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Abstract

During voiced speech, the human vocal folds interact with the vocal
tract acoustics. The resulting glottal source-resonator coupling has been
observed using mathematical and physical models as well as in in vivo
phonation. We propose a computational time-domain model of the full
speech apparatus that, in particular, contains a feedback mechanism from
the vocal tract acoustics to the vocal fold oscillations. It is based on
numerical solution of ordinary and partial differential equations defined
on vocal tract geometries that have been obtained by Magnetic Resonance
Imaging. The model is used to simulate rising and falling pitch glides of
[A, i] in the fundamental frequency (fo) interval [150Hz, 320Hz]. The
interval contains the first vocal tract resonance fR1 and the first formant
F1 of [i] as well as the fractions of the first resonance fR1/4 and fR1/3 of
[A].

The simulations reveal a locking pattern of the fo-trajectory at fR1

of [i] in falling and rising glides. The resonance fractions of [A] produce
perturbations in the pressure signal at the lips but no locking. All these
observations from the model behaviour are consistent and robust within
a wide range of feasible model parameter values and under exclusion of
secondary model components.

Index Terms: Speech modelling, vocal fold model, flow induced vibrations,
modal locking.
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1 Introduction
The classical source–filter theory of vowel production is built on the assumption
that the source (i.e., the vocal fold vibration) operates independently of the
filter (i.e., the vocal tract, henceforth VT) whose resonances modulate the re-
sulting vowel sound [1, 2]. Even though this approach captures a wide range of
phenomena in speech production, at least in male speakers, some observations
remain unexplained by the source–filter model lacking feedback. The purpose
of this article is to deal with some of these observations using computational
modelling.

More precisely, simulated rising and falling frequency glides of vowels [A]
and [i] over the frequency range [150 Hz, 320 Hz] are considered. Similar glides
recorded from eleven female test subjects are treated in the companion article
[3]. Such a vowel glide is particularly interesting if its glottal frequency (fo)
range intersects an isolated acoustic resonance of the supra- or subglottal cavity,
which we here assume to correspond to the lowest formant F1. Since F1 almost
always lies high above fo in adult male phonation, this situation occurs typically
in female subjects and only when they are producing vowels such as [i] with low
F1. As reported below, simulations reveal (in addition to other observations) a
characteristic locking behaviour of fo at the VT acoustic resonance fR1 ≈ F1.
To check the robustness of the model observations, secondary features of the
model and the role of unmodelled physics are discussed at the end of the article.

As a matter of fact, this article has two equally important objectives. Firstly,
we pursue better understanding of the time-domain dynamics of glottal pulse
perturbations near fR1 of [i] and at other acoustic “hot spots” of the VT and
the subglottal system within [150 Hz, 320 Hz] that may be reached in speech or
singing. An acoustic and flow-mechanical model of the speech apparatus is a
well-suited tool for this purpose. Secondly, we introduce and validate a compu-
tational model that meets these requirements. The proposed model has been
originally designed to be a glottal pulse source for high-resolution 3D computa-
tional acoustics model of the VT which is being developed for medical purposes
[5]. There is an emerging application for this model as a development platform
of speech signal processing algorithms such as discussed in [6], [7] and [8]; how-
ever, the model introduced in [9] has been used in [8]. Since perturbations of
fo near F1 are a widely researched, yet quite multifaceted phenomenon, it is a
good candidate for model validation experiments.

The simulations carried out in this paper indicate special kinds of perturba-
tions in vocal folds vibrations near a VT resonance as reported below. The mere
existence of such perturbations is not surprising considering the wide range of
existing literature. Since the seminal work of [10], a wide range of glottal source
perturbation patterns related to acoustic loading has been investigated. Ex-
periments were carried out in [11] on excised larynges mounted on a resonator
to determine how glottal amplitude ratio changes with the subglottal resonator
length. Physical models were used in [12] with a subglottal resonator to study
phonation onsets and offsets, and in [13] with sub- and supraglottal resonators

The VT resonances fR1, fR2, . . . are understood here as purely mathematical objects,
determined by an acoustic PDE and its boundary conditions that are defined on the VT
geometry. Formants F1, F2, . . . refer to respective frequency peaks extracted from natural or
simulated speech. Here, the notation of [4] is used to differentiate the two although, of course,
we expect to have fRj ≈ Fj for j = 1, 2, . . ..
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to study phonation onsets. The latter also considered the dynamics of frequency
jumps as the natural frequency of their physical model was varied over time.
Similarly, a physical model of phonation with tubular, variable length supraglot-
tal resonator was studied in [14, 15], and it was used to validate a flow-acoustic
model somewhat resembling the one proposed in this article.

In [16] the problem was approached using both reasoning based on sub- and
supraglottal impedances and a non-computational flow model as well as com-
putational model comprising a multi-mass vocal fold model and wave-reflection
models of the subglottal and supraglottal systems. A two-mass model of vo-
cal folds, coupled with a variable-length resonator tube, was used in [17], and
pitch glides were simulated using a four-mass model to analyse the interactions
between vocal register transitions and VT resonances in [18].

These works reveal a consistent picture of the existence of perturbations
caused by resonant loads, and this phenomenon has also been detected experi-
mentally in [19] using speech recordings and in [20] using simultaneous record-
ings of laryngeal endoscopy, acoustics, aerodynamics, electroglottography, and
acceleration sensors. The latter article also contains a review on related voice
bifurcations.

Although the existence of these perturbations has been well reported, speech
modelling studies have given only limited attention to the time-domain dynam-
ics of fundamental frequency glides where such perturbations would be expected
to occur. Of the above mentioned studies, upward glides were simulated in [13]
by varying the natural frequency of their physical model over time. Their small
amplitude oscillation model exhibited a frequency jump in the vicinity of the
resonance of their downstream tube when the load resistance was sufficiently
strong. Downward glides were simulated in [16] followed by upward glides by
varying the parameters of a multi-mass vocal fold model. Frequency jumps,
subharmonics and amplitude changes were observed in the regions where load
reactances were changing rapidly. Changes in the rate of change of the funda-
mental frequency in these regions can also be seen in their Figures 10-14. In
[18] upward glides were simulated followed by downward glides by adjusting the
tension parameter (i.e. decreasing masses and increasing stiffness parameters by
the same factor) in their four-mass vocal fold model. They observed frequency
jumps associated with register changes, which in turn were shown to occur at
different frequencies depending on the vocal tract load.

Some of the most popular approaches to modelling phonation are based
on the Kelly–Lochbaum vocal tract [21] or various transmission line analogues
[22, 23, 24]. Contrary to these approaches, the proposed model consists of
(ordinary and partial) differential equations, conservation laws, and coupling
equations. In this modelling paradigm, the temporal and spatial discretisation
is conceptually and practically separated from the actual mathematical model
of speech. The computational model is simply a numerical solver for the model
equations, written in MATLAB environment. The modular design makes it
easy to decouple model components for assessing their significance to simulated
behaviour. Since the generalised Webster’s equation for the VT acoustics as-
sumes intersectional area functions as its geometric data, VT configurations
from Magnetic Resonance Imaging (MRI) can be used without transcription

Some economy of modelled features should be maintained to prevent various forms of
“overfitting” while explaining the experimental facts. Good modelling practices within math-
ematical acoustics have been discussed in Chapter 8 in [25].

3



to non-geometric model parameters. Thus, time-dependent VT geometries are
easy to implement. Further advantages of speech modelling based on Webster’s
equation have been explained in [26] where the approach is somewhat similar
to one taken here.

The proposed model aims at qualitatively realistic functionality, tunability
by a low number of parameters, and tractability of model components, equa-
tions, and their relation to biophysics. Similar functionality in higher precision
can be obtained using Computational Fluid Dynamics (CFD) with elastic tissue
boundaries. In the CFD approach, the aim is to model the speech apparatus
as undivided whole [27], but the computational cost is much higher compared
to our model or the models proposed in, e.g., [26] and [28]. The numerical effi-
ciency is a key issue because some parameter values or their feasible ranges (in
particular, for hard-to-get physiological parameters) can only be determined by
the trial and error method as discussed in Chapter 4 in [29], leading to a high
number of required simulations.

2 Model of the Vocal Folds

2.1 Anatomy, physiology, and control of phonation
All voiced speech sounds originate from self-sustained quasi-periodic oscillations
of the vocal folds where the closure of the aperture — known as the rima glottidis
— between the two string-like vocal folds cuts off the air flow from lungs. This
process is called phonation, and the system comprising the vocal folds and the
rima glottidis is known as the glottis. A single period of the glottal flow produced
by phonation is known as a glottal pulse. A description of structures in human
larynx and their function can be found, e.g., in [30] or [31], and we give here
only a brief summary.

As shown in Figure 1 (upper left panel), each vocal fold consists of a vo-
cal ligament (also known as a vocal cord) together with a medial part of the
thyroarytenoid muscle, and the vocalis muscle (not specified in upper left panel
of Figure 1). Left and right vocal folds are attached to the thyroid cartilage
from their anterior ends and to the respective left and right arytenoid cartilages
from their posterior ends. In addition, there is the fourth, ring-formed cricoid
cartilage whose location is inferior to the thyroid cartilage. The vocal folds and
the associated muscles are supported by these cartilages.

