Vowel for mantsfrom the wave equation
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Abstract: This article describes modal analysis of acoustic wavelkarhtiman vocal tract
(VT) while the subject is pronounciig:]. The model used is the wave equation in three dimen-
sions, together with physically relevant boundary condsi The geometry is reconstructed
from anatomical MRI data obtained by other researchers. cbimeputations are carried out
using the Finite Element Method. The model is validated bygaring the computed modes

with measured data.
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PACSnumbers: 43.70.Bk, 43.20.Ks
1. Introduction

The purpose of this article is to study vowel production by ttave equation with boundary
conditions as specified by Eq. (2) below. This model constitthe input part of éscattering)
conservative linear dynamical systes presented by, e.g., Malinehal. (2006); Malinen and
Staffans (2006: 2007). A preliminary version of the presemtk was presented at the Phonetics
Symposium 2006 (Hannukainehal. 2006).

In the past, the vocal tract (VT) acoustics has been modillachumber of different ways.
Electrical transmission lines have been used for long tisee,(e.g., Dunn 1950). The cel-
ebrated Kelly—Lochbaum model makes use of reflection caeffiis obtained from a variable
diameter tube (Kelly and Lochbaum 1962). Such reflectiorffimdents appear in, e.g., models
from geophysics and in interpolation theory (see Foias aadh® 1990). We remark that the
Kelly—Lochbaum model is closely related to the horn modskdibed by the Webster equation
(see Chiba and Kajiyama 1958; Fant 1970). All these modeis peoduced very accurate sim-
ulation results with a relatively light computational Ioaehd they have applications, e.g., in mo-
bile phones. More advanced two- and three-dimensionakdesnts of the Kelly—Lochbaum
model are the transmission line networks that have beerlapee by El Masriet al. (1996:
1998); Mullenet al. (2006). For a recent review and further references, see(PolBH).

Equation (2) in an anatomically realistic geometry has aentirect basis in physics than
any of the approaches discussed in the previous paragrauhisiparticularly useful in some
applications, for example, in modelling the effects of anaital abnormalities and maxillofa-
cial surgery on speech (Dedouehal. 2002a; Nishimotcet al. 2004; Svancara and Harék
2006). As solving Eq. (2) analytically is possible only inaically simplified geometry (see
Sondhi 1986), we solve the problem numericallyfigite Element MethodFEM). This is the
approach used by, e.g., lat al. (1993), Suzuket al. (1993), Kawanishet al. (1996), Niikawa
et al. (2002), Dedouctet al. (2002b), Sasakét al. (2003), and Svancaret al. (2004), too.
Unfortunately, heavy computations are involved in thisimoeit

We present a modal analysis of an anatomical configuratipm pés produced by a native
Swedish speaker. We obtain resonance frequencies conomatt, which correspond to for-
mants. Unlike the scattering transfer function estimatisad by Nishimotet al. (2004) and
Sasakiet al. (2003), our method does not necessarily require takingantmunt the radiation
impedance at the mouth. Our approach is more closely retatBeédouchet al. (2002b) but
instead of Neumann boundary condition on the glottis, weaussflection-free boundary con-
dition slightly above the glottis (see the last lines of E2). dnd Eq. (4)). Using reflection-free
boundary conditions Eq. (3), our Eg. (2) can be coupled toottiglmodel in a physically



realistic manner. Our results indicate that the computatlyg obtained formants identify the
vowel [g¢:] correctly in a larger set of measured data.

For numerical computations, a detailed geometric deseorijotf the VT is necessary. Nowa-
days, accurate anatomical data can be obtained using MagRestonance Imaging (MRI). We
are indebted to Dr. Olov Engwall (KTH) for kindly providingwvith the required data.

2. Acoustic model

Deriving the wave equation for sound pressure starts bynaisguthat the total pressuge=
p(r,t) and the density = p(r, t) can be expressed as

p(r,t) =po+p'(r,t) and p(r,t) = po+ p'(r,t), (1)

respectively, whergy andpg are independent of timeand space variable For linearisation
of the equations, it is assumed thét= p/(r,t) < pp andp’ = p'(r,t) < po are small
perturbations at point = (z,y, z) € Q attimet. HereQ) C R? denotes the interior of the VT
with boundan) = 'y UT'y UT'3, wherel'; is the mouth openingd,, denotes the walls of the
VT, andI's is a virtual boundary control surface a small distance abloeglottis.

By v = v(r,t) denote the velocity field of the flow described pyand p. A velocity
potential® = ®(r, ) is any function that satisfies = —V®. With this notation, our acoustic
model is given by

(I)tt = CQAq) on Q, 2
®=0o0nly, 22 =00nT,, and <I>t+cg—f:21/piouonl“3, (2)

whereu = u(r, t) is the incoming power (per unit area) at glottis inpuis the sound velocity
in the VT, v is the exterior unit normal 0as?2, andg—f = v - V®. The problem is to compute
the velocity potentiad(r, ¢) for a given glottal input functiom(r, ¢).

