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THE CAYLEY TRANSFORM AS A TIME DISCRETIZATION SCHEME

V. Havu and J. Malinen � Institute of Mathematics,
Helsinki University of Technology, Hut, Finland

� We interpret the Cayley transform of linear (finite- or infinite-dimensional) state space
systems as a numerical integration scheme of Crank–Nicolson type. The scheme is known as
Tustin’s method in the engineering literature, and it has the following important Hamiltonian
integrator property: if Tustin’s method is applied to a conservative (continuous time) linear
system, then the resulting (discrete time) linear system is conservative in the discrete time sense.
The purpose of this paper is to study the convergence of this integration scheme from the
input/output point of view.
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1. INTRODUCTION

This paper consists of two parts that can be read almost independently
from each other. The first “system theory part” takes all of Section 1.
It serves as a motivation for the second “numerical analysis part” that
consists of Sections 2–5. All the new results are presented there, such as
Theorems 4.2 and 4.3.

In Section 1, we discuss how time discretization (1.2) of linear
dynamical systems is related to the Cayley transform (understood in the
sense of linear system theory). In finite-dimensional case, our dynamical
systems are described by (1.1), but it is necessary to use the more general
formulation (1.11) in infinite dimensions. Even the Cayley transform has
to be generalized as explained in Section 1.3.

By Proposition 1.4, integration scheme (1.2) has the following nice
property:
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If the original continuous time dynamical system (1.1) is conservative
(as defined in Section 1.2), then the resulting discrete time system (1.4)
satisfies an analogous energy equality.

Motivated by this observation, the convergence of a generalized,
infinite-dimensional version of scheme (1.2) is investigated in the second
part of the paper. The resulting numerical method can be used for
input/output simulation of input/output stable linear dynamical systems
that are governed by partial differential equations (PDEs) from physics
and engineering. Some of our results have been presented in [21] in a
shortened form.

The real axis is denoted by � and the complex plane by �, and
we write �+ = (0, ∞), i� = �z : Re z = 0�, �+ = �z : Re z > 0�, and � =
�z : |z|< 1�. The usual Hardy spaces of X -valued analytic functions are
denoted by H 2(�;X ),H∞(�;X ),H 2(�+;X ), and H∞(�+;X ) where X is
a Banach space. By C([0, ∞);X ) we denote the X -valued norm-continuous
functions on [0, ∞), and the subset of compactly supported functions
is Cc([0, ∞);X ). The space Cn([0, ∞);X ) denotes n times continuously
differentiable functions for n = 1, 2, � � � where the derivatives at the end
point is one-sided. If X = � above, then � is not written out explicitly. For
I ⊂ �, the Sobolev space H 1(I ) consists of complex-valued functions whose
distribution derivative is in L2(I )—the set of square integrable functions.
Bounded linear operators are denoted by �(X ;Z ) and �(X ). The rest of
the notation is either standard or introduced when used for the first time.

1.1. Cayley Transform as Tustin Time Discretization

For simplicity, we consider first the classic finite-dimensional case.
Then the system S is described by the dynamical equations

S :


x ′(t) = Ax(t) + Bu(t),
y(t) = Cx(t) + Du(t), t ≥ 0,
x(0) = x0,

(1.1)

where A ∈ �n×n ,B ∈ �n×m ,C ∈ �p×n , and D ∈ �p×m . The input and the
output of S are the signals u(·) and y(·), respectively. The function
x(·) is called the state trajectory. Given a discretization parameter h > 0, a
slightly non-standard time discretization of (1.1) of Crank–Nicolson type is
given by

x(jh) − x((j − 1)h)
h

≈ A
x(jh) + x((j − 1)h)

2
+ Bu(jh),

y(jh) ≈ C
x(jh) + x((j − 1)h)

2
+ Du(jh), j ≥ 1

x(0) = x0�

(1.2)
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In engineering literature, this is sometimes called the Tustin discretization
of (1.1). Rewriting (1.2) gives the discrete time dynamics

x (h)
j − x (h)

j−1

h
= A

x (h)
j + x (h)

j−1

2
+ B

u(h)
j√
h

,

y(h)j√
h

= C
x (h)
j + x (h)

j−1

2
+ D

u(h)
j√
h

, j ≥ 1,

x (h)
0 = x0,

(1.3)

where u(h)
j /

√
h is an approximation to u(jh). The purpose of this paper

is to characterize the convergence1 of y(h)j /
√
h to y(jh) as h → 0 in several

different ways and under rather general assumptions.
Let us proceed to describe the connection of (1.1)–(1.3) to the Cayley

transform in system theory. After some computations, equations (1.3) take
the form

�� :


x (h)
j = A�x

(h)
j−1 + B�u

(h)
j ,

y(h)j = C�x
(h)
j−1 + D�u

(h)
j , j ≥ 1,

x (h)
0 = x0,

(1.4)

where � := 2/h, and the operators A�, B�, C�, and D� comprise the discrete
time linear system (henceforth, DLS)

�� ≡
[
A� B�

C� D�

]
=

[
(� + A)(� − A)−1

√
2�(� − A)−1B√

2�C(� − A)−1 �̂(�)

]
� (1.5)

Here �̂(·) denotes the transfer function of system S = [ A B
C D ] in (1.1),

and it is defined by �̂(s) = D + C(s − A)−1B for all s ∈ �(A). Then the
transfer function �̂�(·) of �� clearly satisfies

�̂�(z) := D� + zC�(I − zA�)
−1B� = �̂

(
1 − z
1 + z

�

)
(1.6)

for all z−1 ∈ �(A�). The mapping S 
→ �� described above is called the
Cayley transform of continuous time systems to discrete time systems.
The purpose of this paper is to show that (1.2) successfully approximates
(1.1) in a context of input/output mappings of infinite-dimensional linear
dynamical systems. Hence, the DLS �� can be regarded as a convergent
time discretization of S .

1To state this claim rigorously, we should define the sampling and interpolating operators T2/h

and T ∗
2/h . This is postponed to Section 2.2. Also note that we do not consider the approximation

of x(·) in this paper but we restrict ourselves to the input/ouput framework.
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Out of our convergence results, Proposition 2.2 and Lemma 3.1 are
stated in the frequency domain. Lemma 3.1 provides a speed estimate for
the convergence that is uniform on the compact subsets of frequencies;
see also Corollary 3.2 for a more intuitive but less sharp estimate. As a
consequence of Lemma 3.1, more practical Theorems 4.2 and 4.3 are given
in time domain but unfortunately without a speed estimate. It is finally
shown that Theorem 4.3 cannot be improved by a speed estimate similar
to Lemma 3.1.

1.2. Infinite-Dimensional Linear Systems

Even though we considered above only matrix systems (1.1), the
Cayley transform can be defined similarly to (1.5) for any system
node S . System nodes are a functional analytic framework for presenting
linear dynamical systems with possibly infinite-dimensional state spaces—
including boundary control systems defined by PDEs. System nodes are
discussed in, e.g., Malinen, Staffans, and Weiss [25] but we review the
construction below.2

Let X be a Hilbert space and let A: dom(A) ⊂ X → X be a closed,
densely defined linear operator with a nonempty resolvent set �(A). Take
� ∈ �(A), and define ‖x‖X1 = ‖(� − A)x‖X for each x ∈ dom(A). Then
‖ · ‖X1 is a norm on dom(A), which makes it into a Hilbert space called X1.
It follows that A ∈ �(X1;X ). The space X−1 is defined as the completion
of X with respect to the norm ‖x‖X−1 = ‖(� − A)−1x‖X , which makes X−1

a Hilbert space. We have now constructed a triple of Hilbert spaces X1 ⊂
X ⊂ X−1 with dense and continuous embeddings—the rigged Hilbert spaces
induced by A and X . A different choice of � ∈ �(A) leads to equivalent
norms in X1 and X−1 but it does not change the spaces themselves. The
operator A has a unique extension (by density and continuity) to an
operator A−1 ∈ �(X ;X−1), known as the Yosida extension of A.

