj|

2 − |yj|
2, j ≥ 0

hold for any initial value x0 ∈ X and input {uj} ⊂ C, where xj , uj and yj

satisfy (4). The dual system φd of φ is described by the difference equations

φd :

{
zj+1 = A∗xj + cvj

wj = 〈b, xj〉X + dvj , j ≥ 0.

A system φ is called conservative, if both φ and φd are energy preserving. For
any conservative linear system φ, it is well known that the structure of the
main operator A is completely determined (apart from a unitary change of

coordinates in state space X) by the transfer function D̂, provided that A is
completely nonunitary (c.n.u.), see e.g. [5]. Such conservative systems φ are
called simple. Moreover, a complex-valued analytic function F is a transfer
function of a (simple) conservative system if and only if F ∈ S(D), see e.g.
[5].

What does all this have to do with the Schur algorithm for the Carathéodory
interpolation problem? As already mentioned, the free parameter g ∈ S(D)
(appearing in (3)) can be written as a transfer function of a (simple) conser-
vative linear system φ. We shall show that each of the backward steps (as
described in (2)) can be computed by using conservative realizations φj−1

and φj of analytic functions Fj−1 and Fj, instead of using these functions
alone as is done in the classical approach. After each backward step, the
updated realization φj−1 for Fj−1 is conservative, provided that the original
realization φj for Fj is conservative.

Hence, starting from a conservative realization φd+1 of the free parameter
Fd+1 = g ∈ S(D), we finally obtain an explicit formula for a conservative
realization φ0 of the interpolant F0 = Fg,r ∈ S(D). Since the theory of
conservative systems is much richer than that of general linear systems, it is
possible to give a number of results (like those appearing in Sections 4 and 5
of this paper) that do not hold for more general realizations of interpolants.

It is well known that the problem of Carathéodory is a special case of a
more general interpolation problem, called the Hermite – Fejér interpolation
problem, see [12, page 298]. All results of this paper will be given for this
most general class of interpolations problems (including the Nevanlinna –
Pick interpolation) for general operator-valued interpolants.

We finally remark that the techniques used in this paper bear a striking
resemblance to the dilation theory for Hilbert space contractions, culminating

5



in the famous commutant lifting theorem by Sarason, see e.g. in [25, 12].
Due to the generality and enormous size of the dilation theory, we shall not
try to explain this connection any further here. The present system theory
setting can be defended by its familiarity to the system theory community
and authors, if not by any other reasons.

2 State space Carathéodory interpolation

The operator-valued Carathéodory interpolation problem is analogously de-
fined as the scalar problem, given in Section 1. The Carathéodory data of the
problem is W := {Wk}

d
k=0, where each Wk is now a bounded linear operator

in L (U). We ask for the necessary and sufficient condition for the existence
of an F ∈ S(D;L (U)), such that the Taylor series of F satisfy

F (z) = W0 + W1z + · · · + Wdz
d + O(zd+1). (5)

Moreover, when the solution set is nonempty, all the solutions F are to be
parameterized. We proceed to make some definitions, following [10].

For a strict contraction R ∈ L (U), ‖R‖L(U) < 1, we define the self-adjoint,
boundedly invertible defect operators as

DR := (I − R∗R)1/2, DR∗ := (I − RR∗)1/2.

Given such R and a function Fj ∈ S(D;L (U)) with Fj(0) = R, the forward
step for the Schur recursion with respect to R is defined by

Fj+1(z) :=
1

z
DR∗ (I − Fj(z)R∗)−1 (Fj(z) − R) D−1

R , z ∈ D. (6)

Proposition 2.1. The following claims hold:

(i) Assume that Fj ∈ S(D;L (U)) and Fj+1 is given by (6). Then Fj+1 ∈
S(D;L (U)) if and only if Fj(0) = R. When these equivalent conditions
hold, then for all z ∈ D,

Fj(z) =
(
D−1

R∗ · zFj+1(z) + RD−1
R

) (
D−1

R + R∗D−1
R∗ · zFj+1(z)

)−1
. (7)

(ii) Assume that Fj+1 ∈ S(D;L (U)), and let Fj be given by (7). Then
Fj ∈ S(D;L (U)) and Fj(0) = R.

Note that as
(
D−1

R + R∗D−1
R∗zFj+1(z)

)
= D−1

R (I + R∗zFj+1(z)), the in-
verse in (7) exists boundedly if Fj+1 ∈ S(D;L (U)) and ‖R‖L(U) < 1.
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Proof. We give only an outline of the proof. To prove claim (i), define G(z) :=
zFj+1(z). We first show that G is in S(D;L (U)). Because ‖R‖L(U) < 1, G
is analytic in D. By some computation (or by looking it up in [10]),

I − G(z)G(z)∗ (8)

= DR∗ (I − Fj(z)R∗)−1 (I − Fj(z)Fj(z)∗) (I − RFj(z)∗)−1 DR∗ ,

for all z ∈ D. As Fj ∈ S(D;L (U)), I − G(z)G(z)∗ ≥ 0 for all z ∈ D and
hence G ∈ S(D;L (U)).

Now, supposing Fj(0) = R, we shall show that Fj+1 ∈ S(D;L (U)). If
Fj(0) = R, then Fj+1(z) = G(z)/z is analytic in D. For all 0 < r < 1 and
0 ≤ θ < 2π, we have for z = reiθ,

‖Fj+1(z)‖L(U) ≤ sup
z∈D

‖G(z)‖L(U) ·
1

r
≤

1

r
.

By the Maximum Modulus Theorem, supz∈rD
‖Fj+1(z)‖L(U) ≤ 1/r, and the

claim follows by letting r → 1−. The converse direction is trivial.
To prove claim (ii), note that Fj(0) = R follows trivially. Denoting again

G(z) := zFj+1(z), we have G ∈ S(D;L (U)). Rewriting and adjoining (7)
gives Fj(z)∗ = DR (I + G(z)∗R)−1 (G(z)∗ + R∗)D−1

R∗ , and we note that Fj(z)∗

depends on G(z)∗ in essentially the same way as zFj+1(z) depends on Fj(z)
in (6). Now it is quite easy to conclude from identity (8) (by making proper
replacements) that for all z ∈ D

I − Fj(z)∗Fj(z) (9)

= DR (I + G∗(z)R)−1 (I − G(z)∗G(z)) (I + R∗G(z))−1 DR,

thus proving the claim.

The mapping Fj+1 7→ Fj , defined by (7), is called the backward step for
the Schur recursion with respect to a strictly contractive R ∈ L (U). This
mapping is denoted by T̂R; i.e., Fj = T̂R(Fj+1). Claim (ii) of Proposition 2.1

says that T̂R(S(D;L (U))) ⊂ S(D;L (U)).
Given the Carathéodory data {Wk}

d
k=0, the corresponding Schur param-

eters R := {Rk}
d
k=0 ⊂ L (U) are defined recursively as follows:

• For j = 0, define R0 := W0 and take some F0 ∈ S(D;L (U)) of form
(5)2.

2We need one solution F0 of the interpolation problem to initialize the recursion, but the
computed Schur parameters will not depend on the choice of this initial value. In practical
computations, one would not be able to find such F0 before solving the interpolation
problem. Nevertheless, the Schur parameters can be computed algorithmically, see [12,
Chapter 1] for the scalar case.
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• Assume that 0 ≤ j < n, and both {Rk}
j
k=0 ⊂ L (U) (satisfying

‖Rk‖L(U) < 1) and {Fk}
j
k=0 ⊂ S(D;L (U)) have already been com-

puted. Then Fj+1 ∈ S(D;L (U)) is defined by (6) with R = Rj . More-
over, Rj+1 := Fj+1(0).

Indeed, as Rj = Fj(0) and Fj ∈ S(D;L (U)), it follows from Proposition
2.1 that the updated Fj+1 is in S(D;L (U)). However, we have to explicitly
assume at the (j+1)th recursive step, the new Schur parameter Rj+1 satisfies
‖Rj+1‖L(U) < 1. Otherwise, we might not be able to compute the following
step in the recursion.

Definition 2.2. We say that the Carathéodory data W := {Wk}
d
k=0 is regular

if there exist operators R := {Rk}
d
k=0 ⊂ L (U) with ‖Rk‖L(U) < 1, such that

these operators appear as Rk’s in the above recursion.

We shall henceforth make it a standing assumption that the Carathéodory
data W is regular, and hence has a full set of Schur parameters R.

As in the scalar case (see (3)), any function F ∈ S(D;L (U)) of form (5)
satisfies F = FG,R, where

FG,R = (T̂R0 ◦ T̂R1 ◦ · · · ◦ T̂Rd
)(G) (10)

for some G ∈ S(D;L (U)). Conversely, each such FG,R belongs to S(D;L (U))
and has the power series of form (5). For the matrix-valued case, see [10].

We proceed to define an extended version of the nonlinear mapping T̂R,
appropriate for state space techniques. The idea is to write the functions F
and F̃ := T̂R(F ) ∈ S(D;L (U)) as transfer functions of conservative discrete

time linear systems (DLSs) φ := ( A B
C D ) and φ̃ :=

(
Ã B̃
C̃ D̃

)
; i.e. for all z ∈ D

we have

F (z) = D + zC(I − zA)−1B and F̃ (z) = D̃ + zC̃(I − zÃ)−1B̃.