There are two muscles attached between each of the arytenoid cartilages
and the cricoid cartilage: the posterior and the lateral cricoarytenoid muscles
whose mechanical actions are opposite. The vocal folds are adducted by the con-
traction of the lateral cricoarytenoid muscles during phonation, and conversely,
abducted by the posterior cricoarytenoid muscles during, e.g., breathing. This
control action is realised by a rotational movement of the arytenoid cartilages
in a transversal plane. In addition, there is a fifth (unpaired) muscle — the
arytenoid muscle — whose contraction brings the arytenoid cartilages closer to
each other, thus reducing the opening of the glottis independently of the lateral
cricoarytenoid muscles. These rather complicated control mechanisms regulate
the type of phonation in the breathy-pressed scale.

The main mechanism controlling the fundamental frequency fo of voiced
speech sound is actuated by two cricothyroid muscles (not visible in upper left

4



Figure 1: The topmost panel on left: Sketch of the anatomy of the larynx seen
from above according to [32]. Right panel: The geometry of the glottis model
and the symbols used. The trachea (i.e., the channel leading from the lungs
to glottis) is to the left in this sketch and the vocal tract is to the right. The
lower panel on left: Lumped-element representation of the glottis model with
two degrees of freedom shown for the lower vocal fold (j = 1).
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panel of Figure 1). The contraction of these muscles leads to a rotation of the
thyroid cartilage with respect to the cricoid cartilage. As a result, the thyroid
cartilage inclines to the anterior direction, thus stretching the vocal folds. The
elongation of the string-like vocal folds leads to increased stress which raises
the fundamental frequency fo of their longitudinal vibrations. The vertical
movement of larynx also rotates cricoid cartilage impacting fo. Finally, the
phonation and fo are influenced by subglottal pressure through the control of
respiratory muscles.

2.2 Glottis model
The anatomic configuration in upper left panel of Figure 1 is idealised as a low-
order mass-spring system with aerodynamic surfaces as shown in right panel
of Figure 1 and discussed in [33] and [29]. Such lumped-element models have
been used frequently (see, e.g., [34], [35], [36], [37], [15], and [38]) since the
introduction of the classic two-mass model [10]. For recent reviews of the variety
of lumped-element and PDE based models and their applications, see [39], [40]
and [41].

The radically simplified glottis model geometry in Figure 1 (right panel)
corresponds to the coronal section through the center of the vocal folds. Both
the fundamental frequency fo as well as the phonation type can be chosen by
adjusting parameter values (see Section 4 in [29]). Register shifts (e.g., from
modal register to falsetto) are not in the scope of this model since it would
require either modelling the vocal folds as aerodynamically loaded strings or as
a high-order mass-spring system that has a string-like “elastic” behaviour.

The vocal fold model in Figure 1 (right panel) consists of two wedge-shaped
moving elements that have two degrees of freedom each: each end of the vocal
fold can move in the y-direction. Although this causes some distortion to the
shape of the wedges, the displacements are small enough that this effect is
negligible. The distributed mass of these elements is reduced into three mass
points which, for the jth fold, j = 1, 2, are located so that mj1 is at x = L,
mj2 at x = 0, and mj3 at x = L/2. Here L denotes the thickness of the
modelled vocal fold structures. In calculation of the masses, the reduced system
retains the mass, and static and inertial moments of a more realistic vocal fold
shape (for details, see [33] p. 14). The elastic support of the vocal ligament is
approximated by two springs at points x = l1L and x = l2L. The equations of
motion for the vocal folds are given by{

M1Ẅ1(t) +B1Ẇ1(t) +K1W1(t) = F1(t),

M2Ẅ2(t) +B2Ẇ2(t) +K2W2(t) = F2(t), t ∈ R,
(1)

where Wj =
[
wj1 wj2

]T are the displacements of mj1 and mj2 in the y-
direction as shown in Figure 1 (lower left panel). The loading force pair Fj(t) =[
Fj1(t) Fj2(t)

]T is due to aerodynamic and acoustic pressure forces in Eq. (8)
when the glottis is open, and the collision forces in Eq. (4) when the vocal folds
are in contact. The respective mass, damping, and stiffness matrices Mj , Bj ,
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and Kj in (1) are

Mj =

[
mj1 +

mj3

4
mj3

4mj3

4 mj2 +
mj3

4

]
, Bj =

[
bj1 0
0 bj2

]
,

and Kj =

[
l21kj1 + l22kj2 l1l2(kj1 + kj2)
l1l2(kj1 + kj2) l22kj1 + l21kj2

]
.

(2)

The entries of these matrices have been computed by means of Lagrangian
mechanics in [33]. The damping matrices Bj are diagonal since the dampers
are located at the endpoints of the vocal folds. The model supports asymmetric
vocal fold vibrations but for this work symmetry is imposed on the vocal folds
by using parameters M = Mj , K = Kj , and B = Bj , j = 1, 2, and by setting
F (t) = F2(t) = −F1(t). The parameters in equation (2) as well as the loading
force components in equation (1) are illustrated in Figure 1 (right and lower left
panels).

The glottal openings at the two ends of the vocal folds, denoted by ∆Wi,
i = 1, 2, are related to equations (1) through[

∆W1

∆W2

]
= W2 −W1 +

[
g
H0

]
(3)

where the rest gap parameters g and H0 are as in Figure 1 (right panel). In
human anatomy, the parameter g is related to the position and orientation of
the arytenoid cartilages.

As is typical in related biomechanical modelling [34, 42, 18], the lumped pa-
rameters of the mass-spring system (1)– (2) are in some correspondence to the
true masses, material parameters, and geometric characteristics of the sound
producing tissues. More precisely, matrices M correspond to the vibrating
masses of the vocal folds, including the vocal ligaments together with their
covering mucous layers and (at least, partly) the supporting vocalis muscles.
The elements of the matrices K are best understood as linear approximations
of k(s) = f/s where f = f(s) is the contact force required for deflection s at the
center of the string-like vocal ligament in the anatomy shown in Figure 1 (upper
left panel). It should be emphasised that the exact numerical correspondence
of tissue parameters to lumped model parameters M and K is intractable (and
for most practical purposes even irrelevant), and their values in computer sim-
ulations must be tuned using measurement data of fo and the measured form
of the glottal pulse [29].

2.3 Forces during the closed phase
During the glottal closed phase (i.e., when ∆W1(t) < 0 at the narrow end of
the vocal folds), there are no proper aerodynamic forces affecting the vocal
folds dynamics in equations (1). There are, however, nonlinear spring forces
with parameter kH , accounting for the elastic collision of the vocal folds. They
are accompanied by the resultant acoustic counter pressure from the VT and
subglottal cavities, denoted by pc = pc(t) in equation (13) below. Thus, the
force pair for equations (1) during glottal closed phase is given by

F = FH =

[
kH |∆W1|3/2 − Cpcpc

Cpcpc

]
for ∆W1 < 0. (4)
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Here, the coupling coefficient Cpc = Cpc(t) accounts for the moment arms and
areas on which pc acts, and it will be given an expression in equation (14).

This approach is related to the Hertz impact model that has been used
similarly in [34] and [43]. During the glottal open phase (i.e., when ∆W1(t) >
0), the spring force in equations (4) is not enabled. Then the load terms in
equation (1) are given by F (t) = FA(t) as introduced below in equation (8) in
terms of the aerodynamic forces from the glottal flow.

3 Glottal Flow and the Aerodynamic Force
The air flow within the glottis is assumed to be incompressible and one-
dimensional with velocity V (x, t), satisfying the mass conservation law
H(x, t)V (x, t) = H1vo(t), where H(x, t) is the height of the flow channel in-
side the glottis. In the model geometry of Figure 1 (right panel) we have

H(x, t) = ∆W2(t) +
x

L
(∆W1(t)−∆W2(t)), x ∈ [0, L].

The velocity vo(t) of the flow through the control area hH1 superior to the
glottis is described by

v̇o(t) =
1

CinerhH1
(psub −Rg(t)vo(t)) (5)

where psub is an ideal pressure source (whose values are given relative to the
ambient air pressure) located immediately inferior to the vocal folds, Ciner reg-
ulates flow inertia, h is the width of the rectangular flow channel, and Rg(t)
represents the total pressure loss in the glottis. In fact, equation (5) is related
to Newton’s second law for the air column in motion. Although the pressure
driving phonation originates at the lungs, it is here assumed that physiological
mechanisms enable the adequate control of the pressure source psub. Note that
due to assumed incompressibility, equation (5) can equivalently be written in
terms of position-independent volume flow through the glottis U(t) = vo(t)hH1.

To derive equation (5) following [33, Section 2.2], one begins with the pres-
sure loss balance psub = pg + pa where the psub is the sum of the glottal
pressure loss and the accelerating pressure of the fluid column mass in the
airways and lungs. The power of accelerating or decelerating an (incompress-
ible) fluid column is pa(t)(hH1)v0(t). This power is equal to the derivative of
the kinetic energy of the fluid column, yielding the identity pa(t)(hH1)v0(t) =
ρv0(t)v′0(t)(hH1)2

∫
d~r

A(~r)2 where the integration is extended over the VT and
SGT volume. Here A(~r) denotes the area of the fluid column cross-section that
contains the position vector ~r, and the incompressibility A(~r)v(~r, t) = hH1v0(t)
was used. Equation (5) follows from this by denoting Ciner = ρ

∫
d~r

A(~r)2 . The
contribution of the VT to the total inertance can be further integrated to
CV Tiner = ρ

∫ LV T

0
ds
A(s) but the inertance of the subglottal masses cannot be ex-

pressed similarly in terms of anatomic data. Hence, the parameter Ciner has to
be used as a tuning parameter.

