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Abstract: This article describes modal analysis of acoustic waves in the human vocal tract
(VT) while the subject is pronouncing[ø:℄. The model used is the wave equation in three dimen-
sions, together with physically relevant boundary conditions. The geometry is reconstructed
from anatomical MRI data obtained by other researchers. Thecomputations are carried out
using the Finite Element Method. The model is validated by comparing the computed modes
with measured data.
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1. Introduction

The purpose of this article is to study vowel production by the wave equation with boundary
conditions as specified by Eq. (2) below. This model constitutes the input part of a(scattering)
conservative linear dynamical systemas presented by, e.g., Malinenet al. (2006); Malinen and
Staffans (2006: 2007). A preliminary version of the presentwork was presented at the Phonetics
Symposium 2006 (Hannukainenet al.2006).

In the past, the vocal tract (VT) acoustics has been modelledin a number of different ways.
Electrical transmission lines have been used for long time (see, e.g., Dunn 1950). The cel-
ebrated Kelly–Lochbaum model makes use of reflection coefficients obtained from a variable
diameter tube (Kelly and Lochbaum 1962). Such reflection coefficients appear in, e.g., models
from geophysics and in interpolation theory (see Foias and Frazho 1990). We remark that the
Kelly–Lochbaum model is closely related to the horn model described by the Webster equation
(see Chiba and Kajiyama 1958; Fant 1970). All these models have produced very accurate sim-
ulation results with a relatively light computational load, and they have applications, e.g., in mo-
bile phones. More advanced two- and three-dimensional descendants of the Kelly–Lochbaum
model are the transmission line networks that have been developed by El Masriet al. (1996:
1998); Mullenet al. (2006). For a recent review and further references, see Palo(2006).

Equation (2) in an anatomically realistic geometry has a more direct basis in physics than
any of the approaches discussed in the previous paragraph. This is particularly useful in some
applications, for example, in modelling the effects of anatomical abnormalities and maxillofa-
cial surgery on speech (Dedouchet al. 2002a; Nishimotoet al. 2004; Švancara and Horáček
2006). As solving Eq. (2) analytically is possible only in a radically simplified geometry (see
Sondhi 1986), we solve the problem numerically byFinite Element Method(FEM). This is the
approach used by, e.g., Luet al. (1993), Suzukiet al. (1993), Kawanishiet al. (1996), Niikawa
et al. (2002), Dedouchet al. (2002b), Sasakiet al. (2003), and Švancaraet al. (2004), too.
Unfortunately, heavy computations are involved in this method.

We present a modal analysis of an anatomical configuration of[ø:℄ as produced by a native
Swedish speaker. We obtain resonance frequencies computationally, which correspond to for-
mants. Unlike the scattering transfer function estimationused by Nishimotoet al. (2004) and
Sasakiet al. (2003), our method does not necessarily require taking intoaccount the radiation
impedance at the mouth. Our approach is more closely relatedto Dedouchet al. (2002b) but
instead of Neumann boundary condition on the glottis, we usea reflection-free boundary con-
dition slightly above the glottis (see the last lines of Eq. (2) and Eq. (4)). Using reflection-free
boundary conditions Eq. (3), our Eq. (2) can be coupled to a glottis model in a physically



realistic manner. Our results indicate that the computationally obtained formants identify the
vowel [ø:℄ correctly in a larger set of measured data.

For numerical computations, a detailed geometric description of the VT is necessary. Nowa-
days, accurate anatomical data can be obtained using Magnetic Resonance Imaging (MRI). We
are indebted to Dr. Olov Engwall (KTH) for kindly providing us with the required data.