Definition 2.3. Let φ := ( A B
C D ) be a DLS whose state space is X and both

the input and output spaces equal U . Let R ∈ L (U) be a strict contraction.
Then the nonlinear mapping TR is defined by φ̃ = TR(φ), where

φ̃ =

(
Ã B̃

C̃ D̃

)
:=





[
−DR∗ C
−BR∗ A

] [
DDR

BDR

]

[
DR∗ 0

]
R



 .

Note that the state space of φ̃ is
U
⊕
X

(the external orthogonal direct sum

of U and X), but both the input and output spaces equal the input space U
of φ.
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Proposition 2.4. Let φ and φ̃ be two DLSs with transfer functions D̂φ and

D̂φ̃. Assume that φ̃ = TR(φ) for some strict contraction R ∈ L (U). Then
the following holds:

(i) The DLS φ̃ is conservative if and only if φ is.

(ii) Assume, in addition, that D̂φ ∈ S(D;L (U)). Then D̂φ̃ = T̂RD̂φ, where

the mapping T̂R is defined after Proposition 2.1.

Proof. Recall that φ := ( A B
C D ) is conservative if and only if the block matrix

[ A B
C D ] is unitary. It is easy to see that

[
Ã B̃

C̃ D̃

]
= P





[
A B
C D

] [
0
0

]

[
0 0

]
IU









[
IX 0
0 −R∗

] [
0

DR

]

[
0 DR∗

]
R



P ′,

(11)

where we use the permutations P :=
[ 0 IU 0

IX 0 0
0 0 IU

]
and P ′ :=

[ 0 IX 0
IU 0 0
0 0 IU

]
. Asser-

tion (i) follows immediately from (11), since the rotation matrix
[
−R∗ DR

DR∗ R

]
is

unitary for any contraction R.
To prove the latter claim (ii), we show that (7) holds with Fj+1 = D̂φ and

Fj = D̂φ̃, or equivalently for all z ∈ D

D̂φ̃(z)
(
D−1

R + R∗D−1
R∗zD̂φ(z)

)
=

(
D−1

R∗zD̂φ(z) + RD−1
R

)
.

To verify this, it appears to be enough to show that for all z ∈ D and
u, y, v, w ∈ H2(D; U), the identity






[
y(z)

u(z)

]
=

[
D−1

R∗z RD−1
R

R∗D−1
R∗z D−1

R

][
w(z)

v(z)

]
,

w(z) = D̂φ(z)v(z),

(12)

implies y(z) = D̂φ̃(z)u(z). Indeed, for any u ∈ H2(D; U) we can find unique
y, w, v ∈ H2(D; U) such that (12) holds; but this requires some computations,

using the assumptions that D̂φ ∈ S(D;L (U)) and ‖R‖L(U) < 1. For example,

v(z) =
(
I + zR∗D̂φ(z)

)−1

DRu(z) and

y(z) =

[
I + R −

(
I + zR∗D̂φ(z)

)−1
]

u(z).
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By using the Z-transforms u(z) =
∑

k≥0 ukz
k and y(z) =

∑
k≥0 ykz

k, both
the identities in (12) imply the state space difference equations (solved for
k ≥ 0 with x0 = 0 and z0 = 0)









xk+1

yk

uk



 =




0 I 0

D−1
R∗ 0 RD−1

R

R∗D−1
R∗ 0 D−1

R








xk

wk

vk



 ,

[
zk+1

wk

]
=

[
A B

C D

][
zk

vk

]
,

(13)

by recalling that D̂φ is the transfer function of DLS φ = ( A B
C D ).

By eliminating the variables vk = −R∗xk + DRuk and wk = −DR∗xk +
Czk + DDRuk from (13), we obtain





[
xk+1

zk+1

]

yk



 =

[
Ã B̃

C̃ D̃

]



[
xk

zk

]

uk



 ,

where the operators Ã, B̃, C̃ and D̃ are given by Definition 2.3. Hence
y(z) = D̂φ̃(z)u(z) for all z ∈ D, and the proof is complete.

A mapping roughly analogous to TR is called diagonal transformation in
[24]. The mapping T̂R : Fj+1 7→ Fj (connected to TR(φ) as in claim (ii) of
the previous proposition) can be described by the feedback connection:

Indeed, the transfer function u 7→ y equals Fj, see (7).
The following theorem parameterizes the solution set of the Carathéo-

dory interpolation problem, using a family of conservative realizations as the
parameter set.

Theorem 2.5. Assume that the Carathéodory data {Wk}
d
k=0 ⊂ L (U) is

regular in the sense of Definition 2.2, with Schur parameters R = {Rk}
d
k=0.

Then the following holds:
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(i) For any conservative DLS φ (with state space X and both input and

output spaces equal to U), the transfer function D̂φ̃(φ,R) ∈ S(D;L (U))
of

φ̃(φ, R) := (TR0 ◦ TR1 ◦ · · · ◦ TRd
)(φ) (14)

is a solution of the Carathéodory extension problem described by (5).

Moreover, the DLS φ̃(φ, R) is conservative, and D̂φ ∈ S(D;L (U)) is

the free parameter associated to the interpolant D̂φ̃(φ,R).

(ii) Conversely, any solution F ∈ S(D;L (U)) of the Carathéodory exten-

sion problem satisfies F = D̂φ̃(φ,R) for φ̃(φ, R) given by (14) for some
(simple) conservative DLS φ (with both input and output spaces equal
to U).

(iii) If, in addition, DLS φ is a simple conservative DLS, then so is φ̃(φ, R).

Proof. Both the claim (i) and (ii) follow directly from the general discussion
in the beginning of this section, together with Propositions 2.4 and A.7.

Let us prove claim (iii). Assume that φ is conservative, A is a c.n.u. con-
traction (see Appendix) and ‖R‖L(U) < 1. We shall show that Ã :=

[
−DR∗ C
−BR∗ A

]

is c.n.u., too. For contradiction, assume that there exists a nontrivial reduc-

ing subspace V ⊂
U
⊕
X

for Ã, on which Ã is unitary. Let v = [ u
x ] ∈ V such

that u 6= 0. Then by the conservativity of φ and the strict contractivity of
R,

‖Ãv‖ U
⊕
X

=

∥∥∥∥

[
D C
B A

] [
R∗ 0
0 IX

] [
u
x

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
R∗ 0
0 IX

] [
u
x

]∥∥∥∥ U
⊕
X

<

∥∥∥∥

[
u
x

]∥∥∥∥ U
⊕
X

,

thus contradicting the fact that Ã is unitary on V . Hence, u = 0 and V =
{0}
⊕
V ′

for some V ′ ⊂ X.

For the rest of this proof, we use the splitting X =
V ′⊥

⊕
V ′

. Because V is

Ã-invariant, it follows that AV ′ ⊂ V ′; i.e. in block matrix form

Ã =




∗ ∗ 0
∗ ∗ 0
α β A|V ′



 :

U
⊕

V ′⊥

⊕
V ′

→

U
⊕

V ′⊥

⊕
V ′

for some contractions α and β, where the symbol ∗ denotes an irrelevant
entry. But as V = [ {0} ⊕ {0} ⊕ V ′ ]T is reducing for Ã, we have α = 0 and
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β = 0. We conclude that V ′ is a reducing subspace for A, on which A
operates unitarily. As A is c.n.u., we have V ′ = {0} and hence V is a trivial
subspace. This proves the claim.

So, by Theorem 2.5, we are able to obtain conservative realizations φ̃
for interpolant FG,R, provided that the free parameter G ∈ S(D;L (U)) is
first realized by a conservative DLS. Simple conservative realizations are a
very restrictive class of realizations for Schur functions, and for that rea-
son they have much more mathematical properties than general realizations.
Many practical computations turn out to have unexpectedly simple results,
as various cancellations in formulas take place, see for example the results in
Sections 4 and 5.

We conclude this section by showing that the Schur parameters R =

{Rk}
d
k=0 define (generalized) rotations in the state space

Ud

⊕
X

of φ̃(φ, R). This

is done by giving a matrix product formula for the backward steps of the
Schur algorithm.

Proposition 2.6. Assume that the Carathéodory data {Wk}
d
k=0 ⊂ L (U)

is regular in the sense of Definition 2.2, with the Schur parameters R =
{Rk}

d
k=0. Let φ = ( A B

C D ) be a conservative DLS (with state space X and both

input and output spaces equal to U), and define φ̃(φ, R) =
(

Ã B̃
C̃ D̃

)
by (14).

Then

[
D̃ C̃

B̃ Ã

]
=




IUd+1 0 0

0 D C
0 B A



Md(Rd)Md−1(Rd−1) · · ·M0(R0),

where

Mk(Rk) :=





IUk 0 0 0
0 Rk DR∗

k
0

0 DRk
−R∗

k 0
0 0 0 IUd−k

⊕
X




.