The total pressure loss in the glottis in equation (5) consists of two compo-
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nents, namely

Rg(t) = Rv(t) +Rt(t), where

Rv(t) =
12µH1Lg
∆W1(t)3

and Rt(t) = kg
ρH2

1vo(t)

2∆W1(t)2
.

(6)

The first term Rv(t) represents the viscous pressure loss, and it is motivated by
the Hagen–Poiseuille law in a narrow aperture. It approximates the pressure
loss in the glottis using a rectangular tube of width h, height ∆W1, and length
Lg. The parameter µ is the kinematic viscosity of air. The second term Rt(t)
takes into account the pressure losses not attributable to viscosity in the sense
of Rv, and its form is motivated by the experimental work in [44]. The coef-
ficient kg represents the difference between energy loss at the glottal inlet and
pressure recovery at the outlet. This coefficient depends not only on the glottal
geometry but also on the glottal opening, subglottal pressure, and flow through
the glottis [45]. It should be noted that equations (5)–(6) bear resemblance to
the description of airflow in [14, 15] where the pressure loss and recovery effects,
however, are accounted for by flow separation in a diverging channel.

The pressure p = p(x, t) in the glottis is given in terms of v0 from equation (5)
by making use of the mass conservation and the Bernoulli theorem p(x, t) +
1
2ρV (x, t)2 = psub for static flow. Since each vocal fold has two degrees of
freedom, the pressure p in the glottis and the VT/SGT counter pressure pc can
be reduced to an aerodynamic force pair FA =

[
FA,1 FA,2

]T where FA,1 affects
at the right (i.e., the superior) end of the glottis (x = L) and FA,2 the left (i.e.,
the inferior) end (x = 0) in Figure 1 (lower left panel). This reduction can be
carried out by using the total force and moment balance equations

FA,1 + FA,2 = h

∫ L

0

(p(x, t)− psub) dx and

L · FA,1 =
h

cos2 φ

∫ L

0

x(p(x, t)− psub) dx− LCpcpc,
(7)

where φ is the angle of the inclined vocal fold surface from the horizontal as
shown in Figure 1 (right panel), and Cpc = Cpc(t) accounts for the moment arms
and areas on which pc acts. An expression for Cpc is given in equation (14). The
force calculations are done using the pressure difference p(x, t)−psub because we
assume that wij = 0 for all i, j = 1, 2 is the equilibrium under subglottal pres-
sure psub (making the simplifying approximation that this equals the ambient
hydrostatic pressure in the tissues surrounding the vocal folds), and therefore
forces FA,1 and FA,2 must vanish when p(x, t) ≡ psub and pc = 0. Note that
since the displacements wi are in the y-direction only, the aerodynamic forces
have been assumed to act in this direction as well as shown in Figure 1 (lower
left panel). The moment is evaluated with respect to point (x, y) = (0, 0) for
the lower fold and (x, y) = (0, H0) for the upper fold in Figure 1 (right panel).
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Evaluation of these integrals yields

FA,1 =
ρhLH2

1v
2
o

2 cos2 φ

(
− 1

∆W1(∆W2 −∆W1)
+

1

(∆W1 −∆W2)2
ln

(
∆W2

∆W1

))
− Cpcpc, for ∆W1 > 0, and

FA,2 =
ρhLH2

1v
2
o

2 cos2 φ

(
sin2 φ∆W2 + cos2 φ∆W1

∆W1∆W2(∆W2 −∆W1)
− 1

(∆W1 −∆W2)2
ln

(
∆W2

∆W1

))
+ Cpcpc, for ∆W1 > 0.

(8)
During the glottal closed phase (i.e., when ∆W1(t) < 0), the aerodynamic force
in equations (8) is not enabled, and the vocal fold load force is instead given by
equation (4) above.

4 Vocal Tract and Subglottal Acoustics

4.1 Modelling VT acoustics by Webster’s equation
A generalised version of Webster’s horn model resonator is used as acoustic
loads to represent both the VT and the SGT. It is given by

1

c2Σ(s)2

∂2ψ

∂t2
+

2πα1W (s)

A(s)

∂ψ

∂t
− 1

A(s)

∂

∂s

(
A(s)

∂ψ

∂s

)
= 0, (9)

where c denotes the speed of sound, the parameter α1 ≥ 0 regulates the energy
dissipation through air/tissue interface, and the solution ψ = ψ(s, t) is the
velocity potential of the acoustic field. Then the sound pressure is given by
p = ρψt where ρ denotes the density of air. The generalised Webster’s model
for acoustic waveguides has been derived from the wave equation in a tubular
domain in [46], its solvability and energy notions have been treated in [47], and
the approximation properties in [48].

The generalised Webster’s equation (9) is applicable if the VT is approxi-
mated as a curved tube of varying cross-sectional area and length LV T . The cen-
treline γ : [0, LV T ] −→ R3 of the tube is parametrised using distance s ∈ [0, LV T ]
from the superior end of the glottis, and it is assumed to be a smooth planar
curve. At every s, the cross-sectional area of the tube perpendicular to the cen-
treline is given by the area function A(s), and the (hydrodynamic) radius of the
tube, denoted by R(s) > 0, is defined by A(s) = πR(s)2. The curvature of the
tube is defined as κ(s) := ‖γ′′(s)‖, and the curvature ratio as η(s) := R(s)κ(s).
Since the tube does not fold on to itself, we have always η(s) < 1, and clearly
η ≡ 0 if the tube is straight.

We are now ready to describe the rest of the parameters appearing in equa-
tion (9): They are the stretching factor W (s) and the sound speed correction
factor Σ(s), defined by

W (s) := R(s)
√
R′(s)2 + (η(s)− 1)2,

Σ(s) :=
(
1 + 1

4η
2(s)

)−1/2
.

(10)

In the context of VT, we use the following boundary conditions for equation (9):{
∂ψ
∂t (LV T , t) + θc∂ψ∂s (LV T , t) = 0,

∂ψ
∂s (0, t) = −c1v0(t).

(11)
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The first boundary condition is imposed at the mouth opening, and the pa-
rameter θ ≥ 0 is the normalised acoustic resistance due to exterior space. The
values for θ are based on the piston model given in [49, Chapter 7, Eq. (7.4.31)].
However, the acoustic impedance of the piston model has a significant reactive
part as well, and its effect has been investigated by replacing the first equa-
tion in (11) by another boundary condition that corresponds to the impedance
Z(s) = sRL

R+sL . The rational impedance of the same form appears also as the
“first-order high pass model” for termination of an acoustic horn in [50, Sec-
tion 4.1]. In the present article, the nominal values for R and L have been
obtained by interpolation from the impedance of the piston model as given in
Table 3 below where also the effects of the reactive component are discussed.

The latter boundary condition in equation (11) couples the resonator to
the glottal flow given by equation (5). The scaling parameter c1 = hH1/A(0)
extends the assumption of incompressibility from the control area just right to
the glottis in Figure 1 (right panel) to the VT area slice nearest to the glottis.
Using c1 and a VT geometry independent control area, instead of defining vo
as the flow through A(0) directly, reduces the sensitivity of the model to the
accurate placement of the glottis in the VT geometries which can be problematic
in MRI data.

4.2 Subglottal tract acoustics
Anatomically, the SGT consists of the airways below the larynx: trachea,
bronchi, bronchioles, alveolar ducts, alveolar sacs, and alveoli. This system
has been modelled either as a tree-like structure [28] or, more simply, as an
acoustic horn whose area increases towards the lungs [51, 36]. We take the lat-
ter approach and denote the cross-sectional area and the horn radius by As(s)
and Rs(s), respectively, where s ∈ [0, LSGT ] and LSGT is the nominal length of
the SGT.

Since the subglottal horn is assumed to be straight, i.e. η ≡ 0, we have
Σ ≡ 1 and Ws(s) = Rs(s)

√
R′s(s)

2 + 1. Then equations (9)–(11) translate to
1
c2
∂2ψ̃
∂t2 + 2πα2Ws(s)

As(s)
∂ψ̃
∂t −

1
As(s)

∂
∂s

(
As(s)

∂ψ̃
∂s

)
= 0,

∂ψ̃
∂t (LSGT , t) + θsc

∂ψ̃
∂s (LSGT , t) = 0,

∂ψ̃
∂s (0, t) = c2v0(t),

(12)

where the solution ψ̃ is the velocity potential for the SGT acoustics. We now
use the scaling parameter value c2 = hH1/As(0). The same kind of losses are
considered in the SGT as in the VT: a termination loss characterised by nor-
malised acoustic resistance θs ≥ 0, and energy dissipation through the air/tissue
interface along the length of the horn regulated by parameter α2 ≥ 0.