2. Acoustic model

Deriving the wave equation for sound pressure starts by assuming that the total pressurep =
p(r, t) and the densityρ = ρ(r, t) can be expressed as

p(r, t) = p0 + p′(r, t) and ρ(r, t) = ρ0 + ρ′(r, t), (1)

respectively, wherep0 andρ0 are independent of timet and space variabler. For linearisation
of the equations, it is assumed thatp′ = p′(r, t) ≪ p0 andρ′ = ρ′(r, t) ≪ ρ0 are small
perturbations at pointr = (x, y, z) ∈ Ω at timet. HereΩ ⊂ R

3 denotes the interior of the VT
with boundary∂Ω = Γ1 ∪Γ2 ∪Γ3, whereΓ1 is the mouth opening,Γ2 denotes the walls of the
VT, andΓ3 is a virtual boundary control surface a small distance abovethe glottis.

By v = v(r, t) denote the velocity field of the flow described byp and ρ. A velocity
potentialΦ = Φ(r, t) is any function that satisfiesv = −∇Φ. With this notation, our acoustic
model is given by

{

Φtt = c2∆Φ onΩ,

Φ = 0 onΓ1,
∂Φ
∂ν

= 0 onΓ2, and Φt + c∂Φ
∂ν

= 2
√

c
ρ0

u onΓ3,
(2)

whereu = u(r, t) is the incoming power (per unit area) at glottis input,c is the sound velocity
in the VT,ν is the exterior unit normal on∂Ω, and ∂Φ

∂ν
= ν · ∇Φ. The problem is to compute

the velocity potentialΦ(r, t) for a given glottal input functionu(r, t).
To derive Eq. (2) from “first principles”, one needs to assumethat an isentropic thermo-

dynamic equation of state for pressurep = p(s, ρ) holds wheres, ρ are the entropy and
density, respectively. Then we define the sound speedc by linearising the equation of state
p′ = p(s, ρ0 + ρ′) − p(s, ρ0) ≈ c2ρ′ wherep0 = p(s, ρ0) andc2 = ∂p

∂ρ
(s, ρ0). In this approx-

imation, the entropys is kept constant since the associated thermodynamic process is assumed
to be reversible. In the case of monatomic ideal gas, we havep/ργ = p0/ργ

0 andc2 = γp0/ρ0

whereγ = 5/3 is the adiabatic constant.
Now the wave equationΦtt = c2∆Φ can be derived by a linearisation argument involving

the continuity equation, Euler equation and linearised equation of statep′ = c2ρ′. Having
computedΦ, we obtain the perturbation pressure fromp′ = ρ0Φt. All this can be found, e.g.,
in Fetter and Walecka (1980: Chapter 9).

Equation (2) is sophisticated enough to capture many relevant properties of wave propa-
gation in three-dimensional geometry (e.g., to detect cross modes). It can also be used as the
theoretical starting point in deriving the Webster equation mentioned above. However, it does
not take into account turbulence, shock formation, or losses due to viscosity, heat conduction,
or boundary dissipation.

We also need to take into account the walls and both ends of theVT. The last three lines
in Eq. (2) specify the required boundary conditions. We regard the mouth as an open end of
an acoustic tube, and this is described by the Dirichlet condition Φ(r, t) = 0. More compli-
cated models for the mouth opening or the surrounding acoustic space have been considered
by Kawanishiet al. (1996) (an impedance model involving Bessel functions), Nishimotoet al.
(2004) (an impedance model consisting of a small reflecting hemisphere), and Švancaraet al.
(2004) (an exterior model of two concentric spheres with an absorbing outer boundary).



On the walls of the VT, we use the same Neumann condition∂Φ
∂ν

(r, t) = 0 as one would use
at the closed end of a resonating tube. These two boundary conditions are discussed by Fetter
and Walecka (1980: pp. 306-307).

At the glottis end, we use a scattering boundary condition that specifies the ingoing sound
energy wave. For motivation, we define the ingoing waveu(r, t) and the outgoing wavey(r, t)
for r ∈ Γ3 by

u =

√

ρ0

4c

(

c
∂Φ

∂ν
+ Φt

)

and y =

√

ρ0

4c

(

c
∂Φ

∂ν
− Φt

)

. (3)

First of these equations coincides with the third boundary condition in (2). The net power
absorbed by the interior domainΩ through the control/observation boundary at timet satisfies

∫

Γ3

|u(r, t)|2 dω(r) −

∫

Γ3

|y(r, t)|2 dω(r) =

∫

Γ3

(−ν(r)) · je(r, t) dω(r)

whereje = −ρ0Φt∇Φ = p′v is the energy-flux vector as introduced in Fetter and Walecka
(1980: pp. 307).