Proof. This can be verified by first rewriting (11) and then using it recur-
sively. More precisely, note that (11) is equivalent to

[
Dd−1 Cd−1

Bd−1 Ad−1

]
=




IU 0 0
0 D C
0 B A








Rd DR∗

d
0

DRd
−R∗

d 0
0 0 IX



 , (15)

12



where the state space of the new DLS TRd
(φ) =

(
Ad−1 Bd−1

Cd−1 Dd−1

)
thus obtained

is
U
⊕
X

. Augmenting the identity operator IU to (15) gives




IU 0 0
0 Dd−1 Cd−1

0 Bd−1 Ad−1



 =




IU2 0 0
0 D C
0 B A









IU 0 0 0
0 Rd DR∗

d
0

0 DRd
−R∗

d 0
0 0 0 IX



 ,

and applying (15) to this gives

[
Dd−2 Cd−2

Bd−2 Ad−2

]

=




IU2 0 0
0 D C
0 B A









IU 0 0 0
0 Rd DR∗

d
0

0 DRd
−R∗

d 0
0 0 0 IX









Rd−1 DR∗

d−1
0

DRd−1
−R∗

d−1 0
0 0 I U

⊕
X



 .

Continuing this process all d + 1 steps will prove the claim.

3 State space Hermite – Fejér interpolation

In this section, we shall treat a quite general interpolation problem, called
Hermite – Fejér interpolation problem. This problem is described as follows
(see also e.g. [12, p. 298]): Given the data

{(
z0, (W

(0)
0 , · · · , W

(d0)
0 )

)
, · · · ,

(
zn,

(
W (0)

n , · · · , W (dn)
n

)}
, (16)

where zk ∈ D and W
(l)
k ∈ L (U) for k = 0, 1, . . . , n and l = 0, 1, . . . , dk, find

necessary and sufficient conditions for the existence of an F ∈ S(D;L (U))
such that, at each zk, k = 0, 1, . . . , n, the power series of F are of form

F (z) = W
(0)
k + W

(1)
k (z − zk) + · · ·+ W

(dk)
k (z − zk)

dk + O(zdk+1). (17)

When the solution set is nonempty, all such solutions F ∈ S(D;L (U)) should
be parameterized.

Remark 3.1. It is worthwhile to mention that Carathéodory and Nevan-
linna – Pick interpolation problems are two special cases of Hermite – Fejér
problem. Indeed, we obtain the Carathéodory interpolation problem when
n = 0, z0 = 0 and d0 = d. The Nevanlinna – Pick interpolation problem
occurs when dk = 0 for all k = 0, . . . , n.

13



The necessary and sufficient conditions for solvability of each of these
problems are classical (see [12, 20]). It is well-known that, in the non-
degenerate cases, the solution set to the general Hermite – Fejér interpolation
problem can be obtained by a recursive algorithm, just as in the case of the
Carathéodory problem. In this section, we reformulate (the latter part of)
this recursive solution in terms of conservative realizations.

3.1 Nevanlinna – Pick interpolation

Let us outline the recursive process leading to the solution of Nevanlinna
– Pick problem. We assume that the interpolation values of the problem,
denoted by W 0 := {Wk}

n
k=0 ⊂ L (U), satisfy ‖Wk‖L(U) < 1. We say that

F ∈ S(D;L (U)) solves the Nevanlinna – Pick interpolation problem, if

F (zk) = Wk for all k = 0, . . . , n, (18)

where z0 := {zk}
n
k=0 ⊂ D are the interpolation points. The ordered pair

(z0, W 0) is called from now on Nevanlinna – Pick data.
We now proceed to describe the n+1 forward steps, followed by as many

backward steps. In contrast to the forward step (6) for the Carathéodory
problem, now the forward step consists of two operations. One of these oper-
ations is the composition operator V̂α : S(D;L (U)) → S(D;L (U)), defined
for any α ∈ D by

(V̂αF )(z) := F

(
z − α

1 − ᾱz

)
. (19)

It is easy to see that V̂α, indeed, maps S(D;L (U)) onto itself, and that
V̂ −1

α = V̂−α.
To describe the forward steps, we shall need further sets of interpolation

points and interpolation values, defined recursively as follows: Given zj =
{zj,k}

n
k=j and W j = {Wj,k}

n
k=j for j < n, we define

zj+1 := {zj+1,k}
n
k=j+1 , W j+1 := {Wj+1,k}

n
k=j+1 ,

where for k = j + 1, . . . , n,

zj+1,k :=
zj,k − zj,j

1 − zj,jzj,k
, (20)

Wj+1,k :=
1

zj+1,k
DW ∗

j,j
(I − Wj,kW

∗
j,j)

−1(Wj,k − Wj,j)DW−1
j,j

.

The recursions are started with initial values z0 := {zk}
n
k=0 and W 0 :=

{Wk}
n
k=0 defining the original interpolation problem (18). Following Defini-

tion 2.2 for the Carathéodory case, we give now:

14



Definition 3.2. We say that the Nevanlinna – Pick interpolation data (z0, W 0)
is regular if there exist operators

{Wj,k ∈ L (U) | 0 ≤ j ≤ n, j ≤ k ≤ n}

satisfying ‖Wj,k‖L(U) < 1, such that these operators appear in recursion (20).

From now on, we shall make it a standing assumption that the Nevanlinna
– Pick interpolation data (z0, W 0), indeed, is regular. The forward part of
the recursive algorithm for the Nevanlinna – Pick problem is given next:

• For j = 0, take some F0 ∈ S(D;L (U)) of form (18).

• Assume that 0 ≤ j < n and {Fk}
j
k=0 ⊂ S(D;L (U)) have already been

computed. Then F̃j+1 := V̂−zj,j
Fj and

Fj+1(z) :=
1

z
DW ∗

j,j

(
I − F̃j+1(z)W ∗

j,j

)−1 (
F̃j+1(z) − Wj,j

)
D−1

Wj,j
. (21)

A few comments are now in order. Firstly, note that the inverse mapping of
F̃j+1 7→ Fj+1 in (21) is nothing but T̂Wj,j

, as introduced immediately after
the proof of Proposition 2.1. By claim (i) of Proposition 2.1 and the standing
regularity assumption, we have F̃j+1 ∈ S(D;L (U)) and F̃j+1(0) = Wj,j after
j steps. So, the next step in recursion can always be computed. After all n+1
steps, a trivial interpolation problem is obtained, and any Fn ∈ S(D;L (U))
is its solution.

As in the Carathéodory case, starting from an arbitrarily chosen Fn :=
G ∈ S(D;L (U)) – this is the free parameter – and solving the recursion
backwards give a full parameterization of interpolants F := F0 of the Nevan-
linna – Pick problem described by (18). More precisely, any function F ∈
S(D;L (U)) satisfying (18) can be expressed as F = FG,z0,W 0

, where

FG,z0,W 0
= (V̂z0,0 ◦ T̂W0,0 ◦ V̂z1,1 ◦ T̂W1,1 ◦ · · · ◦ V̂zn,n

◦ T̂Wn,n
)(G) (22)

for some G ∈ S(D;L (U)). Here the operator T̂R : S(D;L (U)) → S(D;L (U))
is defined just after Proposition 2.1 and Vα : S(D;L (U)) → S(D;L (U)) by
(19). Conversely, each such FG,z0,W 0

belongs to S(D;L (U)) and satisfies (18).
For notational brevity, we define

Rj := Wj,j, j = 0, . . . , n, and R := {Rj}
n
j=0 . (23)

We call the sequence R the Schur parameters of the Nevanlinna – Pick prob-
lem (18). By (22), the solution of this interpolation problem depends on the
interpolation values W 0 only via the corresponding Schur parameters R.
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We now proceed to translate (22) to the language of conservative real-
izations. As the state space variant TR of T̂R has already been treated in
Definition 2.3 and Proposition 2.4, it only remains to propose a state space
variant Vα for V̂α.

Definition 3.3. Let φ := ( A B
C D ) be a DLS with state space X and both the

input and output spaces equal to U . Then for any α ∈ D, the nonlinear
mapping Vα (defined on all conservative DLS φ) is defined by φα = Vα(φ),
where

φα :=

(
(I + αA)−1(ᾱ + A)

√
1 − |α|2(I + αA)−1B√

1 − |α|2C(I + αA)−1 D − αC(I + αA)−1B

)
. (24)

In system theory, the analogous mapping to Vα between discrete and con-
tinuous time systems is usually called Cayley transform or bilinear transform.
As Vα maps DLSs to DLSs, we call it Möbius mapping.

The following result has a status of folklore in the theory of Hilbert space
contractions, though it might often be stated in different language from ours.
We include a proof only for the sake of neurotic completeness of presentation.

Lemma 3.4. Let φ = ( A B
C D ) be a DLS (with state space X, and both input

and output spaces equal to U), such that the main operator A ∈ L (X) is con-
tractive. For any α ∈ D, denote φα := Vα(φ) where Vα is as in Definition 3.3.
Then the following holds:

(i) The DLS φ is conservative if and only φα is. Moreover, φ is a simple
conservative DLS if and only φα is.

(ii) The transfer functions of φ and φα are related by D̂φα
= V̂αD̂φ, where

V̂α is given by (19).