4.3 The acoustic counter pressure
The final part of the vowel model produces the feedback coupling from VT/SGT
acoustics back to glottal oscillations. This coupling is realised by the product
of the acoustic counter pressure pc = pc(t) and the coupling coefficient Cpc =
Cpc(t) as already shown in equations (4) and (8) above.
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Figure 2: Left: The VT intersections extracted from the test subject during
phonation of [A] and [i]. Right: The resulting area functions for equation (9),
represented as a function of distance from the glottis.

The counter pressure is the resultant of sub- and supraglottal pressure com-
ponents, and it is given in terms of velocity potentials from equations (9) and
(12) by

pc(t) = Qpcρ
(
ψt(0, t)− c3ψ̃t(0, t)

)
. (13)

The tuning parameter Qpc ∈ [0, 1] enables scaling the magnitude of the
feedback from the VT and SGT resonators to the vocal folds. The parameter
Qpc is necessary because it is difficult to estimate from anatomic data the area
on which the counter pressure pc acts. In simulations, excessive acoustic load
forces lead to non-stationary, even chaotic vibrations of the vocal folds.

The second parameter c3 ≥ 0 in equation (13) accounts for the differences in
the areas and moment arms for the supra- and subglottal pressures that load the
equations of motion equations (1) for vocal folds. Based on the idealised vocal
folds geometry in Figure 1 (right panel), we obtain an overly high nominal value
c3 = 8.6. In the simulations of this article, we use Qpc as a tuning parameter
to obtain the desired glottal pulse waveform, and the value of c3 is kept fixed
(one could say, arbitrarily) at c3 = 1 (if the subglottal resonator is coupled) or
c3 = 0 (if the subglottal acoustics is ignored). If it is necessary for producing
a realistic balance between supra- and subglottal feedbacks, the value of c3 can
be increased without losing stable phonation up to Qpcc3 ≈ 0.6.

The coupling coefficient Cpc is best understood in reference to the moment
balance in equation (7), although it appears in the same way in both equations
(4) and (8). The counter pressure pc is assumed to affect only in the longitudinal
direction (i.e., vertically in right panel of Figure 1). For each vocal fold, pc
acts on an area of H1−∆W1

2 h and produces a moment arm of 2H0−H1−∆W1

4
around points (x, y) = (0, 0) and (x, y) = (0, H0) for the lower and upper folds,
respectively. Hence

Cpc =
(H1 −∆W1)(2H0 −H1 −∆W1)

8L
. (14)

5 Anatomic Data and Model Parameters

5.1 Area functions for VT and SGT
Solving Webster’s equation requires that the VT is represented with an area
function and a centreline, from which curvature information can be computed.
Two different VT geometries corresponding to vowels from a healthy 26 years
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old female are used: A prolonged [A] produced at fundamental frequency fo =
168 Hz and similarly produced [i] at fo = 210 Hz. These geometries have
been obtained by Magnetic Resonance Imaging (MRI) using the experimental
setting that has been described in [5]; see also [52, 53, 54] for earlier approaches.
The extraction of the computational geometry from raw MRI data has been
carried out by the custom software described in [55, 56]. The VT geometries and
the area functions are shown in Figure 2, and related VT geometry dependent
parameter values are given in Table 1.

The piston model [49, Chapter 7] gives the expression θ = 2πA(LV T )/`2 for
the normalised acoustic resistance in equation (11) where we use the nominal
wavelength ` = 171.5 mm, corresponding to the centre frequency 2 kHz of the
voice band. The values for θ[A], θ[i] together with the resonances fRj [A], fRj [i]
for j = 1, 2 are given in Table 1. These values of the purely resistive load
correspond to an infinitely long, non-resonant waveguide placed in front of the
mouth, diameter of which is 95.2mm for [A] and 96.6mm for [i].

Table 1: Physical and physiological parameters dependent on the VT geometry.

Parameter [A] [i]

normalised acoustic resistance at mouth, θ 0.064 0.014
area at mouth 299 mm2 66 mm2

VT inertia parameter, CV Tiner 2540 kg/m4 2820 kg/m4

length of VT, LV T 132 mm 136 mm
1st VT resonance, fR1, from equations (9)–(11) 749 Hz 199 Hz
2nd VT resonance, fR2, from equations (9)–(11) 2084 Hz 2798 Hz

The MRI data that is used for the VT does not cover all of the SGT. For
this reason, an exponential horn is used as the subglottal area function for
equation (12)

As(s) = As(0)eεs where ε = 1
LSGT

ln
(
As(LSGT )
As(0)

)
(15)

following [51]. The values for As(0) = 2 cm2 and As(LSGT ) = 10 cm2 are taken
from Figure 1 in [51]. The horn length LSGT is tuned so that the lowest sub-
glottal resonance is f ′R1 = 500 Hz which results in the second lowest resonance
at f ′R2 = 1000 Hz. This is a reasonable value for fR1 based on Table 1 in [11];
see also [57, 58], [43] and Figure 1 in [28]. The SGT lung termination resistance
in equation (12) is given the value θs = 1 which corresponds to an absorbing
boundary condition. The air column in this SGT model has a nominal inertia
parameter value of 1040 kg/m4 which is taken as a guideline for tuning the total
inertia of the airways to obtain desirable flow pulse waveforms. For the simu-
lations in this article, Ciner = 1.5CV Tiner, where CV Tiner refers to the VT inertia
parameters given in Table 1.

5.2 Static parameter values
Table 2 lists the numerical values of physiological and physical constants used
in all simulations. Note that the vocal fold springs are, for this study, placed

In fact, she is one of test subjects in the experimental companion article [3].
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symmetrically about the midpoint of the vocal folds. Based on the acoustic
reflection and transmission coefficients at the air/tissue interface, the common
value of the energy loss coefficients α1 and α2 in equations (9) and (12), respec-
tively, is taken as

α1 = α2 =
ρ

ρhch
= 7.6 · 10−7 s

m
. (16)

All the model parameter values introduced so far are assumed to be equally
valid for both female and male phonation, except for vocal fold length h. As
we are treating female phonation in this article, it remains to describe the pa-
rameter values for equations (1) where the differences between female and male
phonation are most significant. Horáček et al. provide parameter values for M
and K for in male phonation [34, 42] but similar data for female subjects cannot
be found in literature. Instead, the masses in M are calculated by combining
the vocal fold shape function used in [34] with female vocal fold length reported
in [59]. A first estimate for the spring coefficients in K is calculated by assuming
that the first eigenfrequency of the vocal folds matches the starting frequency
for the simulations. The spring coefficients are then adjusted until simulations
produce the desired starting fundamental frequency for the fo-glides, giving the
constant K0 for equations (17)–(18). For details of these rather long calcula-
tions, see [33] and [29].

Table 2: Physical and physiological constants.

Parameter Symbol Value

speed of sound in air c 343 m/s
density of air ρ 1.2 kg/m3

kinematic viscosity of air µ 18.27 µN s/m2

vocal fold tissue density ρh 1020 kg/m3

VT loss coefficient α1 7.6 ·10−7 s/m
SG loss coefficient α2 7.6 ·10−7 s/m
spring constant in contact (from [34]) kH 730 N/m
glottal gap at rest g 0.3 mm
vocal fold length (from [59]) h 10 mm
vocal fold thickness (from [34]) L 6.8 mm
superior vocal fold spring location (from [33]) l1 0.85
inferior vocal fold spring location (from [33]) l2 0.15
control area height below glottis H0 11.3 mm
control area height above glottis H1 2 mm
equivalent gap length for viscous loss in glottis Lg 1.5 mm
SGT length LSGT 350 mm
normalised acoustic resistance at lungs θs 1
glottal entrance/exit coefficient kg 0.2
subglottal (lung) pressure over the ambient p0

sub 650 Pa

Let us conclude with a sanity check on the parameter magnitudes for equa-
tion (1) describing the vocal folds. The total vibrating mass for female phonation
ism1+m2+m3 = 0.27 g and the total spring coefficients are k1+k2 = 216 N/m.
These nominal values yield fo ≈ 150 Hz for female phonation. If the charac-
teristic thickness of the vocal folds is assumed to be about 5 mm, these param-
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eters yield a magnitude estimate for the elastic modulus of the vocal folds by
E ≈ k1+k2

Lh · 5 · 10−3 m ≈ 15.9 kPa. This should be compared to Figure 7 in [60]
where estimates are given for the elastic modulus of ex vivo male vocal folds
and values between 2.0 kPa and 7.5 kPa are proposed for different parts of the
vocal fold tissue.

6 Computational Aspects

6.1 Parameter control for obtaining vowel glides
The fo-glide is simulated by controlling two parameter values dynamically.
First, the matrix K is scaled while keeping the matrix M constant. This ap-
proach is based on the assumption that the vibrating mass of vocal folds is not
significantly reduced when the speaker’s pitch increases; a reasonable assump-
tion as far as register changes are excluded. It should be noted that the rela-
tive magnitudes of M and K essentially determine the resonance frequencies of
model (1). However, attention must be paid to their absolute magnitudes using,
e.g., dimensional analysis since otherwise the load terms Fj(t) in equation (1)
(containing the aerodynamic forces, contact force between the vocal folds dur-
ing the glottal closed phase, and the counter pressure from the VT/SGT) would
scale in an unrealistic manner.