Definition 1.1. Let U , X and Y be Hilbert spaces.3 An operator

S :=
[
A&B
C&D

]
:

[
X
U

]
⊃ dom(S) →

[
X
Y

]
is called a system node on (U ,X ,Y ) if it has the following structure:

(i) A is a generator of a strongly continuous semigroup on X with its
Yosida extension A−1 ∈ �(X ;X−1) as explained above.

2The rest of this section serves only as a motivation and background. An already well-motivated
reader may skip to Section 2 without any loss to read the rest of this paper.

3We shall use the notation � XY 	 for X × Y .
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(ii) B ∈ �(U ;X−1).
(iii) dom(S) := �[ x

u ] ∈ [ X
U ] |A−1x + Bu ∈ X �.

(iv) A&B = [A−1 B]| dom(S).
(v) C&D ∈ �(dom(S);Y ); we use on dom(S) the graph norm of A&B:∥∥∥∥ [

x
u

] ∥∥∥∥2

dom(S)

:= ‖x‖2
X + ‖u‖2

U + ‖A−1x + Bu‖2
X �

Let now S = [ A&B
C&D ] be a system node on Hilbert spaces (U ,X ,Y ) as in

Definition 1.1. We call A ∈ �(X1;X ) the main operator or semigroup generator
of S ,B ∈ �(U ;X−1) is its control operator, and C&D ∈ �(dom(S);Y ) is its
combined observation/feedthrough operator. From the last operator, we can
extract C ∈ �(X1;Y ), the observation operator of S , defined by

Cx := C&D
[
x
0

]
, x ∈ X1� (1.7)

It is trivial that A&B ∈ �(dom(S),X ). A short computation shows
that for each � ∈ �(A), the operator E� := � I (�−A−1)

−1B
0 I

	 is a bounded
bijection from � XU 	 onto itself and also from

[
X1
U

]
onto dom(S).

Because
[
X1
U

]
is dense in � XU 	, this implies that dom(S) is dense in � XU 	, too.

It takes more reasoning to see that S , in fact, is closed as a densely defined
operator from � XU 	 to � XY 	. Because the second column of E� maps U into
dom(S), we can define the transfer function of S by

�̂(s) := C&D
[
(s − A−1)

−1B
I

]
, s ∈ �(A), (1.8)

which is an �(U ;Y )-valued analytic function. A system node is called
input/output or I/O stable if �+ ⊂ �(A) and �̂(·) ∈ H∞(�+;�(U ,Y )).

In above construction, the operator node S , the observation
operator C , and the transfer function �̂ are determined by the operators
A,B and C&D. Alternatively, S and �̂ may be constructed from A,B,C
and the value �̂(�) at one point in � ∈ �(A); see [25, Section 2] for
details.

Example 1.2. For any m,n, p ∈ �, take any matrices A ∈ �n×n ,
B ∈�n×m ,C ∈ �p×n , and D ∈ �p×m as in Section 1.1. Then the block matrix
S ′ := [ A B

C D ] is a system node on (�m ,�n ,�p) with dom(S ′) = � �n

�m 	,A1 =
A = A−1,A&B = [A B], and C&D = [C D]. Also (1.8) is equivalent with
�̂(s) = C(s − A)−1B + D for all s ∈ �(A).

In Example 1.2, we have D = lim|s|→∞ �̂(s). Such an operator D is
called the feedthrough operator of S = � A&B

C&D 	 whenever the defining limit
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exists in some operator topology. We remark that not all system nodes
satisfying dimX = ∞ have a well-defined feedthrough operator, and this
is the reason why we use the combined operator C&D in Definition 1.1.
System nodes known as regular well-posed systems possess feedthrough
operators; see, e.g., Staffans and Weiss [34, 35] and Weiss [38].

The main reason for defining system nodes is that the “finite-
dimensional” dynamical equations (1.1) can be generalized for any system
nodes. Indeed, there exists a unique x ∈ C 1([0, ∞);X ) such that{

x ′(t) = A−1x(t) + Bu(t), t ≥ 0,
x(0) = x0

(1.9)

holds for any input u ∈ C 2([0, ∞);U ) and any initial state x0 ∈ X for
which the compatibility condition �

x0
u(0) 	 ∈ dom(S) holds. Moreover, � x(·)

u(·) 	 ∈
C([0, ∞); dom(S)) and because C&D ∈ �(dom(S);U ), the output signal
given by

y(t) = C&D
[
x(t)
u(t)

]
(1.10)

is well defined and continuous for all t ≥ 0. We may write (1.9) and (1.10)
shortly as [

ẋ(t)
y(t)

]
= S

[
x(t)
u(t)

]
, t ≥ 0, x(0) = x0, (1.11)

which is the required generalization of (1.1) to system node S .
The role of the transfer function (1.8) is the same as in the finite

dimensional case. Indeed, define the Laplace transform as usual by

f̂ (s) ≡ (�f )(s) =
∫ ∞

0
e−st f (t)dt for all s ∈ �+� (1.12)

Then ŷ(s) = �̂(s)û(s) for all s ∈ �+ with the estimate

‖y‖L2(�+;Y ) ≤ sup
s∈�+

‖�̂(s)‖�(U ;Y )‖u‖L2(�+;U ) (1.13)

if u(·) and y(·) are related by (1.11) with x0 = 0 (and the integral in
(1.12) converges). This mapping u(·) 
→ y(·) (with x0 = 0) is called the
input/output mapping of S . It has by density a unique extension to a
bounded operator from L2(�+;U ) into L2(�+;Y ) assuming that S is I/O
stable. These and many other facts can be found in [25, Section 2] with all
details.
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1.3. Cayley–Tustin Transform in Infinite Dimensions

We now describe how the Cayley transform can be extended to system
nodes S with infinite-dimensional state spaces. The Cayley transform
�� ≡ � A� B�

C� D�
	 of S is simply the DLS defined by

�� :=
[
(� + A)(� − A)−1

√
2�(� − A−1)

−1B√
2�C(� − A)−1 �̂(�)

]
(1.14)

for any � ∈ �(A) ∩ �+. When comparing to the matrix formula (1.5), we
see that A has been replaced by its extension A−1 in one place. The
observation operator C and the transfer function �̂(·) are now defined
through (1.7) and (1.8), respectively. The transfer function of �̂�(·)
of ��—together with its relation to �̂(·)—is described by (1.6) without
change.

Proposition 1.3. Let � > 0 and S be a system node whose main operator
satisfies �+ ⊂ �(A). Then S is (continuous time) I/O stable if and only if its
Cayley transform �� is (discrete time) I/O stable.