(iii) The mapping Vα satisfies both (Vα(φ))d = Vα(φd) and V −1
α = V−α.

Moreover, range (Bφ)⊥ = range (Bφα
)⊥ and ker (Cφ) = ker (Cφα

), where
the observability and controllability maps are defined in (42).

Proof. The first part of claim (i) follows by a straightforward computation,
showing that the block matrix defining φα in (24) is isometric if and only if
the block matrix [ A B

C D ] is isometric.
For any closed V ⊂ X and α ∈ D, we have AV ⊂ V if and only if

(I + αA)−1(ᾱ + A)V ⊂ V . Hence, V is a reducing subspace for A if and
only if it is a reducing subspace for (I + αA)−1(ᾱ + A). So, to prove the
remaining part of claim (i), it is enough to show that (I + αA)−1(ᾱ + A)
is unitary if and only if A is. Note first that A is normal if and only if
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(I + αA)−1(ᾱ + A) is. Hence, the claim follows from the spectral mapping
theorem for normal operators and [21, Theorem 12.26], because the mapping
z 7→ (1 + αz)−1(ᾱ + z) is a continuous bijection on T.

We proceed to prove claim (ii). By a direct computation

(
V̂αD̂φ

)
(z) = D̂φ

(
z − α

1 − ᾱz

)

= D + (z − α)C ((1 − ᾱz)I − (z − α)A)−1 B

= D + (z − α)C ((I + αA) − (ᾱ + A)z)−1 B

= D + zC (I − zAα)−1 Bα − αC (I − zAα)−1 Bα,

where Aα := (I + αA)−1(ᾱI + A) and Bα := (I + αA)−1B. Noting that
(I − zAα)−1 = I + zAα (I − zAα)−1, we may continue the computation

= D + zC (I − zAα)−1 Bα − αC
[
I + zAα (I − zAα)−1]Bα

= D − αC(I + αA)−1B + zC
[
I − αAα (I − zAα)−1]Bα

= D − αC(I + αA)−1B + zCα

[
I + αA − α(ᾱ + A) (I − zAα)−1]Bα

= D − αC(I + αA)−1B + (1 − |α|2)zCα (I − zAα)−1 Bα,

where Cα := C(I + αA)−1. Hence (ii) holds.
To prove claim (iii), note first that the part concerning the duality is

trivial. For the rest of this proof, we redefine the operators Aα, Bα, Cα and
Dα as follows: Aα := (I + αA)−1(ᾱ + A), Bα :=

√
1 − |α|2(I + αA)−1B,

Cα :=
√

1 − |α|2C(I +αA)−1 and Dα := D−αC(I +αA)−1B for any α ∈ D.
Clearly

(I − αAα)−1 =
I + αA

1 − |α|2
.

By using this we get almost immediately (Aα)−α = (I −αAα)−1(−ᾱ+Aα) =
A, (Bα)−α =

√
1 − |α|2(I − αAα)−1Bα = B and (Cα)−α =

√
1 − |α|2Cα(I −

αAα)−1 = C. Because V̂ −1
α = V̂−α, we obtain (Dα)−α = D, thus proving

V −1
α = V−α.

Let us proceed to prove the inclusion ker (Cφ) ⊂ ker (Cφα
). For any x ∈

ker (Cφ), we get for any j ≥ 0

(I + αA)−j−1x = (I + αA)−j−2
∑

k≥0

(−αA)kx ∈ ker (Cφ)

as A ker (Cφ) ⊂ ker (Cφ) and ker (Cφ) is closed. But now (ᾱ + A)j(I +

αA)−j−1x ∈ ker (Cφ) ⊂ ker (C), implying that CαAj
αx =

√
1 − |α|2C(ᾱ +
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A)j(I + αA)−j−1x = 0 for all j ≥ 0. Hence ker (Cφ) ⊂ ker (Cφα
). Applying

this to the DLS φα with parameter value −α gives

ker (Cφα
) ⊂ ker

(
CV−α(φα)

)
= ker (Cφ) ,

as V−α(φα) = (V−α ◦ Vα) (φ) = φ by what has already been proved. The
claim involving the controllability map follows by considering the dual DLS
instead.

Now comes the Nevanlinna – Pick counterpart of Theorem 2.5.

Theorem 3.5. Assume that the interpolation data (z0, W 0) for the Nevan-
linna – Pick problem (18) is regular in the sense of Definition 3.2. Define
the additional interpolation points zj = {zj,k}

n
k=j by (20), and the Schur

parameters R := {Rj}
n
j=0 by (23). Then the following holds:

(i) For any conservative DLS φ (with state space X and both input and

output spaces equal to U), the transfer function D̂φ̃(φ,z,R) ∈ S(D;L (U))
of

φ̃(φ, z, R) := (Vz0,0 ◦ TR0 ◦ Vz1,1 ◦ TR1 ◦ · · · ◦ Vzn,n
◦ TRn

)(φ) (25)

is a solution of the Nevanlinna – Pick interpolation described by (18).

Moreover, DLS φ̃(φ, z, R) is conservative, and D̂φ ∈ S(D;L (U)) is the

free parameter associated to interpolant D̂φ̃(φ,z,R).

(ii) Conversely, any solution F ∈ S(D;L (U)) of the Nevanlinna – Pick

interpolation problem (18) satisfies F = D̂φ̃(φ,z,R) for φ̃(φ, z, R) given
by (25) for some (simple) conservative DLS φ (with both input and
output spaces equal to U).

(iii) If, in addition, DLS φ is a simple conservative DLS, then so is φ̃(φ, z, R).

Proof. This theorem follows from the general discussion presented earlier in
this section, together with Lemma 3.4 and Proposition A.7.

3.2 Hermite – Fejér interpolation

It remains to give a result analogous to Theorem 3.5, but concerning the
Hermite – Fejér interpolation problem. The difference to the Carathéodory
and Nevanlinna – Pick problems is quite small, and we shall discuss it next.

Indeed, when comparing the backward recursion (10) of the Carathéodory
problem to the backward recursion (22) of the Nevanlinna – Pick problem, we
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note that the only difference is as follows: the appearance of the composition
operators V̂α in between each of the mappings T̂R. Recall that the mappings
V̂α are not needed at all in the Carathéodory problem, as all the interpolation
conditions are originally posed at the origin z = 0. This is in contrast to the
Nevanlinna – Pick case, where each of the updated interpolation points zj,j ∈
D (see (20)) gets mapped to the origin one by one, by repeated applications
involving operators V̂zj,j

. After each such transformation, a single forward
step (21) (of Schur recursion type, for the Carathéodory problem) is taken
in order to reduce the number of remaining interpolation conditions by one.

The difference between the Nevanlinna – Pick and Hermite – Fejér inter-
polation problem is now clear: after the application of any V̂zj,j

, not only one
but a totality of dj (see (16)) forward steps (of Schur recursion type, for the
Carathéodory problem) are required. We omit here the somewhat compli-
cated algebraic description of these forward steps, as it is immaterial in the
context of this paper. We only remark that we obtain again (in the regular
case, see Definition 3.6) a family of Schur parameters, denoted henceforth by

R :=
{
R

(l)
k

}
where

R
(l)
k ∈ L (U) for k = 0, 1, . . . , n and l = 0, 1, . . . , dk. (26)

Note that the parameter configuration is exactly the same as for the original
interpolation values W

(l)
k in (16). Analogously to Definitions 2.2 and 3.2, a

regularity assumption must be made. This time we state it quite informally:

Definition 3.6. We say that the Hermite – Fejér interpolation data is regular
if all the required steps so as to obtain the Schur parameters (26) produce
only operators that are strictly contractive in L (U).

We remark that Definitions 2.2 and 3.2 are special cases of Definition
3.6. In the next theorem, we shall use the following notation for iterated
compositions of mappings

(
◦n

j=0Gj

)
(f) := (G0 ◦ G1 ◦ · · · ◦ Gn) (f).

The proof of the following theorem does not differ much from its special case,
Theorem 3.5.

Theorem 3.7. Assume that the interpolation data (16) for the Hermite –
Fejér problem (17) is regular in the sense of Definition 3.6. Define the ad-
ditional interpolation points zj = {zj,k}

n
k=j by (20), and denote the Schur

parameters (26) by R :=
{

R
(l)
k

}
. Then the following holds:
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(i) For any conservative DLS φ (with state space X and both input and

output spaces equal to U), the transfer function D̂φ̃(φ,z,R) ∈ S(D;L (U))
of

φ̃(φ, z, R) :=
(
◦n

j=0Vzj,j

(
◦

dj

l=0TR
(l)
j

))
(φ) (27)

is a solution of the Hermite – Fejér interpolation described by (17).

Moreover, DLS φ̃(φ, z, R) is conservative, and D̂φ ∈ S(D;L (U)) is the

free parameter associated to interpolant D̂φ̃(φ,z,R).

(ii) Conversely, any solution F ∈ S(D;L (U)) of the Hermite – Fejér in-

terpolation problem (17) satisfies F = D̂φ̃(φ,z,R) for φ̃(φ, z, R) given by
(27) for some (simple) conservative DLS φ (with both input and output
spaces equal to U).