The subglottal pressure, psub, is the second parameter used to control the
glide production. The dependence of the fundamental frequency on psub has
been observed in simulations [10, 61], physical experiments using upscaled repli-
cas [14], as well as in humans [62] and excised canine larynges [63]. The impact
of psub on fo is, however, secondary in these glides (fo trajectories are within a
few Hz). Instead, psub is scaled in order to maintain phonation and to prevent
large changes in phonation type as the stiffness of the vocal folds changes. The
scaling parameter value of 2 was found by trial and error to maintain the glottal
open quotient OQ (proportion of glottal cycle during which the glottis is open),
the closing quotient ClQ (proportion of the glottal cycle during which the flow
is decreasing), and the maximum of ∆W1 approximately steady over the upward
glide when acoustic feedback was disabled.

The parameters are scaled exponentially with time

K(t) = 2.22t/TK0, psub(t) = 2t/T p0
sub (17)

for rising glides, and

K(t) = 2.22−2t/TK0, psub(t) = 21−t/T p0
sub (18)

for falling glides. The duration of the glide is T = 3 s, and t is the time from
the beginning of the glide. Note that the temporal scale of the glides is long
compared to glottal cycles, and hence the control parameters K and psub can
be regarded as static from the point of view of the vocal fold dynamics. Other
starting conditions (particularly, vocal fold displacements and velocities, and
pressure and velocity distributions in the resonators) are taken from stabilised
simulations. These parameters produce glides with fo approximately in the
range [150 Hz, 320 Hz], although the exact range depends on the VT geometry
and vocal fold damping as well.
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Figure 3: Glide for vowel [i] with Qpc = 0.1 and β = 0.012 kg/s (red) and the
same glide without VT and SGT feedback (Qpc = 0) (black). Left: fundamental
frequency (fo), open quotient (OQ), and closing quotient (ClQ). Right: En-
velopes of volume flow (U), glottal opening (∆W1), and sound pressure at lips
(pm). The values of fo, OQ, and ClQ have been extracted pulse by pulse from
the volume flow signal.

The damping parameters bi for i = 1, 2, in equation (2) play an important
but problematic role in glottis models. If there is too much damping (while
keeping all other model parameters fixed), sustained oscillations do not occur.
Conversely, too low damping will cause instability in simulated vocal fold oscil-
lations. The magnitude of physically realistic damping in vibrating tissues is not
available, and the present model could possibly fail to give a quasi-stationary
glottis signal even if realistic experimental damping values were used. With
some parameter settings, the model even produces quasi-stationary signal at
several damping levels. For simplicity, we set bi = β > 0 for i = 1, 2, and use
golden section search to find at least one value of vocal fold loss β that results
in stable, sustained oscillation. The damping remains always so small that its
lowering effect on the resonances of the mass-spring system (1) is negligible.

6.2 Numerical realisation
The model equations are solved numerically using MATLAB software and
custom-made code. The vocal fold equations of motion (1) are solved by the
fourth order Runge–Kutta time discretisation scheme. The flow equation (5) is
solved by the backward Euler method. The VT and SGT are discretised by the
FEM using piecewise linear elements (N = 29 for VT and N = 10 for SGT)
and the physical energy norm of Webster’s equation. Energy preserving Crank–
Nicolson time discretisation (i.e., Tustin’s method [64]) is used. The time step
is almost always 10 µs which is small enough to keep the frequency warping
in Tustin’s method under one semitone for frequencies under 13kHz. Reduced
time step, however, is used near glottal closure. This is due to the discontinuity
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Figure 4: Glide for vowel [A] with Qpc = 0.1 and β = 0.012 kg/s (red) and the
same glide without VT and SGT feedback (Qpc = 0) (black). Left: fundamental
frequency (fo), open quotient (OQ), and closing quotient (ClQ). Right: En-
velopes of volume flow (U), glottal opening (∆W1), and sound pressure at lips
(pm). fo, OQ, and ClQ have been extracted pulse by pulse from the volume
flow signal.

in the aerodynamic force in equation (8) at the closure which requires numerical
treatment by interpolation and time step reduction as explained in Section 2.4.1
of [33].

Solving the equations of motion of the vocal folds is the computationally
most expensive part of the model, taking approximately 55% of the running
time in simulations of steady phonation with given parameter values. In com-
parison, solving the Webster’s equations with precomputed mass, stiffness, and
loss matrices takes approximately 10% of the simulation time, and the flow
equation solver less than 2%.

7 Simulation Results
The results of upward glide simulations for vowels [A, i] are shown in Figures 3–
4. The fundamental frequency fo trajectory as well as glottal open quotient OQ
and closing quotient ClQ have been extracted from the glottal volume flow U
signal pulse by pulse in all figures. Envelopes of U , glottal opening ∆W1, and
pressure signal at lips pm are also displayed.

The simulations indicate a consistent locking pattern at fR1[i] in fo trajec-
tories that vanishes if the VT feedback is decoupled by setting Qpc = 0. The
locking pattern in rising glides follows the representation given in Figure 6 (right
panel): sudden jump upwards to fR1, a locking to a plateau level, and a smooth
release. Such locking behaviour is not observed for glides of [A] where fR1[A]
is not inside the simulated frequency range [150 Hz, 320 Hz]. The vocal tract
resonance fractions fR1[A]/4 = 187 Hz and fR1[A]/3 = 250 Hz, are within the
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Figure 5: Upward (black) and downward (red) glides for vowel [i] with Qpc =
0.04 and β = 0.012 kg/s. Left: fundamental frequency (fo), open quotient
(OQ), and closing quotient (ClQ). Right: Envelopes of volume flow (U), glottal
opening (∆W1), and sound pressure at lips (pm). On the x-axis, relative vocal
fold stiffness refers to the coefficient of the K0 matrix in equations (17) and
(18).

frequency range, and the corresponding events are visible in the sound pressure
signal at the lips; see Figure 4. They do not, however, cause noticeable changes
in the fo trajectory of the glottal flow.

The frequency jump at fR1[i] in the simulations is preceded by a decrease in
vocal fold oscillation and glottal flow amplitudes. This is accompanied by the
disappearance of full glottal closure (OQ = 1) and less sharp decrease in glottal
flow during closure (higher ClQ), both of which indicate increased breathiness
of the phonation. The locking plateau coincides with a nearly constant rate of
decreasing OQ and ClQ, and after the release of fo the parameters return to
the feedback free trajectories.

Keeping Qpc and other model parameters the same, a falling fo glide shows
a significantly more pronounced or longer locking at fR1 compared to rising
glides; see Figure 5. Note that in Figure 5 the x-axis is the relative vocal fold
stiffness, which for rising glides is 2t/T and for falling glides 21−t/T as given
in equations (17) and (18). The fluctuations in fo in the falling glides around
the "corner" of the lock and at frequencies below this are qualitatively similar
to what occurs at extreme values of Qpc and β for rising glides. In contrast,
fluctuations in the lip pressure envelope occur temporally after the release of
the locking in both rising and falling glides.

Finally, the effect of model parameters β and Qpc on the glide simulations at
fR1[i] is considered. These observations are qualitatively described in Figure 6.
In the right panel, the medium values for β refer to the interval [0.01, 0.02]
and for Qpc to the interval [0.05, 0.1]. These intervals can thus be regarded as
feasible parameter ranges for vowel glide simulations of [i].

Referring to Figure 6 (right panel), the full frequency range [150 Hz, 320 Hz]
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Figure 6: Left: fo trajectories for [i] fixed Qpc = 0.1 and different values of β:
black 0.005 kg/s, red 0.01 kg/s, green 0.015 kg/s, and blue 0.03 kg/s. Middle: fo
trajectories for [i] with β = 0.012 kg/s and different values of Qpc: black 0.0, red
0.05, green 0.1, and blue 0.25. Right: fo trajectories for [i] qualitatively as Qpc
and β increase in the direction of the arrow. Light gray background indicates
that small parameter changes can lead to loss of quasi-stable glides.

for fo can be obtained with modal locking as shown in Figure 3 if both Qpc and
β have medium values or if one is high and the other low. If both parameters
are high or one is high and other medium, the simulated fo range is reduced to
above 200 Hz which is the value of fR1[i]. This glide starting frequency cannot
be lowered by changingK, and it appears to represent very strong modal locking
at the onset of the vowel glide simulation.

The stability of glide simulations (understood as slowly changing amplitude
envelope of glottal volume flow U) becomes a serious issue at low and high
values of β. We have tuned the subglottal pressure psub in glide simulations
as given in equations (17)–(18). If psub were instead kept constant, we would
observe an increasing OQ and decreasing amplitudes of glottal flow and vocal
fold oscillations throughout the glide but the qualitative behaviour of modal
locking events, including the behaviour of phonation type parameters around
these events, remains very similar.

8 Sensitivity and Robustness
Parameter tuning of the vowel model is tricky business as can be seen from
model parameter optimisation experiments described in Chapter 4 in [29]. By
exaggerating some of the parameter values, it is possible to make vowel glide
simulations over fR1[i] behave in a way that can be excluded by experiments or
observations from natural speech.

In phonetically relevant simulations, various tuning parameters must be kept
in values that are not only physically reasonable but also do not produce ob-
viously counterfactual predictions. When such a realistic operating point has
been found, it remains to make sure that the simulations give consistent and
robust results near it. In doing so, we also check which parts of the full model
are truly significant for the model behaviour reported above.