To derive Eqg. (2) from “first principles”, one needs to assuhe an isentropic thermo-
dynamic equation of state for pressyre= p(s, p) holds wheres, p are the entropy and
density, respectively. Then we define the sound speky linearising the equation of state
p’ = p(s,po+p") — p(s, po) = c2p’ wherepy = p(s, po) andc? = g—i(s,po). In this approx-
imation, the entropy is kept constant since the associated thermodynamic écassumed
to be reversible. In the case of monatomic ideal gas, we hawe = po/pg andc? = vpo/po
wherey = 5/3 is the adiabatic constant.

Now the wave equatiof,; = c2A® can be derived by a linearisation argument involving
the continuity equation, Euler equation and linearisedaéiqn of statep’ = ¢?p’. Having
computedd, we obtain the perturbation pressure frpm= p®;. All this can be found, e.g.,
in Fetter and Walecka (1980: Chapter 9).

Equation (2) is sophisticated enough to capture many retguaperties of wave propa-
gation in three-dimensional geometry (e.g., to detectscmsdes). It can also be used as the
theoretical starting point in deriving the Webster equatizentioned above. However, it does
not take into account turbulence, shock formation, or Ieskee to viscosity, heat conduction,
or boundary dissipation.

We also need to take into account the walls and both ends of Th&he last three lines
in Eq. (2) specify the required boundary conditions. We réghe mouth as an open end of
an acoustic tube, and this is described by the Dirichlet tmmd®(r,¢) = 0. More compli-
cated models for the mouth opening or the surrounding aiwosisace have been considered
by Kawanishiet al. (1996) (an impedance model involving Bessel functions3hifhotoet al.
(2004) (an impedance model consisting of a small reflectemgibphere), and Svancaetal.
(2004) (an exterior model of two concentric spheres withlzsoebing outer boundary).



On the walls of the VT, we use the same Neumann cond%ﬁ)@r, t) = 0 as one would use
at the closed end of a resonating tube. These two boundadjtwoms are discussed by Fetter
and Walecka (1980: pp. 306-307).

At the glottis end, we use a scattering boundary conditian $pecifies the ingoing sound
energy wave. For motivation, we define the ingoing waie ¢) and the outgoing wave(r, t)

forr € I'3 by
po [ 0P _ [po o B
1o (c% + @t) and y =/ i (c_(?u @t) . 3)

First of these equations coincides with the third boundanydition in (2). The net power
absorbed by the interior domainthrough the control/observation boundary at tirsatisfies

e, 0P dotw) — [y P dot) = [ (~v(r) alr,t) dotr)
I's I's I's

wherejo = —po®:V® = p'v is the energy-flux vector as introduced in Fetter and Walecka

(1980: pp. 307).

Instead of solving Eg. (2), we solve an easier — yet relevamreblem related to Eq. (2).
More precisely, we determine the resonance frequencieesmonding to a particular vowel
articulation position. By Malinen and Staffans (2006: Ttep 2.3), the resonances of Eq. (2)
can be solved by finding the discrete, complex frequentiaad the corresponding nonzero
eigenfunction®, (r) such that the equations

4
®y=0o0nly, 22 =0o0nl, and APy +c2Pr =0o0nTy @)

{)\2‘1))\ = CQA(I))\ on Q,

are satisfied. The time harmonic extensi(r, t) = ®,(r)e’ of @, satisfies clearly Eq. (2).
Using the connectiop’ = py®,, the corresponding perturbation pressure distributiagivisn
by p/(r,t) = pa(r)er, wherep, (r) := poA®,(r). Thus Eq. (4) are satisfied with, in place
of D,.

3. Finite element modelling

The variational formulation of Eq. (4) (with, in place of®,) is
AQ/pwdQJrAc/ prddw+c [ Vpy-VodQ =0, (5)
Q I's Q

where ¢ is an arbitrary test function in Sobolev spabg () = {f € H'(Q) : f(r) =
Oforr € T;}. The Finite Element Method (FEM) can be used to approximatelve Eq.
(5); see, e.g., Johnson (1987) for an elementary treatm@fet.use piecewise linear shape
functions and a tetrahedral meshof= 64254 elements which gives sufficiently accurate
results. We obtain three x n matrices, namely the stiffness matdg, the mass matrix\7,
and P representing the glottis boundary condition in Eq. (4).