(iii) If, in addition, DLS φ is a simple conservative DLS, then so is φ̃(φ, z, R).

4 Observable and controllable subspaces

In this section, we compute the unobservable and uncontrollable subspaces
of realizations φ̃(φ, R) appearing in Theorem 2.5. Such results will be used
in the main results of this paper, namely Theorem 5.1. We shall consider
first a single backward step, and then proceed recursively to conclude the
final results.

Given φ = ( A B
C D ) and R ∈ L (U), we denote

ÃR :=

[
D C
B A

] [
R 0
0 IX

]
∈ L

(
U
⊕
X

)
. (28)

The operator Ã−R∗ (given by (28) with −R∗ in place of R) is exactly the
main operator of the DLS φ̃ := TR(φ) of Definition 2.3. The whole point
of this is that both the (un)observable and (un)controllable subspaces of a
conservative DLS are determined by the residual cost operators of the main
operator alone, by Proposition A.3.

Proposition 4.1. Let φ = ( A B
C D ) be a conservative DLS (with state space

X and both input and output spaces equal to U). Let R ∈ L (U) be a strict
contraction, and define ÃR by (28). Define the residual cost operators LA ∈

L (X) and LÃR
∈ L

(
U
⊕
X

)
as in Definition A.2. Then

ker
(
I − LÃR

)
=

{0}
⊕

ker(I−LA)
⊂

U
⊕
X

.
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Proof. Let [ u
x ] ∈ ker

(
I − LÃR

)
be arbitrary. Then by Corollary A.4 and

unitarity of [ D C
B A ], we obtain

‖u‖2
U + ‖x‖2

X =

∥∥∥∥

[
u
x

]∥∥∥∥
2

U
⊕
X

=

∥∥∥∥ÃR

[
u
x

]∥∥∥∥
2

U
⊕
X

=

∥∥∥∥

[
R 0
0 IX

] [
u
x

]∥∥∥∥
2

U
⊕
X

= ‖Ru‖2
U + ‖x‖2

X .

This implies ‖Ru‖2
U = ‖u‖2

U and by strong contractivity of R we get u = 0.

Hence ker
(
I − LÃR

)
⊂

{0}
⊕
X

.

Now, for any [ 0
x ] ∈ ker

(
I − LÃR

)
we have ÃR [ 0

x ] = [ Cx
Ax ]. Because

ÃR ker
(
I − LÃR

)
⊂ ker

(
I − LÃR

)
by Corollary A.4, we conclude (by what

already has been proved) that x ∈ ker (C) and hence, by iterating,

Ãj
R

[
0
x

]
=

[
0

Ajx

]
for all j ≥ 1.

Using this, together with Corollary A.4, we obtain for all j ≥ 1

‖x‖X =

∥∥∥∥

[
0
x

]∥∥∥∥ U
⊕
X

=

∥∥∥∥Ãj
R

[
0
x

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
0

Ajx

]∥∥∥∥ U
⊕
X

= ‖Ajx‖X .

It follows that x ∈ ker (I − LA), and hence ker
(
I − LÃR

)
⊂

{0}
⊕

ker(I−LA)
.

For the converse inclusion, let x ∈ ker (I − LA) be arbitrary. Because
ker (I − LA) = ker (Cφ) = ∩j≥0ker (CAj) by Proposition A.3, we have CAjx =
0 for all j ≥ 0. In the first step, we obtain ÃR [ 0

x ] = [ Cx
Ax ] = [ 0

Ax ] and by
iteration

Ãj
R

[
0
x

]
=

[
CAj−1x

Ajx

]
=

[
0

Ajx

]
for all j ≥ 1.

The proof is completed by an application of Corollary A.4, as for all j ≥ 1,
∥∥∥∥Ãj

R

[
0
x

]∥∥∥∥ U
⊕
X

= ‖Ajx‖X = ‖x‖X =

∥∥∥∥

[
0
x

]∥∥∥∥ U
⊕
X

.

The unobservable subspace for the realization φ̃(φ, R) for the Carathéo-
dory interpolant in (14) is now

ker
(
Cφ̃(φ,R)

)
=

{0}d+1

⊕

ker(Cφ)
, (29)
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where φ = ( A B
C D ) is the realization for the free parameter, and d + 1 is the

number of the Schur parameters R = {Rk}
d
k=0. Indeed, this follows from

Proposition 2.4; the characterization of the unobservable subspaces for con-
servative DLSs, Proposition A.3; and a recursive application of Proposition

4.1. Note that ker
(
Cφ̃(φ,R)

)
does not depend on the Schur parameters R but

only on the free parameter DLS φ.
The case for the dual operator Ã∗

R is unfortunately somewhat more com-
plicated.

Proposition 4.2. Let φ = ( A B
C D ) be a conservative DLS (with state space

X and both input and output spaces equal to U). Let R ∈ L (U) be a strict
contraction, and define ÃR by (28). Define the residual cost operators LA∗ ∈

L (X) and LÃ∗

R
∈ L

(
U
⊕
X

)
as in Definition A.2. Then

ker
(
I − LÃ∗

R

)
=

[
D C
B A

]
{0}
⊕

ker(I−LA∗)
. (30)

Proof. Assume that [ ũ
x̃ ] = [ D C

B A ] [ u
x ] ∈ ker

(
I − LÃ∗

R

)
is arbitrary. Then by

Corollary A.4 and unitarity of [ D C
B A ], we obtain

∥∥∥∥

[
u
x

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
ũ
x̃

]∥∥∥∥ U
⊕
X

=

∥∥∥∥Ã∗
R

[
ũ
x̃

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
R∗ 0
0 IX

] [
u
x

]∥∥∥∥ U
⊕
X

,

whence (by the strict contractivity of R∗) we get u = 0. It follows that

ker
(
I − LÃ∗

R

)
⊂ [ D C

B A ]
{0}
⊕
X

.

Now, for any [ ũ
x̃ ] = [ D C

B A ] [ 0
x ] ∈ ker

(
I − LÃ∗

R

)
, we have by a direct com-

putation
[

R∗ 0
0 IX

]
[ D∗ B∗

C∗ A∗ ] [ 0
x ] = Ã∗2

R [ ũ
x̃ ]. Using the norm equality

∥∥∥∥Ã∗2
R

[
ũ
x̃

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
ũ
x̃

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
0
x

]∥∥∥∥ U
⊕
X

(31)

from Corollary A.4, we obtain by the unitarity of [ D∗ B∗

C∗ A∗ ]
∥∥∥∥

[
R∗ 0
0 IX

] [
D∗ B∗

C∗ A∗

] [
0
x

]∥∥∥∥ U
⊕
X

=

∥∥∥∥

[
0
x

]∥∥∥∥ U
⊕
X

.

Again, by the strict contractivity of R∗, we obtain [ D∗ B∗ ] [ 0
x ] = 0, and hence

B∗x = 0 and Ã∗2
R [ ũ

x̃ ] = [ 0
A∗x ]. This together with (31) implies ‖A∗x‖X =

‖x‖X . Using this argument recursively gives for all j ≥ 1

Ã∗j
R

[
ũ
x̃

]
=

[
0

A∗(j−1)x

]
and ‖A∗(j−1)x‖X = ‖x‖X .
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In other words, x ∈ LA∗ and hence ker
(
I − LÃ∗

R

)
⊂ [ D C

B A ]
{0}
⊕

ker(I−LA∗)
by

Corollary A.4.
It remains to prove the converse inclusion. Let x ∈ ker (I − LA∗) and

define [ ũ
x̃ ] := [ D C

B A ] [ 0
x ]. Now

Ã∗
R

[
ũ
x̃

]
=

[
R∗ 0
0 IX

] [
0
x

]
=

[
0
x

]
, (32)

and using the norm identity ‖ [ 0
x ] ‖ U

⊕
X

= ‖ [ ũ
x̃ ] ‖ U

⊕
X

gives ‖Ã∗
R [ ũ

x̃ ] ‖ U
⊕
X

= ‖ [ ũ
x̃ ] ‖ U

⊕
X

.

By Proposition A.3, x ∈ ker
(
B∗

φ

)
, i.e. B∗A∗jx = 0 for all j ≥ 0. This to-

gether with (32) gives for all j ≥ 2
∥∥∥∥Ã∗j

R

[
ũ
x̃

]∥∥∥∥ U
⊕
X

= ‖A∗(j−1)x‖X = ‖x‖X =

∥∥∥∥

[
ũ
x̃

]∥∥∥∥ U
⊕
X

,

thus proving the claim, by Corollary A.4.

By augmenting with identity operators, equation (30) can be written in
the equivalent form for all k ≥ 1

{0}k−1

⊕

ker

„

I−L
Ã∗

R

« =




IUk−1 0 0

0 D C
0 B A



 {0}k

⊕
ker(I−LA∗)

. (33)

Applying this recursively (together with Propositions 2.4 and A.3) gives for
the uncontrollable subspace of DLS φ̃(φ, R) in (14)

range
(
Bφ̃(φ,R)

)⊥

=

[
D1 C1

B1 A1

]


IU 0 0
0 D2 C2

0 B2 A2



 · · · (34)

· · ·




IUd−1 0 0

0 Dd Cd

0 Bd Ad








IUd 0 0
0 D C
0 B A




{0}d+1

⊕

range(Bφ)
⊥

.