8.1 Acoustics of the vocal tract by Webster’s equation
The constants α1 and α2 in respective equations (9) and (12) regulate the bound-
ary dissipation at the air/tissue interface. As shown in Section 3 in [46], the
same parameter appears in the corresponding dissipating boundary condition
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Figure 7: Left and middle: The frequency responses of the VT acoustic loads
for [A] and [i], computed from Webster’s equation (9). The black curves are the
responses using the purely resistive load of equation (11) at the mouth where the
parameter values are given in Table 1. The responses using the RL impedance
model and its nominal parameter values in Table 3 are shown in red. Right:
Ringing at a modal locking event of [i] shown for both types of loads at the
mouth: purely resistive load (black) and RL model load using nominal and
tuned parameter values (red and green, respectively). The parameter values for
the RL impedance model are given in Table 3.

αφt + ν̄ · ∇φ = 0 for the wave equation φtt = c2∆φ where φ is the 3D acoustic
velocity potential and ν̄ denotes the exterior normal of the VT/air boundary.
The qualitative effect of physically realistic tissue losses to vowel glide simula-
tions was observed to be insignificant; see also Section 5 in [26]. However, these
losses move slightly the VT resonance positions computed from equations (9).

On the other hand, the VT resonances are quite sensitive to the normalised
acoustic resistance θ in equation (11). This parameter regulates the energy loss
through mouth to the external acoustic space, and its extreme values 0 and ∞
correspond to open and closed ends for idealised acoustic waveguides, respec-
tively. Again, physically realistic variation in θ does not change the qualitative
behaviour of vowel glides near fR1[i] as reported above.

To consider the effect of the reactive acoustic loading at the mouth opening, a
first order impedance model was used, based on a parallel coupling of a resistive
load R and an inductive load L. The nominal values for R and L in Table 3
were obtained by interpolation at 200Hz from the piston model given in [49,
Chapter 7, Eq. (7.4.31)]. The transfer function Z(s) = sRL

R+sL approximates the
irrational piston model impedance very well for frequencies under 2 kHz, and
the frequency responses in Figure 7 (left and middle panels) are reasonable as
well.

Table 3: Values for the parameters of the RL impedance model and its transfer
function.

Parameter [A] [i]

Nominal value of R 1.98 · 106 kg
s m4 8.96 · 106 kg

s m4

Nominal value of L 33.2 kg
m4 70.6 kg

m4

Tuned value of R (Not required.) 8.96 · 104 kg
s m4

Nominal value of Z(400πi) 879 + 4.17 · 104i 879 + 8.87 · 104i

However, the value lims→+∞ Z(s) = R overestimates its piston model coun-
terpart by over 700 %, and the vowel simulations show excessive ringing, e.g., at

20



modal locking events as shown in Figure 7 (right panel). In a low-order rational
model, all of the lumped inductance appears at the mouth opening whereas the
inductance is distributed by resistive shunting and transmission delays to an
infinite volume in the piston model. Hence, the value of R must be tuned down
from its nominal value so as not to contradict experimental evidence.

Another low-order time-domain model for termination, based on an idealised
spherical interface at a horn opening, is proposed in [50, Eq. (39)]. In its most
general form, the model is an integro-differential delay equation with nine pa-
rameters and a single delay lag. Unfortunately, the general form cannot be
introduced to Webster’s model as a boundary condition: this is the salient fea-
ture of the parallel RL model (having the same circuit topology as the first-order
high pass model [50, Eq. (28)]) that simplifies the implementation of the FEM
solver.

The role of the VT curvature in equation (9) is involved, too. As can be
seen from equation (10), the curvature results in a second order correction in
the curvature ratio η to the speed of sound c in equation (9). In waveguides
of significant intersectional diameter compared to wavelengths of interest, the
contribution of η in equation (10) appears to be secondary to a larger error
source that is related to curvature as well. This is caused by the fact that
a longitudinal acoustic wavefront does not propagate in the direction of the
geometric centreline of a curved waveguide even if the waveguide were of cir-
cular intersection with constant diameter. The wavefront has a tendency to
“cut the corners” in a frequency and geometry dependent manner, and we do
not have a mathematically satisfying description of the “acoustically correct”
centreline that would deal with this phenomenon optimally in the context of
Webster’s equation. Extraction of the area function A(·) for equation (9) from
MR images, however, requires some notion of a centreline, and using a different
centreline would lead to slightly different version of A(·). This would somewhat
change, e.g., the resonance frequencies of equation (9) but not the mathemati-
cal structure of the model nor the results of vowel glide simulations. Hence, we
simply use the area functions and centrelines obtained from 3D MR images by
the custom code described in [56] using its nominal settings.

It remains to consider the non-longitudinal resonances of the VT. By its
construction, the generalised Webster’s equation does not take into account at
all the transversal acoustic dynamics of the VT. It is known from numerical
3D Helmholtz resonance experiments on several dozens of VT geometries that
lowest non-longitudinal resonances of the human VT tract are at approximately
4 kHz corresponding to λ/2 ≈ 4 cm; see, e.g., [5] and [55]. Anatomically, such
length may appear between opposing valleculae, piriform fossae, or even across
the mouth cavity in some VT vowel configurations. However, the upper limit
of 4 kHz for Webster’s equation is adequate for the computation of the acous-
tic counter pressure pc in equation (13) for several octaves lower fundamental
frequencies fo ∈ [150 Hz, 320 Hz] that are used in vowel glide simulations.

It should be pointed out that equations (9)–(10) with nonvanishing η is the “right” gen-
eralisation of Webster’s horn model, corresponding to the wave equation in curved acoustic
waveguides. This approach results in the approximation error analysis given in [48]. Some-
what paradoxically, a similar error analysis for the simpler model equations (9)–(10) with
η ≡ 0 would require more complicated error estimation.
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Figure 8: Left: Volume flow (U), glottal area (Ag = ∆W1h), supraglottal pres-
sure (psp) just superior to the vocal folds, counter pressure (pc), and subglottal
pressure just inferior to the vocal folds (psb) without SGT (black line) and with
SGT (red line) for the vowel [i] at fo = 180 Hz. Glottal closure are indicated
by squares and openings by circles. Right: Similar signals for the vowel [A].

8.2 Subglottal acoustics
To large extent, what was stated above about the modelling error of the VT
acoustics applies to the SGT acoustics as well. We complement this treatment
by considering how and to what extent subglottal acoustics plays a role in the
vowel glide simulations reported above

Even though the acoustic termination at lungs is strongly resistive (see [65]),
significant ringing (i.e., oscillatory response to an abrupt change of a forcing)
takes place in the subglottal space. In simulations, it is seen in the bottom
panels of Figure 8. Moreover, it has been verified by in vivo measurements
[57, 58, 66, 12], using physical models [11, 67], and by mathematically mod-
elling the subglottal acoustics [28] based on anatomic data of trachea and the
progressively subdividing system of bronchi and the alveoles [68, 69]. A refined
model for subglottal acoustic impedance was developed in [65] for the branching
airway network in terms of transmission line theory, taking into consideration
the contribution from yielding walls due to material parameters of cartilages
and soft tissues.

During the open phase, the inertia of the air column from bronchi up to
mouth opening is taken into account by Ciner in equation (5). At closure, the
flow velocity vo drops to zero, and a rarefaction pulse is formed above the vocal
folds due to air column inertia in the VT, and this is part of the acoustics
modelled by equation (9). Similarly, a compression pulse is formed below the
vocal folds, known as the “water hammer” in [70]. The subglottal resonator
equation (12) is mainly excited by the water hammer. Both of these pulses can
be seen in the supra- and subglottal pressure signals psp and psb in Figure 8.

The water hammer is the most important component of subglottal ringing,
accompanied by its first echo that arrives back to vocal folds after approximately
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2 ms delay. The delay corresponds to the lowest subglottal formant between
500 Hz and 600 Hz as reported in [58] and [28]. The first echo returns during
the glottal closure at least if fo < 150 Hz and the open quotient (OQ) of the
pulse does not exceed 50 %; see Figure 4 in [57] for measurements and Figure 12
in [28] for simulations. The echoes of the water hammer pulse can be clearly
seen in Figure 8 as well but now the first echo returns after the glottis has
opened again due to higher values of fo and OQ in these simulations.

The observations from simulations indicate that the subglottal acoustics has
an observable effect on glottal pulse waveform. The subglottal effect will get
more pronounced when fo → f ′R1 = 500 Hz which is the predefined frequency
of the first subglottal resonance. This can be understood in terms of the supra-
glottal behaviour shown in Figure 8 since both the VT and the SGT resonators
have been realised similarly within the full model. The sensitivity of the fo
trajectory in the range [150 Hz, 320 Hz] for the subglottal effect depends on the
magnitude of the SGT component of the counter pressure, regulated by the pa-
rameter c3 in equation (13). Considering the model behaviour at supraglottal
resonance fractions of fR1[A], it is to be expected that the first subglottal res-
onance fraction f ′R1/2 should show up similarly. This, indeed, happens if the
coupling constant c3 in equation (13) is large.

8.3 Flow model
The glottal flow described by equations (5)–(6) contains terms representing the
effect of viscosity in the glottis as well as pressure loss and recovery at the
entrance and exit of the glottis, respectively. Viscous pressure loss can easily be
seen to be significant by considering the glottal dimensions and viscosity of air
in the first term of equation (6). It is clear from this equation that the viscous
losses dominate at least if the glottal opening is small.