This follows by applying the spectral mapping theorem to the identity
A� = (� + A)(� − A)−1, using (1.6), and recalling that the DLS �� is I/O
stable if and only if �(A�) ⊂ � and �̂�(·) ∈ H∞(�;�(U ;Y ).

From now on, we shall not use equations (1.1)–(1.3) and (1.5)
(which were given only as an introduction) any longer but their
infinite-dimensional generalized versions (1.9)–(1.11) and (1.14) instead.
The approximating trajectories will be given by (1.4) even in the
general case, defining the required operators by (1.14) and the identity
�� ≡ � A� B�

C� D�
	.

There exists an extensive general literature on the Cayley transform
of systems but we shall not make an account of it; see, e.g., Ober and
Montgomery-Smith [28] and the numerous other references given in [33].
The idea of using the Cayley transform for the simulation of linear systems
is not new, either. In finite dimensions, the method described by (1.3) was
already discovered in the 1940s by Tustin, and it is known as the Tustin
transform in digital and sampled-data control circles; see, e.g., [29, p. 137].

The Cayley transform can be used in numerical analysis in a way that is
completely different from Tustin’s approach; see Arov and Gavrilyuk [1],
Gavrilyuk [9–11], and Gavrilyuk and Makarov [12–18]. The analytical and
numerical solution of differential equations of type x (n) = Lx and x (n) =
Lx + f for n = 1, 2, is considered with various assumptions on operator
L that are relevant either in Hilbert or in Banach space context. The
numerical method proposed by these authors is spectral in the sense
that the discretization is a truncation in the Laguerre polynomial basis.
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This is in contrast to Tustin’s approach, which is a time-domain difference
approximation instead.

1.4. Tustin’s Discretization Preserves Conservativity

The system node S is (scattering) energy preserving if for all T > 0 the
energy balance equation

‖x(T )‖2
X +

∫ T

0
‖y(t)‖2

Y dt = ‖x0‖2
X +

∫ T

0
‖u(t)‖2

U dt (1.15)

holds, where u, x , y, and x0 are as in (1.9)–(1.11). For any energy
preserving S , the main operator A is maximally dissipative and �+ ⊂ �(A).
Then equation (1.14) defines the Cayley transform �� for all � > 0. Letting
T → ∞ in (1.15) shows that the input/output mapping of an energy
preserving S is a contraction from L2(�+;U ) into L2(�+;Y ), and hence
its transfer function satisfies ‖�̂(s)‖�(U ;Y ) ≤ 1 for all s ∈ �+.

If both S = [ A&B
C&D ] and its dual node Sd =

[
[A&B]d
[C&D]d

]
are scattering energy

preserving, then [ A&B
C&D ] is called (scattering) conservative. The dual node Sd

is defined simply as the unbounded adjoint of S when it is regarded as
a closed, densely defined operator from [ X

U ] to [ X
Y ] (see the discussion

following (1.7)). We remark that it is now a nontrivial fact that the adjoint
of S actually is a system node in the sense of Definition 1.1. For details, we
refer to [25, Proposition 2.4 and Definitions 3.1 and 4.1].

We say that the DLS � = [ A B
C D ] is energy preserving if the block matrix

[ A B
C D ] is isometric from [ X

U ] into [ X
Y ]. Then, and only then, the discrete time

balance equation

‖xN ‖2
X − ‖x0‖2

X =
N∑
j=1

‖uj−1‖2
U −

N∑
j=1

‖yj−1‖2
Y

is satisfied for all N ≥ 1, all initial values x0 ∈ X and all sequences �uj�, �xj�
and �yj� satisfying {

xj+1 = Axj + Buj ,
yj+1 = Cxj + Duj , j ≥ 0�

The DLS � is conservative if both � and the dual DLS �d := [ A∗ C∗
B∗ D∗ ] (defined

as the adjoint of a bounded block operator) are energy preserving. If the
spaces U and Y coincide, then � is conservative if and only if the block
operator [ A B

C D ] is unitary on [ X
U ]. For the proof of the next proposition,

see [25, Theorems 3.2(v) and 4.2(iii)]:
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Proposition 1.4. The Cayley transform �� of an energy preserving system node S
is an energy preserving DLS. Moreover, such �� is (discrete time) conservative if and
only if S is a conservative.

The reason for preferring the discretization by (1.4) and (1.14)
for energy preserving and conservative problems (1.11) is due to
Proposition 1.4. We emphasize that Proposition 2.2, Lemma 3.1, and
Theorem 4.3 below let us conclude that (1.4) and (1.14) can be interpreted
as a convergent time discretization scheme for all I/O stable—including
many nonconservative—system nodes satisfying dimU = dimY = 1.

This is easy to understand because our results of are formulated in
terms of transfer functions and input/output mappings, and hence they
do not depend at all on the particular choice of the state space realization
of type (1.11). The only connection to system nodes is via the Cayley
transform (1.6) between continuous and discrete time transfer functions.

Conservative system nodes are known in operator theory as operator
colligations or Livšic–Brodskĭı nodes. Much classic literature exists for them,
see, e.g., Arov and Nudelman [2], Ball and Staffans [3], Brodskĭı [5–7],
Livšic [23], Livšic and Yantsevich [22], Sz.-Nagy and Foiaş [36], Smuljan
[30], and Staffans [31–33]. Operator theory techniques for proving
conservativity in applications are given in Malinen, Staffans, and Weiss [25]
and Tucsnak and Weiss [37, 39]. The special case of boundary control
systems is further studied in Malinen [24] and Malinen and Staffans
[26, 27]; see also Gorbachuk and Gorbachuk [19] and the references
therein.

In numerical analysis, integration schemes that preserve energy
equalities or more complex invariants of the system are called Hamiltonian
or symplectic, respectively. The Cranck–Nicolson scheme (1.3) for linear
systems is a lowest order symplectic integration scheme from the family
of Gauss quadrature based Runge–Kutta methods. There exists an
extensive literature of symplectic schemes; see, e.g., Hairer, Lubich, and
Wanner [20].

2. APPROXIMATION OF THE INPUT/OUTPUT MAPPING

In this section, we rewrite the discretization (1.4) of the infinite-
dimensional dynamical system (1.11) in operator theory language. After
that, we explain how its convergence can be studied as an approximation
of the Laplace transform.

From now on, we make it a standing assumption that �̂(·) is a
(possibly nonrational) transfer function of an I/O stable system node
with scalar input and output spaces U = Y = �. This means that �̂(·) ∈
H∞(�+) or, equivalently, �̂�(·) given by (1.6) satisfies �̂�(·) ∈ H∞(�);
see Proposition 1.3.
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2.1. Spaces, Norms, and Transforms

We use the norm

‖f ‖2
H 2(�+)

= 1
2


sup
x>0

∫ ∞

−∞
|f (x + yi)|2dy

for the Hardy space H 2(�+). Then the Laplace transform defined by
(1.12) is unitary from L2(�+) onto H 2(�+). The norm of H 2(�) is given
by ‖�‖2

H 2(�)
= ∑

j≥0 |�j |2 for �(z) = ∑
j≥0 �j zj , and it makes the Z -transform

unitary from �2(�+) → H 2(�). If, say, f ∈ Cc(�) in (1.12), then (�f )(s) is
well defined for all s ∈ i�, too. The function i� 
→ (�f )(i�) is then the
Fourier transform of f .