Here φ = ( A B
C D ) is again a conservative realization for the free parameter,

(
Aj Bj

Cj Dj

)
:=

(
TRj

◦ TRj+1
◦ · · · ◦ TRd

)
(φ), (35)

and d + 1 is the number of the Schur parameters R = {Rk}
d
k=0. Now we

have proved the following result concerning the state space representation of
Carathéodory interpolation:
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Theorem 4.3. Make the same assumptions and use the same notation as in
Theorem 2.5. Then the unobservable subspaces of φ and φ̃(φ, R) are connected
by (29). The uncontrollable subspaces of φ and φ̃(φ, R) are connected by the
unitary equivalence (34).

In particular φ is approximately observable (approximately controllable,
minimal) if and only if φ̃(φ, R) is a DLS of the same kind.

As a corollary, we show that the stability of the main operator A of φ is
inherited by the realization φ̃(φ, R) for the interpolant.

Corollary 4.4. Make the same assumptions and use the same notation as
in Theorem 2.5. Assume, in addition, that dim U < ∞ and that the main
operator A of φ is strongly stable:

Ajx → 0 for all x ∈ X.

Then the main operator Ã of φ̃(φ, R) is strongly stable, together with its
adjoint. Furthermore, φ̃(φ, R) is exactly observable and exactly controllable,

and the interpolant D̂φ̃(φ,R) is inner from both sides.

Proof. We shall use Proposition A.6 to prove this corollary. To this end, we
shall show in order that φ̃(φ, R) is minimal, and that the range of its Hankel
operator is closed.

As A is strongly stable, D̂φ is inner from the left by Proposition A.5. As
dim U < ∞, it follows (by looking at the nontangential boundary traces)

that D̂φ is inner from the right, too. Hence

A∗x → 0 for all x ∈ ker (Cφ)
⊥ , (36)

see Proposition A.5. Again, by the strong stability of A, we have LA = 0
and hence φ is approximately observable (i.e. ker (C)⊥ = X), by equation
(45) in Proposition A.3. It follows now from (36) that also the adjoint A∗

is strongly stable, implying LA∗ = 0. Hence φ is approximately controllable,
by claim (46) of Proposition A.3. By Theorem 4.3, also the DLS φ̃(φ, R)
is both approximately observable and approximately controllable; in other
words: minimal.

We conclude from (9) that the operator TR : S(D;L (U)) → S(D;L (U))
maps inner from the left functions to inner from the left functions. Recalling
the definition of φ̃(φ, R) (see (14)) and that D̂TR(φ) = T̂RD̂φ (see claim (ii)

of Proposition 2.4), we conclude that the Carathéodory interpolant D̂φ̃(φ,R)

is inner from the left; hence it is inner from the both sides as dim U < ∞.
By a well-known fact that is quite easy to check, the causal Hankel operator
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π̄+Dφ̃(φ,R)π− (as a partial isometry) has closed range, see Proposition A.6
and the discussion preceding it.

Now, φ̃(φ, R) is conservative, because φ is, by Theorem 2.5. Hence the
DLS φ̃(φ, R) satisfies all the conditions of Proposition A.6, and the proof is
now complete.

Let us proceed to consider the backward steps of the Nevanlinna – Pick
problem. By Theorem 3.5, they differ slightly form the Carathéodory case:
every other step in formula (25) is the operator Vα, α ∈ D, of the composition
mapping type. Fortunately, this extra complication is not at all of serious
kind:

Theorem 4.5. Make the same assumptions and use the same notation as in
Theorem 3.5. Then the unobservable subspaces of φ and φ̃(φ, z, R) satisfy

ker
(
Cφ̃(φ,z,R)

)
=

{0}n+1

⊕

ker(Cφ)
. (37)

The uncontrollable subspaces of φ and φ̃(φ, z, R) are connected by the unitary
equivalence

range
(
Bφ̃(φ,z,R)

)⊥

=

[
D1 C1

B1 A1

] 


IU 0 0
0 D2 C2

0 B2 A2



 · · · (38)

· · ·




IUn−2 0 0

0 Dn Cn

0 Bn An








IUn−1 0 0

0 D C
0 B A




{0}n+1

⊕

range(Bφ)
⊥

,

where
(

Aj Bj

Cj Dj

)
:= (Vzj,j

◦ TRj
◦ Vzj+1,j+1

◦ TRj+1
◦ · · · ◦ Vzn,n

◦ TRn
)(φ).

In particular φ is approximately observable (approximately controllable,
minimal) if and only if φ̃(φ, z, R) is of same kind.

Proof. Only the part involving equation (38) deserves a comment. So, let
us check what happens in the very first backward step, described by the
composite operation Vzn,n

◦ TRn
when applied on the free parameter DLS

φ = ( A B
C D ).

The uncontrollable subspace of DLS TRn
(φ) is given by (33) with k = n

and R = −R∗
n; namely

{0}n−1

⊕

range
“

BTRn
(φ)

”

⊥ =




IUn−1 0 0

0 D C
0 B A




{0}n

⊕

range(Bφ)
⊥

. (39)
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Indeed, just note that

range
(
BTRn (φ)

)⊥
= ker

(
I − LÃ∗

−R∗
n

)
and range (Bφ)⊥ = ker (I − LÃ∗)

by claim (46) of Proposition A.3, and the conservativity of both TRn
(φ) and

φ, see Proposition 2.4. By claim (iii) of Lemma 3.4, equation (39) remains
true if the DLS TRn

(φ) is replaced by
(
Vzn,n

◦ TRn

)
(φ) on the left hand side.

This takes care of the full first backward step, and continuing in the similar
manner proves finally (38).

Even though the operators Vzj,j
do not change the uncontrollable sub-

space in any of the steps (see claim (iii) of Lemma 3.4), the uncontrollable

space range
(
Bφ̃(φ,z,R)

)⊥

nevertheless depends on all the interpolation points

{zk}
n
k=0 (through sequence z = {zj,j}

n
j=0 given by (20)). Indeed, the DLSs(

Aj Bj

Cj Dj

)
depend on the sequence z.

The result analogous to Theorems 4.3 and 4.5 concerning the Hermite –
Fejér interpolation problem is left to the interested reader.

5 McMillan degree of rational interpolants

Both Carathéodory and Nevanlinna – Pick interpolation are used extensively
in various engineering applications; see [11], circuit theory [29], system iden-
tification and signal processing [6, 13], and robust control [26, 27, 16]. In
many of such applications, dim U < ∞ and the interpolant is required to
be a rational function of low McMillan degree. To fulfill this requirement
for robust control or signal processing, the degree of interpolant is kept low
appropriately in [19, 6], based on optimization of an entropy functional in
[7]. However, finding (or merely characterizing, e.g. in terms of the free pa-
rameter) the minimal degree interpolants (preferably in an algorithmically
effective way) is a long standing problem, see [29, 14, 13].

As an instructive special case, let us recall the scalar–valued Carathéodory
problem discussed in Section 1. If the free parameter g in (3) is a rational
function, then the corresponding interpolant Fg,r is rational, too. However,
due to complicated zero–pole cancellations that may appear in the backward
steps, it is not at all clear how the McMillan degree deg Fg,r is related to that
of the free parameter g; apart from the completely trivial estimate

deg Fg,r ≤ deg g + d.

Likewise, constructing an interpolant satisfying deg Fg,r < d is not an easy
exercise.
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In the following theorem, we give a geometric characterization for the
McMillan degree of the interpolant for the Carathéodory problem. The ge-
ometry of this characterization explains the computational and theoretic dif-
ficulties in finding low degree rational interpolants.

Theorem 5.1. Make the same assumptions and use the same notation as
in Theorem 2.5. Let φ = ( A B

C D ) be any conservative realization for the free
parameter (whose state space is X, and both input and output spaces equal
to U). If dim U < ∞, then the McMillan degree of the corresponding Cara-

théodory interpolant is given by deg D̂φ̃(φ,R) = dim X0, where

X0 := X̃ ⊖

(
{0}d+1

⊕
ker(I−LA)

∩ X̃

)
⊂

Ud+1

⊕
X

and

X̃ :=

[
D1 C1

B1 A1

]


IU 0 0
0 D2 C2

0 B2 A2



 · · · (40)

· · ·




IUd−1 0 0

0 Dd Cd

0 Bd Ad








IUd 0 0
0 D C
0 B A



 Ud+1

⊕

range(I−LA∗)

and each DLS
(

Aj Bj

Cj Dj

)
for j = 1, . . . , d is given by (35).

Proof. The unobservable subspace of φ̃(φ, R) is ker
(
Cφ̃(φ,R)

)
=

{0}d+1

⊕
ker(I−LA)

by

(29). So as to the controllable subspace of φ̃(φ, R), we first note that the
product of block matrices (denoted by Z henceforth) in (40) is unitary, by
the conservativity of φ and Proposition 2.4. Because a unitary mapping maps
orthogonal complements onto orthogonal complements, we have

range
(
Bφ̃(φ,R)

)
= Z

(
Ud+1

⊕
X

⊖
{0}d+1

⊕
ker(I−LA∗)

)
= Z

(
Ud+1

⊕

range(I−LA∗)

)
= X̃

by (34) and (46). Now the claim follows from Proposition A.1.