When treating Eq. (5) we proceed to solve the following Imalgebra problem: find all
complex numbers and corresponding nonzero vectafs\) such that

N EKx(\) 4+ AePx(\) + Mx(\) =0 < Ay()\) = ABy()\). (6)
whereA = {—;P —CZM} , B = [1()( 9] ,andy(\) = [A}("(&A))}(Saad 1992). The numbexsare
good approximations of th&’s appearing in Eq. (4), provided that the numbeof elements

is high enough. The lowest formants F1, F2,, correspond to the numbeksin the order of
increasing imaginary part.



4, Data

Figure 1 in in Hannukaineet al. (2006) shows a sliced representation of the VT geometry that
we have used as the basis of our analysis. There are 29 dladsconsisting of 51 points, and
they define the VT from glottis to mouth. For faster compuatatihe slices were down-sampled
by taking into account only every fourth point.

The raw MRI data was collected from a native male speaker cgdish while he pro-
nounced a prolonged vowgl:] in supine position. Engwall and Badin (1999) describe the
MR imaging procedure and image post-processing. Correipgfiormant measurement data
is also available in the same article. The formants wereneséid from speech recorded on a
different occasion but with the same subject in a similatirseipondition.

5. Resultsand conclusions

The latter form of Eq. (6) was solved in MATLAB environmenticathe formants F1 to F4
that we obtained are shown in Table 1. These computed fommatroughl)B% semitones

too high compared to the measured values, and we will digbegshysical background of this
discrepancy below. The bottom row in Table 1 shows the coatpfdrmants multiplied by

0.817, which corresponds to a diﬁerenceﬁg semitones.

TABLE 1. Computed, measured, and scaled formantgdgiin kHz

F1 F2 F3 F4
Computed 0.68 1.35 271 3.79
Measured 050 1.06 2.48 3.24
Scaled 0.56 1.11 2.22 3.10

FIG. 1. Isobars corresponding to F4 along a mid-line cut. Mioeth is on the right.

We also obtained the resonance moggs— see Eq. (4) — corresponding to the formants
F1-F4. They are computed as linear combinations of the eletrasis functions, using the
components ok(\) as weights. We note that the perturbation presspiresre not given here
in any physically relevant scale but they have been norerk® that the maximum deviation
from the static pressung, is either 1 or -1. Figure 1 shows isobars for the fourth modgure
2 shows the pressure distributions of the modes. Figuresi?aare plotted along a cross-
sagittal mid-line cut (see Fig. 1, Hannukairatral. 2006). We remark that Fig. 1 supports the
hypothesis that a weak cross-mode resonance related tmbB#tlstppear in the oral cavity.

The vowels from Engwall and Badin (1999: Table 4), togethiéh the scaled and computed
[2:]5,. from Table 1, are plotted in the (F2, F1)-plane in Fig. 3. @igdg:]; . is closre to
measuredg:] than to any other measured vowekceptpossibly[a:]. To further clarify the
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FIG. 2. Pressure distributions for F1-F4 along a mid-line @le mouth is on the right.

situation, let us consider the formants F1 to F4 fieis ., [¢:], and[a:] as vectors:[g:]s .
= (0.56,1.11,2.22,3.10), [s:] = (0.5,1.06,2.48,3.24), and[a:] = (0.56,0.94, 2.74, 3.24).
Then the Euclidean distance betwdeti; . and[g:] is 0.31, but the distance betwepn]; .
and[a:] is significantly larger, equalling 0.57. This differenceeisplained by F3, since the
fourth formants are almost the same. We conclude thdirgtéwoformants classify the scaled,
computed vowe|g:]; . almost correctly. Moreover, if we look ail four available formants,
even the remaining ambiguity disappears.

As we pointed out earlier, the computed formants F1 to F4ediffom the correspond-
ing measured formants by% semitones. Having said that, thatios between the computed
formants and the measured formants match each other vety Wedre is a simple physical
explanation why such a discrepancy is to be expected. InBgwe use the Dirichlet bound-
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ary condition on the lip opening. This results in a vibratibnode at the opening. In reality,
such a node would appear further away outside the mouth gia@@e surely able to hear the
sound outside of a speakers VT. In that sense, the real lifes\éffectively longer than the one
described by Eq. (2), resulting in lower formants. To getaidhis artefact, we should also
model the surrounding acoustic space.

Surrounding acoustic space has been modelled by a lumpeztianpe for a transmission
line (Laine 1982), by using a “small space” model with impecatermination on the outer
shell (Nishimotoet al. 2004), and by using a “large space” model with an absorbirtgrou
boundary (Svancaret al. 2004). The first two of these approaches include a tuningpeier
to be determined experimentally so that the measured angwech formants coincide. We
remark that impedance termination for the wave equationhisriently more difficult than for
the transmission line, since the termination must be of dawncontrol instead just of point
control type.
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