By �̂� : H 2(�) → H 2(�) denote the multiplication operator satisfying
(�̂�ũ)(z) = �̂�(z)ũ(z) for all z ∈ � and � > 0. Similarly, denote by
�̂ : H 2(�+) → H 2(�+) the multiplication operator satisfying (�̂û)(s) =
�̂(s)û(s) for all s ∈ �+. The operators �̂� and �̂ are unitarily equivalent to
the input/output mappings of �� and S , respectively. The correspondence
(1.6) takes the form of the similarity transform

�̂ = 	−1
� �̂�	�, (2.1)

where the composition operator is defined by (	�F )(z) := F ( 1−z
1−z�) for

all z ∈ � and F : �+ → �. It is easy to see that (	−1
� f )(s) := f ( s−�

s+�
)

for all s ∈ �+ and all f : � → �. Hence we have 
�	−1
� f = F where

F (s)= √
2/�

1+s/� f (
s−�
s+�

) and 
� denotes the multiplication operator by the
function s 
→ √

2/�
1+s/� .

Proposition 2.1. The operator 
�	−1
� : H 2(�) → H 2(�+) is unitary.

This holds because the sequence �
√

2/�
1+s/�

(
s−�
s+�

)j
�j≥0 is an orthonormal

basis for H 2(�+) for each � > 0.

2.2. Discretizing Operators

By T� we denote a discretizing (or sampling) bounded linear operator
T� : L2(�+) → H 2(�). The adjoint T ∗

� of T� maps then H 2(�) → L2(�+),
and it is typically an interpolating operator. The operator T� can be
defined in many ways, but in this paper we use the mean value
sampling

(T�u)(z) =
∑
j≥1

u(h)
j zj where

u(h)
j√
h

= 1
h

∫ jh

(j−1)h
u(t)dt (2.2)
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with h = 2/� (recall (1.3) and (1.4)). Then the adjoint T ∗
� is given by

(T ∗
� ṽ)(t) = 1√

h

∑
j≥1

vj
[(j−1)h,jh](t), (2.3)

where ṽ(z) = ∑
j≥0 vj z

j ∈ H 2(�) and 
I (·) denotes the characteristic
function of the interval I . It is worth noticing that the operator T� is a
co-isometry, i.e., T ∗

� is an isometry:

‖T ∗
� ṽ‖2

L2(�+)
= 1

h

∫ ∞

0

∣∣∣∣∑
j≥1

vj
[(j−1)h,jh]

∣∣∣∣2

dt = 1
h

∫ ∞

0

∑
j≥1

|vj |2
[(j−1)h,jh] dt

= 1
h

∑
j≥1

|vj |2
∫ ∞

0

[(j−1)h,jh] dt =

∑
j≥1

|vj |2= ‖ṽ‖2
H 2(�)

� (2.4)

The operator T� itself is not isometric as kerT� �= �0�.

2.3. Approximation of the Laplace Transform

Let us now use the discrete time trajectories of (1.4) to approximate
the continuous time dynamics in (1.11) using the discretization and
sampling by operators T� and T ∗

� .
Let u ∈ L2(�+) and assume zero initial states for both the system

(1.9)–(1.11) and its Tustin discretization (1.4). The input signal of (1.4) is
the discretised signal T�u. If we transform the output �y(h)�j≥0 of (1.4)
into a continuous time signal by applying the interpolating operator T ∗

�

to it, we obtain the signal T ∗
� �̂�T�u. On the other hand, the output of

the continuous time dynamics (1.11) is given by �∗�̂�u. Our task is to
show that at least for some nice u ∈ L2(�+) and T > 0, we have the
convergence

‖T ∗
� �̂�T�u − �∗�̂�u‖L2(0,T ) → 0 (2.5)

as � → ∞. This will be achieved in Theorem 4.3. By Proposition 2.1 and
equation (2.1), we see that

T ∗
� �̂�T� = T ∗

� (	�
−1
� ) · �̂ · (
�	−1

� )T�

= T ∗
� (
�	−1

� )−1 · �̂ · (
�	−1
� )T�

= (
�	−1
� T�)

∗ · �̂ · (
�	−1
� T�)

because the multiplication operator 
� commutes with �̂. Motivated
by this equation and by (2.5), we inquire whether the operators
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L� :=
�	−1
� T� are in some sense close4 to the Laplace transform � when

� → ∞. Thus, another aim of this paper is to give stronger versions of the
following proposition:

Proposition 2.2. For any u ∈ Cc(�+) and s ∈ �+, we have

(�u)(s) = lim
�→∞

(L�u)(s),

where L� is defined as above.

Proof. Defining T� by (2.2), we get

(L�u)(s) = s
√

2/�
1 + s/�

∑
j≥1

(
1
h

∫ jh

(j−1)h
u(t)dt

)(
� − s
� + s

)j

= 1
1 + s/�

∑
j≥1

( ∫ ∞

0

[(j−1)h,jh](t)

(
� − s
� + s

)j

u(t)dt
)

=
∫ ∞

0
Ks,�(t)u(t)dt , (2.6)

where � = 2/h and

Ks,�(t) = 1
1 + s/�

∑
j≥1


[(j−1)h,jh](t)
(

1 − 2s
s + �

)j

� (2.7)

Now, if j is such that t ∈ [(j − 1)h, jh], then we obtain from the previous

Ks,�(t) ≈ 1
1 + s/�

(
1 − s

s/2 + �/2

)(�/2)·t
→ e−st as � → ∞�

We conclude that lim�→∞ Ks,�(t) = e−st for all s ∈ �+ and t ≥ 0. Moreover,
for each fixed s ∈ �+ and � ≥ 2|s| we have

|Ks,�(t)| ≤ 2 ·
(

1 + 2|s|
� − |s|

)(�/2)·t

≤ 2 ·
(

1 + 2|s|
� − |s|

)(�−|s|)t/2

·
(

1 + 2|s|
� − |s|

)|s|t/2

≤ 2
(
e
√

3
)|s|t

�

The proposition now follows from the Lebesgue dominated convergence
theorem, as the integrand in (2.6) has a compact support. �

4Note that by Proposition 2.1 and equality (2.4), we see that each L� : L2(�+) → H 2(�+) is
a co-isometry. The Laplace transform is a unitary mapping between the same spaces. Hence, the
convergence of L� → � must be rather weak.
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3. A POINTWISE CONVERGENCE ESTIMATE

Our most important preliminary result Lemma 3.1 is given in this
section. We obtain a uniform speed estimate for the convergence of
(L�u)(i�) → (�u)(i�) for i� ∈ K where K ⊂ i� is compact.

Before that, some new definitions and notations must be given:
Let Ij = ((j − 1)h, jh] = (tj−1, tj ] and tj−1/2 = 1

2(tj−1 + tj). For u ∈ L2(�+),
let Ih,su be the piecewise linear (with jumps) interpolating function,
defined by

(Ih,su)(t) = ūj ,h + cj(h, s)
h

(t − tj−1/2), t ∈ Ij , (3.1)

where ūj ,h = 1
h

∫
Ij
u(t)dt and the defining sequence �cj(h, s)�j≥1

(depending on two parameters h and s) will be later chosen in a particular
way. Let Ph denote the orthogonal projection in L2(�+) onto the subspace
of functions that are constant on each interval Ij . Then clearly for all
u ∈ L2(�+), j ≥ 1 and t ∈ Ij we have (Phu)(t) = ūj ,h .