Instead of solving Eq. (2), we solve an easier — yet relevant —problem related to Eq. (2).
More precisely, we determine the resonance frequencies corresponding to a particular vowel
articulation position. By Malinen and Staffans (2006: Theorem 2.3), the resonances of Eq. (2)
can be solved by finding the discrete, complex frequenciesλ and the corresponding nonzero
eigenfunctionsΦλ(r) such that the equations

{

λ2Φλ = c2∆Φλ onΩ,

Φλ = 0 onΓ1,
∂Φλ

∂ν
= 0 onΓ2, and λΦλ + c∂Φλ

∂ν
= 0 onΓ3

(4)

are satisfied. The time harmonic extensionΦ(r, t) = Φλ(r)eλt of Φλ satisfies clearly Eq. (2).
Using the connectionp′ = ρ0Φt, the corresponding perturbation pressure distribution isgiven
by p′(r, t) = pλ(r)eλt, wherepλ(r) := ρ0λΦλ(r). Thus Eq. (4) are satisfied withpλ in place
of Φλ.

3. Finite element modelling

The variational formulation of Eq. (4) (withpλ in place ofΦλ) is

λ2

∫

Ω

pλφdΩ + λc

∫

Γ3

pλφdω + c2

∫

Ω

∇pλ · ∇φdΩ = 0, (5)

whereφ is an arbitrary test function in Sobolev spaceH1
Γ1

(Ω) = {f ∈ H1(Ω) : f(r) =
0 for r ∈ Γ1}. The Finite Element Method (FEM) can be used to approximately solve Eq.
(5); see, e.g., Johnson (1987) for an elementary treatment.We use piecewise linear shape
functions and a tetrahedral mesh ofn = 64254 elements which gives sufficiently accurate
results. We obtain threen × n matrices, namely the stiffness matrixK, the mass matrixM ,
andP representing the glottis boundary condition in Eq. (4).

When treating Eq. (5) we proceed to solve the following linear algebra problem: find all
complex numbersλ and corresponding nonzero vectorsx(λ) such that

λ2
Kx(λ) + λcPx(λ) + c2

Mx(λ) = 0 ⇔ Ay(λ) = λBy(λ). (6)

whereA =
[

−cP −c2
M

I 0

]

, B =
[

K 0
0 I

]

, andy(λ) =
[

λx(λ)
x(λ)

]

(Saad 1992). The numbersλ are

good approximations of theλ’s appearing in Eq. (4), provided that the numbern of elements
is high enough. The lowest formants F1, F2,. . ., correspond to the numbersλ in the order of
increasing imaginary part.



4. Data

Figure 1 in in Hannukainenet al. (2006) shows a sliced representation of the VT geometry that
we have used as the basis of our analysis. There are 29 slices,each consisting of 51 points, and
they define the VT from glottis to mouth. For faster computation, the slices were down-sampled
by taking into account only every fourth point.

The raw MRI data was collected from a native male speaker of Swedish while he pro-
nounced a prolonged vowel[ø:℄ in supine position. Engwall and Badin (1999) describe the
MR imaging procedure and image post-processing. Corresponding formant measurement data
is also available in the same article. The formants were estimated from speech recorded on a
different occasion but with the same subject in a similar supine condition.

5. Results and conclusions

The latter form of Eq. (6) was solved in MATLAB environment, and the formants F1 to F4
that we obtained are shown in Table 1. These computed formants are roughly3 1

2 semitones
too high compared to the measured values, and we will discussthe physical background of this
discrepancy below. The bottom row in Table 1 shows the computed formants multiplied by
0.817, which corresponds to a difference of3 1

2 semitones.