The importance of entrance and exit effects during parts of the glottal open
phase can be seen, for example, by comparing simulated volume velocities and
glottal opening areas with the experimental curves in Figure 3 in [44], obtained
from a physical model of the glottis. In model simulations, leaving out this
transglottal pressure loss term changes the glottal pulse waveform significantly
if other model parameters are kept the same, as shown in Figure 3.7 in [29].
About half of the total pressure loss in simulations is due to entrance and exit
effects at the peak of opening of the glottis; see Figure 3.6 in [29]. However,
the behaviour of the simulated fo trajectories over fR1[i] does not change if the
transglottal pressure loss term is removed. Then, however, the vowel glide must
be produced by different model parameter values.

9 Discussion
We have reported observations on the locking of simulated fo glides on a res-
onance of the VT. The locking behaviour shows a consistent time-dependent
behaviour that is similar for rising and falling glides. The fo jump at the be-
ginning of the locking in rising glides and end of the locking in falling glides
occurs together with and increased breathiness of phonation as characterised by
open quotient OQ and closing quotient ClQ. During the locking plateau, these
parameters indicated an approximately steady change of phonation type.
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The locking takes place only at frequencies determined by sub- or supra-
glottal resonances. Use of psub as a secondary control parameter for the glides
ensure that the main cause for changes in OQ and ClQ is the acoustic loading.
By modifying the strength of the acoustic feedback (i.e., the parameter Qpc in
equation (13)) and vocal fold tissue losses (i.e., the parameter β), the locking
tendency at fR1[i] may be modulated from non-existent (where both Qpc and β
have low values) to extreme locking at fR1[i] without release (where Qpc and/or
β have exaggeratedly large values); see Figure 6. By decoupling secondary com-
ponents from the simulation model, the locking behaviour at fR1[i] remains the
same, even though the model parameter values required for the desired glot-
tal waveform change. We conclude that the simulation results on vowel glides
reported above reflect the model behaviour in a consistent and robust manner.

Vowel glides observed in test subjects are another matter. Any model is a
simplification of reality, and there is a catch in assessing the role of unmodelled
physics: a proper treatment would require the modelling of it. Short of this, we
discuss these aspects based on literature, model experiments, and reasoning by
analogy.

9.1 Acoustics
Viscosity of air has not been taken into account in the acoustics model though
a measurable effect is likely take place in narrow parts of the VT or SGT.
Resulting attenuation can be treated by adding a dissipation term of Kelvin–
Voigt type to equations (9) and (12). For a constant diameter waveguide, the
term is proportional to µψsst/c2. Adding viscosity losses will widen and lower
the resonance peaks of Webster’s resonators (i.e., lower their Q-value), with
a slight change in the centre frequencies. An analogous effect can be studied
by increasing the tissue dissipation parameter α1 in equation (9) (or α2 in
equation (12)) to a very high value which has been observed not to change the
conclusions on vowel glide simulations. Similarly, the overall acoustic resistance
of the VT has no qualitative effect which can be seen in [71] where the modal
locking was observed for vowel [œ] at the lowest resonance 647 Hz despite the
fact that the anatomic geometry of [œ] has a much wider flow channel than that
of [i].

The SGT modelling by the horn is a crude simplification of the fractal-like
lower airways and lungs. The network structure of the subglottal model in [28]
could be replicated by interconnecting a large number of Webster’s resonators,
each modelled by equation (12). The resulting transmission graph is a passive
dynamical system by Section 5 in [72], but it is not clear how to write an efficient
FEM solver for such configurations.

The model proposed in [28] as well as the transmission graph approach are
likely to produce the correct resonance distribution and frequency-dependent
energy dissipation rate at the lung end without tuning. The horn model does
require tuning of the horn opening area and the boundary condition on it in
order to get realistic behaviour on the lowest subglottal resonance f ′R1 = 500 Hz.
Doing so freezes all the higher subglottal resonances at fixed positions, e.g.,
f ′R2 = 1 kHz. The branching subglottal models given in Figure 8 in [28] have the
second subglottal resonance between 1.3 kHz and 1.5 kHz. It was observed in [65]
that the soft tissues introduce an additional resonance to the subglottal system
that is lower than the first subglottal formant F ′1 due to air column dynamics.
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The is no obvious way how a horn model could be used to accommodate such a
resonance at ≈ 350 Hz due to the yielding wall dynamics.

Based on the observations on the simulated vowel glides, it seems convincing
that the overall subglottal effect on the fundamental frequency fo is insignificant
for vowel glides within [150 Hz, 320 Hz] that is over 100Hz away from f ′R1. How-
ever, the subglottal effect is certainly discernible in waveforms as in Figure 8,
but the effect of higher subglottal resonances f ′R2, f

′
R3, . . . cannot be seen even

there. In current simulations of female phonation, the vocal fold mass-spring
system has its mechanical resonances at approximately 150 Hz, which acts as
a low-pass filter for subglottal excitation in higher frequencies. The same con-
clusions are likely to hold when using a more complicated subglottal resonator
geometry with one caveat: a graph-like subglottal geometry has lots of cross-
mode resonances that affect the subglottal acoustic impedance in other ways
than just moving the pole positions.

Also the DC-component of the glottal flow loads the acoustic resonators
in equations (11) and (12). If we use vac(t) = v0(t) − 1

T

∫ t
t−T v0(τ) dτ with

T = 2/fo instead of v0 as input to the resonator equations, only negligible
effects are observed in simulated stable waveforms. There are more pronounced
effects in the beginnings of simulated phonation when a stable waveform has
not yet developed.

9.2 Vocal fold geometry and glottal flow
The idealised vocal folds geometry shown in Figure 1 (right panel) leads to a
particularly simple expression for the aerodynamic force in equation (8). Re-
placing the sharp peaks by flat tops in Figure 1 (but keeping the same glottal
gap g at rest) results in phonation that has typically lower open quotient (OQ)
whereas the original wedge-like geometry produces more often phonation where
the glottis does not close. This change makes it easier to adjust the parametri-
sation of the model to obtain some phonation targets. In particular, the glottal
loss parameter kg can be set closer to more commonly used, somewhat larger
values since the model geometry becomes more similar to the geometries used
in related literature.

Another aspect involving the aerodynamic force on vocal fold structures
is associated with the hydrostatic pressure reference level in vibrating tissues.
This level is denoted by pref , and it is expected to satisfy pref ≤ psub. If the air
pressure between the vocal folds were equal to pref , then the vocal fold wedges
would not be accelerated by the pressure difference. In equation (7), we use
pref = psub, and we always have p(x, t) − psub ≤ 0. For this reason, the effect
of the aerodynamic force is always trying to close the glottis in this case. For
small flow velocities V (x, t), using p(x, t)−pref with pref < psub in equation (7)
would give the following outcome: the driving pressure psub would push the
vocal folds open more strongly than the aerodynamic force would pull them
close. Unfortunately, there is no obvious way to determine the true magnitude
of pref as it is an outcome of dynamic pressure equalisation processes related to
psub and the additional partial pressure due to haemodynamics in tissues. Using
a tuned value of pref instead of psub in equation (7) would be desirable, e.g.,
in phonation onset simulations; in particular, if g = 0 where using pref = psub
would not start a phonation cycle at all.

The glottal flow has been studied extensively since 1950’s. Compared to
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the flow model given above, physiologically more faithful glottal flow solvers
have been proposed in, e.g., [37], [73] and [74]; see also [51], [10], [75], and
[44]. As pointed out in [75], more sophisticated flow models are challenging to
couple to acoustic resonators since the interface between the flow-mechanical
(in particular, the turbulent) and the acoustic components is no longer clearly
defined.

Flow separation and Coandă effect during the diverging phase of the phona-
tory cycle (which obviously cannot occur in wedge-like geometry of Figure 1)
have been studied in [74], [76] and [37] using boundary layer theory and phys-
ical model experiments. The boundary layer leaves the vocal fold surfaces at
the time-dependent flow separation point, say xs, forming a jet which extends
downstream into supraglottal space. Thus, the vocal folds “stall” at xs, and
the aerodynamic force on them is greatly diminished; see Section IV in [74]
where the vocal fold model is from [77]. Similarly, the viscous pressure loss
equation (A7) in [37] depends only on the upstream part of glottis that ends
at xs. Simplifying assumptions on the vocal fold geometry [37] are required
for computing xs, and the result is sensitive to the geometry which makes it
challenging to model.

Turbulence in supraglottal space is a spatially distributed acoustic source,
and it does not provide a scalar flow velocity signal for boundary control as v0 in
equation (11). The supraglottal jet may even exert an additional aerodynamic
force to vocal folds that would not be part of the acoustic counter pressure pc
from the acoustic resonators. Turbulence in VT constrictions is the primary
acoustic source for unvoiced fricatives, and many such sources have been mod-
elled separately in, e.g., [51]. Much of the turbulence noise energy lies above
4 kHz but Webster’s model equation (9) is an accurate description of VT acous-
tics only below 4 kHz due to the lack of cross-modes [78, 79]. This fact speaks
against the wisdom of including turbulence noise in the proposed model.