Lemma 3.1. Let h > 0, � = 2/h,T = Jh for some J ∈ �,u ∈ Cc(�+) ∩
H 1(�+), and assume that supp(u) := �t ∈ � : u(t) �= 0� ⊂ [0,T ].

(i) Then the sequence �cj(h, s)�j≥1 can be chosen so that (L� − �)(Ih,su)(s) = 0
for all s ∈ �+.

(ii) For any such choice of the sequence �cj(h, s)�j≥1, we have

|(L�u)(s) − (�u)(s)|≤ hT 1/2|s|



(
‖Ih,su − Phu‖L2(0,T ) + h



|u|H 1(0,T )

)
(3.2)

for all s ∈ �+, where |u|2H 1(0,T )
= ∫ T

0 |u ′(t)|2 dt .
(iii) The sequence �cj(h, s)�j≥1 in claim (i) can be chosen optimally so that

‖Ih,su − Phu‖L2(0,T ) ≤ 15
218

(
h−1/2T −1/2 + |s|

6e

)
‖Phu‖L2(0,T )

holds for a given s ∈ i�, T ≥ 1 if 9h ≤ T 2/3e− 4
3 |s|T . Furthermore, then

|(L�u)(s) − (�u)(s)|
≤ 3h1/2|s|

100
‖u‖L2(0,T ) + 2hT 1/2|s|2

1000
‖u‖L2(0,T ) + h2T 1/2|s|

10
‖u‖H 1(0,T )�

(3.3)
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Claim (iii) of this lemma has an easy consequence that is easier to
remember:

Corollary 3.2. Under the assumption of Lemma 3.1, there exists a constant
C <∞ such that the estimate

|(L�u)(i�) − (�u)(i�)|<Ch1/2(1 + |�|2)T 1/2‖u‖H 1(0,T )

holds for all T ≥ 1,� ∈ � and 0 < h < 1 satisfying 9h ≤ T 2/3e− 4
3 |�|T .

Proof of Lemma 3.1. Let us first make some general observations. By a
simple argument, ‖Phu‖2

L2(�+)
= h

∑
j≥1 ū

2
j ,h . Clearly for all t ∈ Ij

(Ih,su − Phu)(t) = cj(h, s)
h

(t − tj−1/2)�

Because for any b > a we have

1
(b − a)2

∫ b

a

(
t − b + a

2

)2

dt = b − a
12

,

it follows that

‖Ih,su − Phu‖2
L2(0,T )

=
J∑

j=1

cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt

= h
12

J∑
j=1

cj(h, s)2� (3.4)

In claim (i), we want to determine the sequence �cj(h, s)�j≥1 so as to satisfy
(L� − �)(Ih,su)(s) = 0 for given h and s. After some computations, we see
that this is equivalent to requiring that �cj(h, s)�j≥1 satisfies

J∑
j=1

ūj ,hI
(0)
j (h, s) +

J∑
j=1

cj(h, s)Jj(h, s) = 0, (3.5)

where for s ∈ �+\�0�

I (0)j (h, s) :=
∫
Ij

[
1

1 + s/�

(
� − s
� + s

)j

− e−st

]
dt

= 2
� + s

(
� − s
� + s

)j

+ 1
s
[e−sjh − e−s(j−1)h] (3.6)
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and

Jj(h, s) := I (1)j (h, s) − (j − 1/2)h · I (0)j (h, s)

= 1
s2

[e−sjh − e−s(j−1)h] + h
2s

[e−sjh + e−s(j−1)h] (3.7)

together with

I (1)j (h, s) :=
∫
Ij

[
1

1 + s/�

(
� − s
� + s

)j

− e−st

]
t dt

= (2j − 1)h
� + s

(
� − s
� + s

)j

+
(
jh
s

+ 1
s2

)
[e−sjh − e−s(j−1)h] + h

s
e−s(j−1)h �

It is clear that (3.5) has a huge number of solutions �cj(h, s)�Jj=1 for any
fixed s and h, and most of the functions (h, s) 
→ cj(h, s) need not even be
continuous.

Claim (ii) will be treated next. Recalling (2.6), (2.7), and (3.1)

(L�u)(s) − (�u)(s) =
∫ T

0
(Ks,�(t) − e−st)u(t)dt

=
∫ T

0
(Ks,�(t) − e−st)(u(t) − (Ih,su)(t))dt

=
J∑

j=1

∫ tj

tj−1

(Ks,�(t) − e−st)(u(t) − ūj ,h)dt

−
J∑

j=1

cj(h, s)
h

∫ tj

tj−1

(Ks,�(t)− e−st)(t − tj−1/2)dt =: I − II�

(3.8)

Let us first give an estimate to term II. By the Poincaré inequality (see, e.g.,
[8, Theorem 1.7]) we obtain for all j = 1, � � � , J

‖(I − Ph)(Ks,� − e−s(·))‖L2(Ij ) ≤ h



|Ks,� − e−s(·)|H 1(Ij )=
h



|e−s(·)|H 1(Ij )

where the equality follows because the function Ks,� is constant on each
interval Ij . By the mean value theorem we get for s ∈�+ and 0 ≤ a < b <∞,

|e−s(·)|2H 1(a,b) =
∫ b

a

∣∣∣∣ d
dt

e−st

∣∣∣∣2

dt = |s|2
2Re s

(
e−2aRe s − e−2bRe s

)
≤ |s|2

2Re s
· 2Re se−2�Re s(b − a) ≤ (b − a)|s|2e−2aRe s �
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Hence |e−s(·)|H 1(Ij )≤ h1/2|s|e−(j−1)hRe s , and this estimate is seen to hold also
for all s ∈ �+. We now conclude that |e−s(·)|H 1(0,T ) ≤T 1/2|s| and

‖(I − Ph)(Ks,� − e−s(·))‖L2(Ij ) ≤ h3/2|s|



(3.9)

for all s ∈ �+. Using (3.9), we have

II =
J∑

j=1

∫ tj

tj−1

((I − Ph)(Ks,� − e−s(·)))(t) · cj(h, s)
h

(t − tj−1/2)dt

≤
J∑

j=1

h3/2|s|



·
[
cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt

]1/2

≤
( J∑

j=1

h3|s|2

2

)1/2

·
( J∑

j=1

cj(h, s)2

h2

∫ tj

tj−1

(t − tj−1/2)
2 dt

)1/2

≤ h3/2|s|J 1/2



‖Ih,su − Phu‖L2(0,T ) = hT 1/2|s|



‖Ih,su − Phu‖L2(0,T ), (3.10)

where the Schwarz inequality has been used twice, and the second to the
last step is by (3.4).