TABLE 1. Computed, measured, and scaled formants for[ø:℄ in kHz

F1 F2 F3 F4
Computed 0.68 1.35 2.71 3.79
Measured 0.50 1.06 2.48 3.24

Scaled 0.56 1.11 2.22 3.10
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FIG. 1. Isobars corresponding to F4 along a mid-line cut. Themouth is on the right.

We also obtained the resonance modespλ — see Eq. (4) — corresponding to the formants
F1-F4. They are computed as linear combinations of the element basis functions, using the
components ofx(λ) as weights. We note that the perturbation pressurespλ are not given here
in any physically relevant scale but they have been normalised so that the maximum deviation
from the static pressurep0 is either 1 or -1. Figure 1 shows isobars for the fourth mode. Figure
2 shows the pressure distributions of the modes. Figures 1 and 2 are plotted along a cross-
sagittal mid-line cut (see Fig. 1, Hannukainenet al.2006). We remark that Fig. 1 supports the
hypothesis that a weak cross-mode resonance related to F4 should appear in the oral cavity.

The vowels from Engwall and Badin (1999: Table 4), together with the scaled and computed[ø:℄s,c from Table 1, are plotted in the (F2, F1)-plane in Fig. 3. Clearly, [ø:℄s,c is closre to
measured[ø:℄ than to any other measured vowel,exceptpossibly[A:℄. To further clarify the



FIG. 2. Pressure distributions for F1-F4 along a mid-line cut. The mouth is on the right.

situation, let us consider the formants F1 to F4 for[ø:℄s,c, [ø:℄, and [A:℄ as vectors:[ø:℄s,c

= (0.56, 1.11, 2.22, 3.10), [ø:℄ = (0.5, 1.06, 2.48, 3.24), and [A:℄ = (0.56, 0.94, 2.74, 3.24).
Then the Euclidean distance between[ø:℄s,c and[ø:℄ is 0.31, but the distance between[ø:℄s,c

and [A:℄ is significantly larger, equalling 0.57. This difference isexplained by F3, since the
fourth formants are almost the same. We conclude that thefirst twoformants classify the scaled,
computed vowel[ø:℄s,c almost correctly. Moreover, if we look atall four available formants,
even the remaining ambiguity disappears.

As we pointed out earlier, the computed formants F1 to F4 differ from the correspond-
ing measured formants by3 1

2 semitones. Having said that, theratios between the computed
formants and the measured formants match each other very well. There is a simple physical
explanation why such a discrepancy is to be expected. In Eq. (2), we use the Dirichlet bound-
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FIG. 3. Vowels in the (F2,F1)-plane.FEM oe(+) is the scaled, computed[ø:℄, EB99 oe(*) is
the measured[ø:℄ andEB99(o) are other measured vowels. (EB99 denotes Engwall and Badin
(1999).)

ary condition on the lip opening. This results in a vibrational node at the opening. In reality,
such a node would appear further away outside the mouth sincewe are surely able to hear the
sound outside of a speakers VT. In that sense, the real life VTis effectively longer than the one
described by Eq. (2), resulting in lower formants. To get ridof this artefact, we should also
model the surrounding acoustic space.

Surrounding acoustic space has been modelled by a lumped impedance for a transmission
line (Laine 1982), by using a “small space” model with impedance termination on the outer
shell (Nishimotoet al. 2004), and by using a “large space” model with an absorbing outer
boundary (Švancaraet al.2004). The first two of these approaches include a tuning parameter
to be determined experimentally so that the measured and computed formants coincide. We
remark that impedance termination for the wave equation is inherently more difficult than for
the transmission line, since the termination must be of boundary control instead just of point
control type.
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Švancara, P. and Horáček, J. (2006). “Numerical modelling of effect of tonsillectomy on production of czech vowels,”

Acta Acustica united with Acustica92, 681 – 688.
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