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Discussion on: “Boundary Control of a Class of Hyperbolic Systems”
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We review the example of linear quadratic regulator
(LQR) problem given in paper[2] by A. Chapelon and
C.-Z. Xu. We discuss three different algebraic Riccati
equations that are associated to such LOR problems.
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1. Introduction

The linear quadratic regulator (LQR) problem for the
linear boundary control system, governed by the
hyperbolic PDE
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R (0,6)=DoR"(0,2) +u (1),
RY(1,6)=DR (1,0) +u" (1),

) — (A(x)0, + K(x)

R (x,1)
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R(x,0)=R"(x), forall(x,7)e(0,1)+R,;
(1)

is considered in [2]. Here all the functions A4(x), K(x),
R*(x, 1), u™(f), and R%(x) are vector/matrix-valued
with compatible dimensions. It is shown in [2] (under
some extra assumptions) that (1) defines a stable,
exactly controllable, regular well-posed linear system
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on Hilbert space H, described by the Cauchy problem
/(1) = A_1z(t) + Bu(),

(
y(1) = C=z(1) + Du(1),
z(0) = zo;

t>0; (2)

in the sense of e.g. [12-14,18]. Here C = [[],D = [Y]
and A_;: H — (dom(A4*)) is the usual extension of
A:dom(A4*) — H. The LQR problem is to find the
(unique) minimizing input uy,i,(zg,-) for the cost
functional

Jz0,u) = / () dr,
0

and to express the required control law in “feedback
form”. The optimal cost is given by the Riccati
operator P=P*>0 on H in the sense that J(z,
Umin) = {Zo, Pzo) i for any initial state zo € H. Such a P
can be shown to satisfy several continuous time alge-
braic Riccati equations, henceforth referred as CAREs.
The classical reference for matrix CARE is [7], but
also [1] is highly recommendable reading. In the infi-
nite-dimensional case, there exists two main “schools”
that write down their CAREs in essentially different
ways, but we shall not treat these differences here.
The earlier operator CARE results and techniques
are motivated by systems governed by concrete PDEs,
and they can be found in [3,4,8,9,16]. The later results
are given for abstractly defined regular well-posed
linear systems. These operator CAREs are general-
izations of the matrix CARE, and they are derived by
spectral factorization techniques. The main references
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are [14, 20-23], and these papers are the background
for [2].

2. Why Should We Care about CAREs?

Because of the mathematical simplicity of the under-
lying PDE (1), the authors of [2] are able to integrate it
explicitly. An explicit formula for the regular transfer
function G(s) = [(s— 4_,)"" B I]" of (2) is ob-
tained, as well as for the spectral function

~ ~

(iw) = G(iw)"G(iw). (3)

As II(iw) > I for all weR, the stable outer spectral
factor =€ H*(C ) exists. Furthermore, = can be
given in closed form (see [2, Lemma 5.1]), and it is
regular; i.e. the strong limit

X =1limZ(s) exists and satisfies X ' € L(U).

§—00

Under these conditions, all terms have explicit for-
mulas in the CARE

PA+ A* \P+1=(B'P)" - (X'X)'-BP
on dom(A4)

given in [14,22]. Here A*, : H — (dom(A4%))" is the
extension of A*:dom (4*) — H, BiP* is the strong
Yoshida extension of B*, and (B!P)" is the adjoint of
BiP € L(dom(A); U). The Riccati operator P maps
(A) into dom(B?), and it is a solution of (4).

But once we have a formula for outer spectral factor
=, the LQR problem has already been fully solved.
Indeed, the optimal control law can then be expressed
in feedback form by using the results for well-posed
linear systems, given in [14]. To obtain the generating
operators (and their domains) of the (regular) closed
loop system, the results of [17] should be used. The
Riccati operator P is the observability gramian of the
closed-loop system.

The motivation for writing down and solving a
CARE (of any kind) is to large extent gone. Note that
solving (discrete time) algebraic Riccati equations is
typically equivalent to computing spectral factors in
the associated state space, see [5,6,10,11]. We must
conclude that the system described by (1) is too simple
to qualify as a relevant test bench for CAREs.

3. What Sort of CAREs Should We Solve?

Let us discuss on a general level, when and why we
would like to deal with CARE:s.
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Possibly the most important practical applications
of state space techniques are related to numerical
computations for linear systems which (unlike (1)) do
not allow for a concrete and explicit solution for-
mulas. Most relevant PDE problems are of this kind.
A control problem is often defined via some particular
realization, constituting the data of the problem. The
transfer function or the spectral factor are then inac-
cessible. In order to be practically useful, the form of a
CARE is thus subject to many restrictive conditions.
These conditions are expected to vary from one pro-
blem to another.

The situation looks particularly grim so as to
CARE (4), as we need to establish the regularity of =
and compute X * X before being able to write down the
equation, let alone solve it. It might be the case that in
some LQR problem X *X could be computed without
knowing all of =, but we do not know of any such
problem. It is true that in the LQR case, by [I5,
Corollary 7.2]

X'X=1I+ s}lirrolijP(a—A,l)_l B. (5)
Formula (5) contains the Riccati operator P to be
solved and also the Yoshida extension B; that is dif-
ficult to obtain in relevant problems." If a practical
description for B} could be given, then (4) together
with (5) might perhaps be used for updating purposes
in an iterative numerical solver.

It is not an unrelated accident that the discrete time
Riccati equation (DARE)

A3PAg— P =—CiCq+ QA Op,
Qp = —-DyCqy— ByPAy, (6)
Ap = DZ'Dd + BZ,PB,}

contains the solution P in the “indicator” operator Ap
—even in the LQR case when D,C; = 0 and DDy = 1.
However, no extensions of Bj or any limits are
required. It thus seems desirable to solve the spectral
factorization problem (3) in “discrete time setting” by
using the Cayley transform (7). The resulting DAREs
are of form (6) where

A= (a+A)(a—A4)",
By=V2Ra(a—A_;)"'B,
Cy=V2RaCla— A)",

~

Dy = G(a),

'If we were able to compute as little as just the domain for the weak
Yoshida extension B, for a system ¥, then we would know if (the
dual of) ¥ was weakly regular or not, see [18, Theorem 5.8]. A
nontrivial special case is declared as an open problem in [19].
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and a € C is an arbitrary parameter. Unfortunately,
the resolvents of A4 are involved in the resulting
DARE:s, and they can only rarely be given explicitly.
This restricts the theoretical applicability of such
DAREs seriously. Dealing with resolvents of (the
discretized versions of ) A is numerically very expen-
sive, t0o.
The Riccati operator P satisfies yet another CARE,

given in all its beauty by

PA_+ A"P+1=PBB*P ondom(4p),
where

dom(A4p) ={x € H|(A_, + BB*P)x € H}.
Because the output operator in (2) satisfies C € L(H;
H x U), it follows that P € L(dom(4 p); dom (4*)), see
e.g. [14, Corollary 43]. Hence the difficult term B*P is
well-defined without any extensions. Unfortunately,
CARE (8) is posed in dom(A4p) which is a priori
unknown. It is though conceivable that (8) could

be sometimes solved numerically in some finite-
dimensional (e.g. finite element) subspaces of dom (A4 p)

(8)

4. Conclusion

We conclude that CARE (4) has a serious attitude
problem: it offers eagerly a helping hand, but only
when it is needed least. The DAREs obtained from (6)
and (7) contain resolvents of 4, which makes them
unpractical. Finally, CARE (8) provides us an
impeccable description about what to do, but not a
hint where to do it.
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