It remains to estimate term I in (3.8). In this case, because Ph maps
on piecewise constant functions and each u(t) − ūj ,h has zero mean on
subintervals Ij , we obtain from (3.9) using the inequalities of Schwarz and
Poincaré

I ≤
J∑

j=1

∫ tj

tj−1

(
(I − Ph)(Ks,� − e−s(·))

)
(t)(u(t) − ūj ,h)dt

≤
J∑

j=1

h3/2|s|



· h



|u|H 1(Ij ) ≤ h5/2|s|

2

J∑
j=1

|u|H 1(Ij )

≤ h5/2|s|

2

( J∑
j=1

1
)1/2( J∑

j=1

|u|2H 1(Ij )

)1/2

= h2T 1/2|s|

2

|u|H 1(0,T )� (3.11)

Estimate (3.2) follows from combining (3.10) and (3.11) with (3.8).
To prove claim (iii), we shall minimize h

12

∑
j≥1 cj(h, s)2 under the

constraint (3.5); see (3.4) for motivation. We form the Langrange function

L(c1, � � � , ck � � � , cJ , �) = h
12

J∑
j=1

c2
j + �

( J∑
j=1

ūj ,hI
(0)
j (h, s) +

J∑
j=1

cj Jj(h, s)
)
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and compute its (unique) critical point giving the minimum. We obtain
�L
�ck

= h
6
ck + �Jk(h, s) = 0 for 1 ≤ k ≤ J ,

J∑
j=1

ūj ,hI
(0)
j (h, s) +

J∑
j=1

cj Jj(h, s) = 0�

Solving this gives the minimizing sequence

ck = ck(h, s) = −6�
h
Jk(h, s) = −

∑J
j=1 ūj ,hI

(0)
j (h, s)∑J

j=1 Jj(h, s)2
Jk(h, s)

for all 1 ≤ k ≤ J , and then for the minimum value

h
12

J∑
j=1

cj(h, s)2 = h
12

(∑J
j=1 ūj ,hI

(0)
j (h, s)∑J

j=1 Jj(h, s)2

)2 J∑
k=1

Jk(h, s)2

= h
12

( ∑J
j=1 ūj ,hI

(0)
j (h, s)

)2∑J
j=1 Jj(h, s)2

�

Hence, choosing the operator Ih,s in (3.4) optimally gives

‖Ih,su − Phu‖L2(0,T ) ≤
( ∑J

j=1 I
(0)
j (h, s)2

)1/2( ∑J
j=1 Jj(h, s)2

)1/2

‖Phu‖L2([0],)
2
√

3

because ‖Phu‖L2(0,T ) = (h
∑J

j=1 ū
2
j ,h)

1/2. We must now attack (3.6) and
(3.7) to estimate the required two square sums, and the required long
computations will be done in Sections 3.1 and 3.2 below. As a final result,
we get by Propositions 3.3 and 3.4( ∑J

j=1 I
(0)
j (h, s)2

)1/2( ∑J
j=1 Jj(h, s)2

)1/2 ≤ 5
218

(3h−1/2T −1/2 + h1/2|s|2T 1/2)

assuming that 9h ≤ T 2/3e− 4
3 |s|T . But then

h1/2|s|2T 1/2 ≤ |s|
3

· |s|T 5/6e− 2
3 |s|T ≤ |s|

3
· |s|Te− 2

3 |s|T ≤ |s|
2e

because maxr≥0 re− 2
3 r = 3/(2e). Noting that the norm of the orthogonal

projection Ph is 1, the proof of Lemma 3.1 is now complete. �
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3.1. Estimation of (3.7)

In this section, we shall estimate the square sum of

Jj(h, s) = 1
s2

[e−sjh − e−s(j−1)h] + h
2s

[e−sjh + e−s(j−1)h] (3.12)

from below and above. For the first term on the left of (3.12), we obtain

1
s2

[e−sjh − e−s(j−1)h] = 1
s2

[ ∑
k≥0

(−sjh)k

k! −
∑
k≥0

(−s(j − 1)h)k

k!
]

= 1
s2

[
− sh +

∑
k≥2

(−sh)k(j k − (j − 1)k)
k!

]

= −h
s

+
∑
k≥2

(j k − (j − 1)k)
k! (−s)k−2hk �

For the latter term in (3.12), we get

h
2s

[e−sjh + e−s(j−1)h] = h
s

∑
k≥0

(−s)k(j k + (j − 1)k)
2k! hk

= h
s

−
∑
k≥2

(j k−1 + (j − 1)k−1)

2(k − 1)! (−s)k−2hk �

Hence, for all s ∈ �+\�0�

Jj(h, s) =
∑
k≥2

dk(j)
2k! (−s)k−2hk ,

where the coefficient polynomials satisfy (by the binomial theorem)

dk(j) = 2(j k − (j − 1)k) − k(j k−1 + (j − 1)k−1)

=
k−3∑
m=0

(
k
m

)
(k − m − 2)(−1)k−mjm for k ≥ 3

and d2(j) = 0. Hence dk(j) is a polynomial of degree k − 3 in variable j .
Finally, we get the expression

Jj(h, s) =
∑
k≥3

k−3∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk �
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Let us compute an upper estimate for ‖�Jj(h, s)�j‖�2 := (
∑J

j=1 Jj(h, s)2)1/2.
By the triangle inequality

‖�Jj(h, s)�j‖�2 ≤ |s−2|·
∑
k≥3

k−3∑
m=0

k − m − 2
2m!(k − m)! |sh|k

( J∑
j=1

j 2m

)1/2

≤ |s−2|·
∑
k≥3

k−3∑
m=0

k − m − 2
2m!(k − m)! |sh|k · J m+1/2

√
2m + 1

≤ 1
2
|s|T 1/2h5/2 ·

∑
k≥3

k−3∑
m=0

k − m − 2

2
√

2m + 1m!(k − m)! |s|
k−3Tmhk−m−3�

Noting that for k − 3 ≥ m ≥ 0 we have k−m−2√
2m+1m!(k−m)! ≤ 1

m!(k−m−3)! and
|s|k−3Tmhk−m−3 = |sh|k−3·(T /h)m , we may estimate the sum term above

∑
k≥3

k−3∑
m=0

k − m − 2

2
√

2m + 1m!(k − m)! |s|
k−3Tmhk−m−3

≤
∑
k≥3

( |sh|k−3

(k − 3)!
k−3∑
m=0

(
k − 3
m

) (
T
h

)m)

≤
∑
k≥3

|sh|k−3

(k − 3)!
(

1 + T
h

)k−3

= e |s|(h+T )�

We now conclude for all h,T > 0 and s ∈ �+\�0� that

‖�Jj(h, s)�Jj=1‖�2 ≤ 1
2
|s|T 1/2h5/2e |s|(h+T )� (3.13)

In addition to estimate (3.13), a lower bound can also be obtained.
Decompose

Jj(h, s) =
∞∑
k=3

k−3∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk

=
∞∑
k=3

(
1

2(k − 3)!3!(−j)k−3sk−2hk +
k−4∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk

)

=
∞∑
k=3

1
2(k − 3)!3!(−j)k−3sk−2hk +

∞∑
k=4

k−4∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk
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so that by the triangle inequality

∥∥�Jj(h, s)�Jj=1

∥∥
�2 ≥

∥∥∥∥{ ∞∑
k=3

1
2(k − 3)!3!(−j)k−3sk−2hk  

}J

j=1

∥∥∥∥
�2

−
∥∥∥∥{ ∞∑

k=4

k−4∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk  

}J

j=1

∥∥∥∥
�2
� (3.14)

For the first term in the right-hand side of (3.14), we have∥∥∥∥{ ∞∑
k=3

1
2(k − 3)!3!(−j)k−3sk−2hk  

}J

j=1

∥∥∥∥
�2

=
∥∥∥∥{

1
12

sh3
∞∑
k=3

1
(k − 3)!(−j)k−3sk−3hk−3

}J

j=1

∥∥∥∥
�2

= 1
12

|s|h3 · ‖�e−jsh�
J
j=1‖�2 , (3.15)

where

‖�e−jsh�
J
j=1‖�2 =

J∑
j=1

|e−jsh |2=


J = h−1T , when Re s = 0

e−2hRe s 1 − e−2(J +1)hRe s

1 − e−2hRe s
, when Re s > 0�

(3.16)