We leave the statement of the analogous result for the Nevanlinna – Pick
and Hermite - Fejér problems to the interested reader.
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A On conservative systems

In this appendix, we review some basic facts from linear discrete time
system theory. Our emphasis is on the conservative discrete time systems,
equivalent to operator colligations in the language of [5]. Their continuous
time counterparts are sometimes called operator nodes, see [2, 18]. See also
the related classical references [4, 24, 25].

Let U , X and Y 3 be separable Hilbert spaces. A discrete time linear
system (DLS) is a quadruple φ = ( A B

C D ) of linear operators A, B, C and D,
such that the 2 × 2 block matrix, called the system matrix,

[
A B
C D

]
:

X
⊕
U

→
X
⊕
Y

.

defines a bounded operator between the indicated spaces. We call U the
input, Y the output and X the state space of φ. The DLS φ defines the
system of difference equations

{
xj+1 = Axj + Buj

yj = Cxj + Duj, j ∈ Z,
(41)

where the sequences ũ := {uj}j∈Z ⊂ U , {xj}j∈Z ⊂ X, ỹ := {yj}j∈Z ⊂ Y . For
the solvability of the difference equation, we assume that the input sequence
ũ has only finitely many nonzero elements uj for j < 0, and the initial state
is set by xJ = 0 for some J negative enough. As usual, the controllability
and observability maps of DLS φ are defined by

Bφũ :=
∑

j>1

AjBu−j ∈ X, (42)

Cφx := {CAjx}j≥0 ⊂ Y, x ∈ X,

where ũ := {uj}j<0 ⊂ U again has only finitely many nonzero elements, in
order to have the sum well-defined. Roughly speaking, Bφ maps past inputs
into present states, and Cφ maps present states into future outputs. The

transfer function of φ is defined by D̂φ(z) := D + zC(I − zA)−1B, for all
z−1 /∈ σ(A). As is well known, the input-output mapping Dφ : ũ 7→ ỹ of φ (for
z-transformable input sequences ũ) can be represented by a multiplication

by D̂φ.

It is easy to see that the block matrix [ A B
C D ] :

X
⊕
U

→
X
⊕
Y

is isometric if and

only if the energy balance equations

‖xj+1‖
2
X − ‖xj‖

2
X = ‖uj‖

2
U − ‖yj‖

2
Y (43)

3In this paper, we apply always these with the additional assumption that U = Y .
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hold for the solution of (41), with any initial value x0 ∈ X, input {uj} ∈
ℓ2(Z+; U) and time j ≥ 0. In this case, the DLS φ itself is called energy-
preserving. A DLS is by definition conservative, if it is energy-preserving
together with its dual DLS, defined by φd := ( A∗ C∗

B∗ D∗ ). Equivalently, a DLS φ
is conservative, if and only if its system matrix [ A B

C D ] is unitary, if and only
if

A∗A + C∗C = I, B∗A + D∗C = 0, B∗B + D∗D = I,

AA∗ + BB∗ = I, CA∗ + DB∗ = 0, CC∗ + DD∗ = I.

Not all of these six equations are independent. In [18], the reduction problem
of the corresponding equations is considered in the continuous time setting,
giving results that are applicable for certain PDE’s.

If follows quite easily that for energy-preserving DLSs

‖Bφũ‖X ≤ ‖ũ‖ℓ2(Z−;U), ũ ∈ ℓ2(Z−; U)

‖Cφx‖ℓ2(Z+;Y ) ≤ ‖x‖X , x ∈ X.

Hence, both the operators Bφ and Cφ are bounded (in fact, contractions)
between the indicated Hilbert spaces4. Such DLSs are called both input
stable and output stable. Any energy-preserving (hence, conservative) DLS
satisfies also

‖Dφũ‖ℓ2(Z+;Y ) ≤ ‖ũ‖ℓ2(Z+;U).

Essentially by Parsevals identity, this implies that the corresponding transfer
function satisfies D̂φ ∈ S(D;L (U ; Y )).

For input and output stable DLS φ, we define the unobservable sub-
space ker (Cφ) and the uncontrollable subspace range (Bφ)⊥ = ker

(
Cφd

)
5. If

ker (Cφ) = {0}, then φ is called approximately observable; and if range (Bφ)⊥ =
{0}, then φ is called approximately controllable. Any DLS φ is said to be min-
imal if it is both approximately controllable and approximately observable.
The state space X of any DLS φ can be reduced, so as to obtain a minimal
DLS:
Proposition A.1. Let φ = ( A B

C D ) be an input stable and output stable DLS.
Decompose the state space X to the orthogonal direct sum

X =
(
ker (Cφ) ∩ range (Bφ)

)
⊕ X0 ⊕ range (Bφ)

⊥ ,

where
X0 := range (Bφ) ⊖

(
ker (Cφ) ∩ range (Bφ)

)
.

4Note that Bφ has been extended by continuity to all of ℓ2(Z−; U).
5By range (Bφ) we shall denote all the vectors x ∈ X that are obtained from inputs ũ

having only finitely many nonzero elements.
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Then the operators A, B and C, when decomposed to block matrices accord-
ingly, are of form

A =




∗ ∗ ∗
0 A0 ∗
0 0 ∗



 , B =




∗
B0

0



 , C =
[
0 C0 ∗

]
; (44)

here ∗ denotes an irrelevant, generally nonzero term. The reduced DLS
φr :=

(
A0 B0
C0 D

)
, with state space X0, has the same transfer function as φ.

Moreover, φr is approximately controllable and observable: range (Bφr) = X0

and ker (Cφr) = {0}.

Proof. This result is, of course, classical and can be found in e.g. [15]. The
form of the decomposition (44) follows from the easily verified invariance
conditions A range (Bφ) ⊂ range (Bφ) and A ker (Cφ) ⊂ ker (Cφ). Because
CAjB = C0A0

jB0 for all j ≥ 0, we have the equality of transfer functions,
as claimed.

If dim U = dim Y < ∞ and D̂φ is a rational function, then its McMillan
degree equals dim X0 by definition. In the case of conservative DLSs, the
energy preserving property is generally lost when such a reduction of X is
carried out.

We now describe the geometry of the state space for a conservative DLS.

Definition A.2. For any contraction A ∈ L (X), the operators

LA := slim
n→∞

A∗nAn, LA∗ := slim
n→∞

AnA∗n

are called the residual cost operators of A and A∗, respectively6.

Such residual cost operators (in a more general context) play an impor-
tant role in operator Riccati equations, see [17]. Because the decreasing
sequences of self-adjoint nonnegative operators have a lower bound, both LA

and LA∗ exist for any contractive A. Moreover, they both are self-adjoint and
nonnegative. Note that LA is not generally a projection, as it may have spec-
trum in (0, 1). If A is normal, then clearly LA = LA∗ , and it is an orthogonal
projection.

The unobservable and uncontrollable subspaces of a conservative DLS
have a particularly simple characterization.

6For a sequence of bounded operators Tn ∈ L (X), the strong limit operator
(slimn→∞ Tn) ∈ L (X) is defined by (slimn→∞ Tn) x := limn→∞ Tnx for all x ∈ X .
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Proposition A.3. Let φ = ( A B
C D ) be a conservative DLS. Then

ker (Cφ) = ker (I − LA) (45)

=
{
x ∈ X | ‖Ajx‖X = ‖x‖X for all j ≥ 1

}

and dually

range (Bφ)
⊥ = ker (I − LA∗) (46)

=
{
x ∈ X | ‖A∗jx‖X = ‖x‖X for all j ≥ 1

}
.

Proof. By considering the observability Gramian, we have for any x ∈ X

C∗
φCφx = lim

n→∞

n−1∑

j=0

A∗jC∗CAjx = lim
n→∞

(x − A∗nAnx) = x − LAx,

where we have used the Lyapunov equation A∗A + C∗C = I. This proves
the first equality sign in (45).

Let us proceed to prove the second equality in (45). As A is a contraction,
the sequence {〈A∗jAjx, x〉X}j≥0 is non-increasing for any x ∈ X. If for some
x ∈ X and j ≥ 0 we have

‖Ajx‖2
X =

〈
A∗jAjx, x

〉
X

>
〈
A∗(j+1)Aj+1x, x

〉
X

= ‖Aj+1x‖2
X

then
〈x, x〉X > lim

j→∞

〈
A∗jAjx, x

〉
X

and hence x /∈ ker (I − LA). We have now proved

ker (I − LA) ⊂
{
x ∈ X | ‖Ajx‖X = ‖x‖X for all j ≥ 1

}
.

For the converse inclusion, assume that ‖Ajx‖X = ‖x‖X for all j ≥ 0. Then
〈(I − A∗jAj) x, x〉X = 0 for all j ≥ 0, and by the contractivity of A, we get

‖
(
I − A∗jAj

)1/2
x‖X = 0 ⇔

(
I − A∗jAj

)1/2
x = 0 ⇔ A∗jAjx = x

for all j ≥ 0. Taking the strong limit gives LAx = x.
The dual claim (46) follows by considering the dual DLS instead.