For the latter term in (3.14), we have a similar upper estimate to (3.13).
Indeed, ∥∥∥∥{ ∞∑

k=4

k−4∑
m=0

k − m − 2
2m!(k − m)!(−j)msk−2hk  

}J

j=1

∥∥∥∥
�2

≤
∞∑
k=4

k−4∑
m=0

k − m − 2
2m!(k − m)! |s|

k−2hk J m+1/2

√
2m + 1

=
∞∑
k=4

k−4∑
m=0

k − m − 2
2m!(k − m)! |s|

k−2hkh−m−1/2Tm+1/2

= |s|2h7/2
∞∑
k=4

k−4∑
m=0

k − m − 2
2m!(k − m)! |s|

k−4hk−m−4Tm

≤ |s|h7/2e |s|(h+T )� (3.17)
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As a conclusion, we can now state the following proposition:

Proposition 3.3. Let Jj(h, s) be defined through (3.12). Then for any s ∈ i�,
T , h > 0 satisfying T = Jh, J ∈ � and 9h ≤ T 2/3e− 4

3 |s|T , we have

‖�Jj(h, s)�Jj=1‖�2 ≥ 5
109

Th2|s|� (3.18)

Proof. It is clear that (3.18) is satisfied for s = 0. For s ∈ i�\�0� it follows
from (3.14) and (3.15)–(3.17) that for all s ∈ i�\�0�, h,T > 0 satisfying
T = Jh for J ∈ �, the estimate

‖�Jj(h, s)�Jj=1‖�2 ≥
(
T
12

− h3/2e |s|(h+T )

)
h2|s|

holds. Because always h ≤ T , we have h3/2e |s|(h+T ) ≤ h3/2e2|s|T ≤ T
27 provided

that h ≤ T 2/3

9 e− 4
3 |s|T . The claim follows from this. �

3.2. Estimation of (3.6)

In this section, we compute an upper estimate for ‖�I (0)j (h, s)�Jj=1‖�2 :=( ∑J
j=1 I

(0)
j (h, s)2

)1/2
. Writing � = sh and � = 2/h, we get for s ∈ �+

I (0)j (h, s) = 2
� + s

(
� − s
� + s

)j

+ 1
s

(
e−sjh − e−s(j−1)h

)
= 2

� + s

((
� − s
� + s

)j

− e−sjh

)
+

(
2

� + s
− 1

s
(e sh − 1)

)
e−sjh

= 2h
2 + �

((
2 − �

2 + �

)j

− e−�j

)
+

(
2h

2 + �
− h

�
(e � − 1)

)
e−�j �

Let � ⊂ �+ be any set. Then for any � ∈ �, we have

|I (0)j (h, s)| ≤
∣∣∣∣ 2h
2 + �

∣∣∣∣∣∣∣∣(2 − �

2 + �

)j

− e−�j

∣∣∣∣ +
∣∣∣∣ 2h
2 + �

− h
�
(e � − 1)

∣∣∣∣|e−�j |

≤
∣∣∣∣ 2h

2 + �

∣∣∣∣∣∣∣∣(2 − �

2 + �

)
− e−�

∣∣∣∣ ∣∣∣∣ j−1∑
k=1

(
2 − �

2 + �

)k

e−�(j−k−1)

∣∣∣∣
+

∣∣∣∣ 2h
2 + �

− h
�
(e � − 1)

∣∣∣∣
≤ h|�|

(
C�

∣∣∣∣ 2j�2

2 + �
 
∣∣∣∣ + C ′

�

)
,
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where the constants are given by

C� = sup
�∈�

∣∣∣∣ 1
�3

(
2 − �

2 + �
− e−�

)∣∣∣∣ and C ′
� = sup

�∈�

∣∣∣∣1
�

(
2

2 + �
− 1

�
(e � − 1)

)∣∣∣∣�
This implies for all h ≥ 0 and � = sh ∈ �

∥∥�I (0)j (h, s)�Jj=1

∥∥
�2 ≤ C�

2h|�|3
|2 + h|

( J∑
j=1

j 2

)1/2

+ C ′
�h|�|

( J∑
j=1

1
)1/2

≤ C�h4|s|3
(

1
3
J 3 + 1

2
J 2 + 1

6
J
)1/2

+ C ′
�h

2|s|J 1/2

≤ C�h5/2|s|3T 3/2 + C ′
�h

3/2|s|T 1/2 (3.19)

by the facts that T = Jh and J ≥ 1. We now have to choose the set � in a
clever way, so that the resulting estimate is properly “fine tuned” according
to Proposition 3.3.

Proposition 3.4. Let I (0)j (h, s) be defined through (3.6). Then for any s ∈ i�,
T ≥ 1, h > 0 satisfying T = Jh, J ∈ � and 9h ≤ T 2/3e− 4

3 |s|T , we have

∥∥�I (0)j (h, s)�Jj=1

∥∥
�2 ≤ 1

2
h5/2|s|3T 3/2 + 3

2
h3/2|s|T 1/2� (3.20)

Proof. Because we assume (motivated by Proposition 3.3) that
9h ≤T 2/3e− 4

3 |s|T , we have

|�|= |s|h ≤ |s|T 2/3

9
e− 4

3 |s|T ≤ |s|T
9

e− 4
3 |s|T ≤ 1

12e

because maxr≥0 re
− 4

3 r = 3/(4e). Hence, we must estimate the constants C�

and C ′
� for the set � := [−i/(12e), i/(12e)]. By computing the Taylor

series, we see that

C� ≤
∑
j≥0

∣∣∣∣ 1
2j+2

− 1
(j + 3)!

∣∣∣∣ ·
(

1
12e

)j

<
∑
j≥0

1
2j−1

·
(

1
12e

)j

<
1
2

and similarly

C ′
� ≤

∑
j≥0

∣∣∣∣( − 1
2

)j+1

− 1
(j + 2)!

∣∣∣∣ ·
(

1
12e

)j

<
∑
j≥0

1
2j

·
(

1
12e

)j

<
3
2
�

But now, (3.19) implies (3.20). �
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4. WEAK AND STRONG CONVERGENCE

Our main results are given in this section. We first show that
Lemma 3.1 implies that L� → � in weak operator topology. Using this,
it is then shown in Theorem 4.2 that the convergence is actually strong.
The input/output approximation of linear dynamical systems is treated in
Theorem 4.3.

It follows from Lemma 3.1 that (L�u)(i�) → (�u)(i�) uniformly in
the compact subsets i� ∈ K ⊂ i� for any u ∈ Cc(�+) ∩ H 1(�+). Hence,
for finite linear combinations s of characteristic functions 
K of compact
intervals K ⊂ i� (also called simple functions), we have 〈s,L�u〉L2(i�) →
〈s,�u〉L2(i�). Because ‖L�‖�(L2(�+);H 2(�+)) ≤ 1 and simple functions are
dense in L2(i�), it follows that

〈v,L�u〉K 2(i�) → 〈v,�u〉H 2(i�) as � → ∞ (4.1)

for all u ∈ Cc(�) ∩ H 1(�+) and v ∈ L2(i�+). Another density argument
implies finally that (4.1) holds even for all u ∈ L2(�+) and v ∈ L2(i�+).
To continue the argument, we recall a result from elementary functional
analysis:

Proposition 4.1. Let H be a Hilbert space, and assume that uj → u weakly
in H . If ‖uj‖H → ‖u‖H , then uj → u in the norm of H .

Proof. 〈uj −u,uj −u〉H = 〈uj ,uj 〉H − 〈u,u〉H − 〈u,uj −u〉H − 〈uj −u,u〉H =
‖uj‖2

H − ‖u‖2
H − 2Re 〈u,uj − u〉H . �

Theorem 4.2. We have ‖L�u − �u‖H 2(�+) → 0 for any u ∈ L2(�+).
Moreover, ‖L∗

�v − �∗v‖L2(�+) → 0 for any v ∈ H 2(�+).

Proof. Adjoining (4.1) shows that L∗
�v → �∗v weakly. Because L� is a

co-isometry by Proposition 2.1 and (2.4), we have

‖L∗
�v‖2

L2(�+)
= 〈L�L∗

�v, v〉2
H 2(�+) = ‖v‖2

H 2(�+)
�

Now Proposition 4.1 implies the latter part of this theorem.
To show the first part, we have to work a bit harder to verify

that ‖L�u‖L2(i�) → ‖u‖L2(�+) = ‖�u‖L2(i�). Suppose that h = 2/� > 0 and
u ∈L2(�+) is such that u(t) = uj ,h := ∫

((j−1)h,jh] u(t)dt for all t ∈ Ij :=
((j − 1)h, jh]—in other words, this is simply u = Phu. For such u

‖u‖2
L2(�+)

=
∑
j≥1

∫
Ij

|u(t)|2 dt = h‖�uj ,h�j≥0‖2
�2 �
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By the definition of the discretizing operator T�, we have

‖T�u‖2
H 2(�)

=
∑
j≥1

(
1√
h

∫
Ij

|u(t)|2 dt
)2

= h
∑
j≥1

|uj ,h |2 = ‖u‖2
L2(�+)

�

Hence, we have ‖T�Phu‖H 2(�) = ‖Phu‖L2(�+) for all u ∈ L2(�+) where � =
2/h. Also note that T�u = T�Phu for all u ∈ L2(�+) provided that � = 2/h.
We now have for any u ∈ L2(�+)

|‖T�u‖H 2(�) − ‖u‖L2(�+)|
≤ |‖T�u‖H 2(�) − ‖T�Phu‖H 2(�)| + |‖T�Phu‖H 2(�) − ‖Phu‖L2(�+)|

+ |‖Phu‖L2(�+) − ‖u‖L2(�+)| = |‖Phu‖L2(�+) − ‖u‖L2(�+)|,

where again � = 2/h. Because the projections Ph → I strongly in
L2(�+) as h → 0, we conclude that ‖T�u‖H 2(�) → ‖u‖L2(�+) and hence
‖L�u‖H 2(�+) → ‖u‖L2(�+) as � → ∞, see Proposition 2.1. The first claim of
this theorem follows from this, Proposition 4.1 and equation (4.1). �

Using Theorem 4.2, we can finally show that the output of integration
scheme (1.4) converges to the output of continuous time dynamics (1.1)
for input/output stable systems S .

Theorem 4.3. For any u ∈ L2(�+) and �̂ ∈ H∞(�+), we have

‖T ∗
� �̂�T�u − �∗�̂�u‖L2(�+) → 0 (4.2)

as � → ∞.

Proof. As noted just before Proposition 2.2, we have T ∗
� �̂�T� = L∗

��̂L�.
Then we get for all � > 0

‖L∗
��̂L�u − �∗�̂�u‖L2(�+)

≤ ‖(L∗
� − �∗)�̂(L�u − �u)‖L2(�+)

+ ‖(L∗
� − �∗)�̂�u‖L2(�+) + ‖�∗�̂(L�u − �u)‖L2(�+)�

Now (4.2) follows by Theorem 4.2. �

5. ON THE OPTIMALITY OF THEOREM 4.3

We complete this paper by showing that Theorem 4.3 is optimal in the
sense that it cannot be improved to have a speed estimate for convergence
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as in Lemma 3.1. To this end, we consider estimate (2.5) in the special case
when �̂(s) = I for all s ∈ �+.

In this special case, it follows from the very definitions that L∗
��̂L� =

T ∗
�T� = P2/� where the orthogonal projection Ph is defined as in Section 3.

Because �∗� = � on all of L2(�+), we should give an estimate to

‖u − Phu‖L2(0,T ) for a family of functions u ∈ L2(�+)�

It is, of course, true that Phu → u as h → 0 for all u ∈ L2(�+). However,
there cannot be a uniform speed estimate of type

‖u − Phu‖L2(0,T ) ≤ Cuh�, (5.1)

where Cu < ∞ for all u ∈ L2(0,T ). If it were so, then for any
0<�<� we would have ‖h−�(I − Ph)uL2(0,T ) ≤ Cuh�−� → 0 as h → 0, for all
u ∈L2(0,T ). By the uniform boundedness principle,

sup
h>0

‖h−�(I − Ph)‖L2(0,T ) =: M < ∞

and hence ‖(I − Ph)‖�(L2(0,T )) ≤ Mh� for all h > 0.
Making now h small enough, we see that then the norm of the

orthogonal projection (I − Ph) |L2(0,T ) is strictly less than 1; this implies
that I |L2(0,T ) = Ph |L2(0,T ). But Ph |L2(0,T ) is a finite rank operator,
and the uniform speed estimate (5.1) cannot hold by contradiction.
The same conclusion holds if h� in (5.1) is replaced by any increasing
continuous function �(h) satisfying �(0) = 0.

It should be noted that a speed estimate of type (5.1) can be obtained
for functions u ∈ L2(�+) that have some “smoothness”. See [4] for a
further discussion on what is obtainable and what is not.

6. CONCLUSIONS

We have shown in Section 1 that the Cayley transform (in the
context of linear system theory) is equivalent to the classic Tustin
discretization (1.2) even for infinite-dimensional linear systems S = [ A&B

C&D ].
The convergence of this discretization is studied in the scalar-valued
input/output setting, using the operators L� as introduced before
Proposition 2.2.

It is shown in Theorem 4.2 (see also Corollary 3.2) that for a wide class
of functions u, the function L�u provides a pointwise approximation to the
usual Laplace transform. Even a convergence speed estimate is given as a
function of the sampling parameter h = 2/�. This result is extended to the
input/output mapping of the linear system S ; see Theorem 4.3.



850 V. Havu and J. Malinen

Unfortunately, Theorem 4.3 cannot be improved with a speed estimate,
as discussed in Section 5. This is understandable because for any � > 0,
the sampling operator T� cannot detect above a certain cutoff frequency.
However, there are always high-frequency signals u carrying substantial
energy that the discretized input/output mapping T ∗

� �̂�T� of S cannot
capture at all.

It is possible to make some variants of Theorem 4.3 to operator-valued
transfer functions �̂(·) but we do not discuss them here. Likewise, the
approximation of the true state trajectory x(·) in (1.11) by the discrete
trajectories �x (h)

j �j≥0 solving (1.4) remains a subject of further study.
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