Note that LS = I but LS∗ = 0, where S denotes the forward shift on
ℓ2(Z+). Hence, there is no general relation between the observable and con-
trollable subspaces of a conservative linear system (as any contraction can
appear as a main operator for some conservative DLS).
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Conservative DLS called simple, if its operator A is completely nonunitary
(shortly: c.n.u.); i.e. there is no reducing subspace Xu 6= {0}, given by

Xu = {x ∈ X | ‖Ajx‖ = ‖x‖ = ‖A∗jx‖ for all j ∈ Z+} ⊂ X,

where A operates unitarily. By Proposition A.3, the unitary subspace Xu in
fact equals range (Bφ)

⊥∩ker (Cφ) for any conservative DLS φ = ( A B
C D ). Hence,

a minimal conservative DLS is always simple, but the converse claim does not
hold. It is well known that any contraction A can appear as the main operator
for a conservative DLS. This gives us a restatement of Proposition A.3 in
terms of A, A∗, LA and LA∗ :

Corollary A.4. Let A ∈ L (X) be a contraction. Then the second equal-
ities in (45) and (46) hold. Moreover, A ker (I − LA) ⊂ ker (I − LA) and
A∗ ker (I − LA∗) ⊂ ker (I − LA∗). The unitary subspace of A satisfies Xu =
ker (I − LA) ∩ ker (I − LA∗).

The stability of the main operator A has a natural connection to the
transfer function of the system. We say that D̂φ ∈ S(D;L (U ; Y )) is inner
from the left (resp. right), meaning that the nontangential boundary trace

D̂φ(e
iθ) ∈ L (U ; Y ) is an isometry (co-isometry) for almost all eiθ ∈ T.

Proposition A.5. Let φ = ( A B
C D ) be a conservative DLS. Then D̂φ is inner

from the left if and only if

Ajx → 0 for all x ∈ range (Bφ) (47)

if and only if range (I − LA∗) ⊂ ker (LA). Dually, D̂φ is inner from the right
if and only if

A∗jx → 0 for all x ∈ ker (Cφ)⊥

if and only if range (I − LA) ⊂ ker (LA∗).

Proof. Let ũ = {uj}j≥0 ∈ ℓ2(Z+; U) be such that uj = 0 for all j ≥ n, for
any given n ≥ 1. Then for all k ≥ 0 we have xn+k = Akxn for the solution
of (41) with initial condition x0 = 0. Rewriting now the energy balance (43)
we obtain

n−1∑

j=0

‖uj‖
2
U −

n+k−1∑

j=0

‖uj‖
2
U = ‖xn+k‖

2
X = ‖Akxn‖

2
X .

Assuming (47) and letting k → +∞, we now obtain for such ũ

‖Dφũ‖ℓ2(Z+;Y ) = ‖ũ‖ℓ2(Z+;U) (48)
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because xn ∈ range (Bφ). By using the contractivity of Dφ : ℓ2(Z+; U) →
ℓ2(Z+; Y ) and density of such ũ in ℓ2(Z+; U), we extend (48) to all of ℓ2(Z+; U).

By the Fourier representation, this is equivalent to D̂φ to be inner from the
left. Reading the above argument in converse direction, we see that as-
suming (48) we get Ajx → 0 for all x ∈ range (Bφ). Because the family

{Aj}j≥0 is uniformly bounded, the same holds for all x ∈ range (Bφ). The
second equivalence in the chain of equivalences follows from (46) noting that
ker (I − LA∗)⊥ = range (I − LA∗) by self-adjointness. The latter claim in-
volving A∗ follows by considering the dual DLS φd.

Note that if A is normal in previous proposition, then LA = L2
A = LA∗ =

LA∗ and range (I − LA∗) = ker (LA) follows. Hence, the corresponding trans-

fer function D̂φ is inner from both sides.
We moreover emphasize that the main operator A of a conservative DLS

φ must be “rich” in some ergodic sense, so as to make it possible for D̂φ not
to be inner. All conservative DLSs with finite dimensional state space X
have inner transfer functions; the possible eigenvalues σ(A) ∩ T correspond
to eigenvectors that belong to Xu. Indeed, if Ax = x then ‖Ajx‖X = ‖x‖X

for all j ≥ 0. Moreover, ‖Ax‖X = ‖x‖X implies 〈(I − A∗A)x, x〉X = 0 and
hence x − A∗x = (I − A∗A)x = 0, by the contractivity of A. We conclude
that ‖A∗jx‖X = ‖x‖X for all j ≥ 0, and thus x ∈ Xu. The same argument
holds without change if A is compact and dim X = ∞.

If we know that the Hankel operator π̄+Dφπ− of D̂φ has closed range, then
some stronger conclusions can be drawn for minimal conservative DLSs7. For
rational functions L (U)-valued functions dim U < ∞ this is always the case,
by Kroneckers theorem. Moreover, the Hankel range for any inner (from both
sides) analytic function (rational or not) is closed, as any such operator is a
partial isometry.

Proposition A.6. Let φ = ( A B
C D ) be a minimal, conservative DLS with

U = Y and dim U < ∞. Assume that range (π̄+Dφπ−) ⊂ ℓ2(Z+; U) is closed.
Then φ is exactly observable and exactly controllable, both A and A∗ are

strongly stable, and D̂φ is inner from both sides.

Proof. By the usual theory for DLSs, the Hankel operator has the factoriza-
tion π̄+Dφπ− = CφBφ on all of ℓ2(Z−; U), where Bφ has been extended to all

7Here π̄+, π− denote the natural orthogonal projections in ℓ2(Z; U) onto ℓ2(Z+; U),
ℓ2(Z−; U), respectively.
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of ℓ2(Z−; U) by continuity8. We get

range (π̄+Dφπ−) = Cφ

(
Bφℓ

2(Z−; U)
)
⊂ Cφ(Bφℓ2(Z−; U))

⊂ Cφ (Bφℓ2(Z−; U)) = range (π̄+Dφπ−),

where the last inclusion sign is by the continuity of Cφ. Because range (π̄+Dφπ−)
is closed and Bφℓ

2(Z−; U) is dense in X, we conclude that so is range (Cφ) =
CφX. As ker (Cφ) = {0}, we conclude that Cφ is coercive; i.e. φ is ex-
actly observable. For all x ∈ X we have (by a basic property for DLSs)
CφA

jx = S∗jCφx → 0 as j → ∞, whence Ajx → 0 as j → ∞ by coercivity.

By Proposition A.5, we conclude that D̂φ is inner from the left, and it is
also inner from the right because U = Y and dim U < ∞ (just look at the
nontangential boundary traces of such H∞ matrix functions, and note that
the nontangential limits converge in matrix norm, by finite dimensionality).
Again by Proposition A.5, we conclude that A∗jx → 0 for all x ∈ ker (Cφ)⊥ =
X. The exact controllability follows by dualizing.

We remark that there exists a conservative DLS with dimU = 0 and
dim Y = 1. Moreover, it is not so difficult to construct a C1×2-valued func-
tion that is inner from the left, not inner from the right, and whose Hankel
operator is infinite-dimensional and compact. Hence, the assumption U = Y
in previous proposition cannot be removed.

We conclude this section by recalling a fundamental realization result for
Schur functions.

Proposition A.7. Let U, Y be separable Hilbert spaces. Then the following
holds

(i) The set of transfer functions for simple conservative DLSs (with input
space U and output space Y ) is exactly the Schur class S(D;L (U ; Y )).

(ii) The state spaces of two simple conservative DLSs φ1 =
(

A1 C1
B1 D1

)
and

φ2 =
(

A2 C2
B2 D2

)
are unitarily equivalent, i.e. for some U ∈ L (X), U∗U =

UU∗ = I,

A2 = U∗A1U, B2 = U∗B1, C2 = C1U,

if and only if D̂φ1 = D̂φ2.

Proof. A good classical reference to these results is [5].

8For clarity, we write Bφℓ2(Z−; U) for the range of this extension, rather than range (Bφ)
that has a different meaning.
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stanten von positiven harmonischen Funktionen. Rend. di Palermo,
32:193–217, 1911.

[10] Ph. Delsarte, Y. Genin, and Y. Kamp. Schur Parametrization of Positive
Definite Block-Toeplitz Systems. SIAM J. Appl. and Math., 36:34–46,
Feb 1979.

[11] Ph. Delsarte, Y. Genin, and Y. Kamp. On the role of the Nevanlinna-
Pick problem in circuit and system theory. Circuit Theory and Applica-
tions, 9:177–187, 1981.

35



[12] C. Foias and A. E. Frazho. The Commutant-Lifting Approach to Inter-
polation Problems. Birkhäuser, Boston, 1990.

[13] T. T. Georgiou. Partial Realization of Covariance Sequences. PhD
thesis, University of Florida, Gainesville, 1983.

[14] R. Kalman. Realization of covariance sequences. In I. Gohberg, edi-
tor, Toeplitz Centennial, volume 4 of Operator Theory: Advances and
Applications, pages 331–342. Birkhäuser, 1981.
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