The proposed phonation model treats flow-mechanical and acoustic com-
ponents using separate equations, and we conclude that this paradigm is not
conducive for including the advanced flow-mechanical features discussed above.
Instead, phonation models based on Navier–Stokes equations would be a more
appropriate framework.

10 Conclusions
We have presented a model for vowel production, based on (partial) differential
equations, that consists of submodels for glottal flow, vocal folds oscillations,
and acoustic responses of the VT and subglottal cavities. The model has been
originally designed as a tunable glottal pulse source for a high-resolution VT
acoustics simulator that is based on the 3D wave equation and VT geometries
obtained by MRI as explained in [5, 55]. The model has found applications as a
controlled source of synthetic vowels that are needed in, e.g., developing speech
processing algorithms such as the inverse filtering [6, 7].

In this article, the model was used for simulations of rising and falling vowel
glides of [A, i] in frequencies that span one octave [150 Hz, 320 Hz]. This interval
contains the lowest VT resonance fR1 of [i] but not that of [A]. Perturbation
events in simulated vowel glides were observed at VT acoustic resonances, or
at some of their fractions but nowhere else. The fundamental frequency fo of
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the simulated vowel was observed to lock to fR1[i] but similar locking was not
seen at any of the resonance fractions. The locking events were accompanied
by changes in the phonation: increased breathiness below and partially at the
locking frequency and steady change in breathiness during most of the lock.
Such modal locking event takes place only when the acoustic feedback from
VT to vocal folds is present, and then it has a characteristic time-dependent
behaviour. A large number of simulation experiments were carried out with dif-
ferent parameter settings of the model to verify the robustness and consistency
of all observations.

To what extent do the simulation results validate the proposed model? The
model produces perturbations of the glottal pulse both at VT resonances and
at some of the VT resonance fractions. Of the former, a wide existing literature
was reviewed in Introduction. Observations on the subformant perturbations
in speech have not been reported, to our knowledge, in experimental literature.
There is a particular temporal pattern of locking in simulated perturbations at
fR1[i] as explained in Figure 6 (left panel). Although pulse based fo trajectories
are rarely shown in literature, a similar pattern can be seen in the speech spec-
trograms given in Figure 5 in [19], and Figure 4 in [18], as well as in vowel glide
samples in the data set of the companion article [3]. A similar locking behaviour
can also be seen in simulated spectrograms in Figure 6 in [80] and Figures 13
and 14 in [16], and it can also be interpreted to lie behind the experimental
results shown in Figures 10b and 13b of [14]. The glottal flow and area simula-
tions in Figure 8 are remarkably similar with the experimental data presented
in Figures 4-7 in [57], the signals produced by different numerical models (see
Figures 14a-14c in [10], Figures 8 and 10 in [43], Figures 10–11 in [28], Figure 6
in [73], Figure 5 in [81]), and the glottal pulse waveforms obtained by inverse
filtering in, e.g., Figures 10–13 in [6], Figures 5.3, 5.4, and 5.17 in [82], [83], and
Figures 3 and 6 in [7].

The simulation model does not include the neural control actions on the vocal
fold structures or dynamic modifications of the VT geometry. There is also a
significant control action affecting the subglottal pressure and it has been used
as a control variable in equations (17)–(18) for glide productions. In humans,
neural control actions are part of feedback loops, of which some are auditive, and
some others operate directly through tissue innervation and the central nervous
system. So little is known about these feedback mechanisms that their explicit
mathematical modelling seems infeasible. Instead, the model parameters for
simulations are tuned so that the simulated glottal pulse waveform corresponds
to experimental speech data. Despite these simplifications the model appears
to be sufficiently detailed to replicate the observations found in literature.
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M. Kob, A. Ĺ’ofqvist, S. McCoy, D. G. Miller, H. Noé, R. C. Scherer,
J. R. Smith, B. H. Story, J. G. Švec, S. Ternstŕ’om, J. Wolfe, Toward a
consensus on symbolic notation of harmonics, resonances, and formants
in vocalization, The Journal of the Acoustical Society of America 137 (5)
(2015) 3005–3007. doi:10.1121/1.4919349.

[5] D. Aalto, O. Aaltonen, R.-P. Happonen, P. Jääsaari, A. Kivelä, J. Kuortti,
J.-M. Luukinen, J. Malinen, T. Murtola, R. Parkkola, J. Saunavaara,
T. Soukka, M. Vainio, Large scale data acquisition of simultaneous MRI and
speech, Applied Acoustics 83 (2014) 64–75. doi:10.1016/j.apacoust.
2014.03.003.

[6] P. Alku, Glottal wave analysis with pitch synchronous iterative adaptive
inverse filtering, Speech Communication 11 (2) (1992) 109–118. doi:10.
1016/0167-6393(92)90005-R.

[7] P. Alku, Glottal inverse filtering analysis of human voice production - A
review of estimation and parameterization methods of the glottal excitation
and their applications, Sadhana 36 (5) (2011) 623–650. doi:10.1007/
s12046-011-0041-5.

[8] P. Alku, J. Pohjalainen, M. Vainio, A.-M. Laukkanen, B. H. Story, For-
mant frequency estimation of high-pitched vowels using weighted linear
prediction, The Journal of the Acoustical Society of America 134 (2) (2013)
1295–1313. doi:10.1121/1.4812756.

[9] B. H. Story, Physiologically-based speech simulation using an enhanced
wave-reflection Model of the Vocal Tract, Ph.D. thesis, University of Iowa,
Iowa City (Jan. 1995).

[10] K. Ishizaka, J. L. Flanagan, Synthesis of voiced sounds from a two mass
model of the vocal cords, Bell System Technical Journal 51 (1972) 1233–
1268.

[11] S. F. Austin, I. R. Titze, The effect of subglottal resonance upon vocal
fold vibration, Journal of Voice 11 (4) (1997) 391–402. doi:10.1016/
S0892-1997(97)80034-3.

[12] Z. Zhang, J. Neubauer, D. A. Berry, The influence of subglottal acoustics
on laboratory models of phonation, The Journal of the Acoustical Society
of America 120 (3) (2006) 1558–1569. doi:10.1121/1.2225682.

28

http://asa.scitation.org/doi/abs/10.1121/1.4919349
http://asa.scitation.org/doi/abs/10.1121/1.4919349
http://asa.scitation.org/doi/abs/10.1121/1.4919349
http://dx.doi.org/10.1121/1.4919349
http://dx.doi.org/10.1016/j.apacoust.2014.03.003
http://dx.doi.org/10.1016/j.apacoust.2014.03.003
http://www.sciencedirect.com/science/article/pii/016763939290005R
http://www.sciencedirect.com/science/article/pii/016763939290005R
http://dx.doi.org/10.1016/0167-6393(92)90005-R
http://dx.doi.org/10.1016/0167-6393(92)90005-R
http://dx.doi.org/10.1007/s12046-011-0041-5
http://dx.doi.org/10.1007/s12046-011-0041-5
http://scitation.aip.org/content/asa/journal/jasa/134/2/10.1121/1.4812756
http://scitation.aip.org/content/asa/journal/jasa/134/2/10.1121/1.4812756
http://scitation.aip.org/content/asa/journal/jasa/134/2/10.1121/1.4812756
http://dx.doi.org/10.1121/1.4812756
http://www.sciencedirect.com/science/article/pii/S0892199797800343
http://www.sciencedirect.com/science/article/pii/S0892199797800343
http://dx.doi.org/10.1016/S0892-1997(97)80034-3
http://dx.doi.org/10.1016/S0892-1997(97)80034-3
http://scitation.aip.org/content/asa/journal/jasa/120/3/10.1121/1.2225682
http://scitation.aip.org/content/asa/journal/jasa/120/3/10.1121/1.2225682
http://dx.doi.org/10.1121/1.2225682


[13] J. C. Lucero, K. G. Lourenço, N. Hermant, A. Van Hirtum, X. Pelorson,
Effect of source-tract acoustical coupling on the oscillation onset of the
vocal folds, The Journal of the Acoustical Society of America 132 (1) (2012)
403–411. doi:10.1121/1.4728170.

[14] N. Ruty, X. Pelorson, A. Van Hirtum, I. Lopez-Arteaga, A. Hirschberg, An
in-vitro setup to test the relevance and the accuracy of low-order vocal folds
models, The Journal of the Acoustical Society of America 121 (5) (2007)
479–490. doi:10.1121/1.2384846.

[15] N. Ruty, X. Pelorson, A. Van Hirtum, Influence of acoustic waveguides
lengths on self-sustained oscillations: Theoretical prediction and experi-
mental validation, The Journal of the Acoustical Society of America 123 (5)
(2008) 3121–3121. doi:10.1121/1.2933042.

[16] I. R. Titze, Nonlinear source-filter coupling in phonation: Theory, The
Journal of the Acoustical Society of America 123 (5) (2008) 2733–2749.
doi:10.1121/1.2832337.

[17] H. Hatzikirou, W. T. Fitch, H. Herzel, Voice instabilities due to source-tract
interactions, Acta Acustica united with Acustica 92 (2006) 468–475.

[18] I. T. Tokuda, M. Zemke, M. Kob, H. Herzel, Biomechanical modeling of
register transitions and the role of vocal tract resonators, The Journal of
the Acoustical Society of America 127 (3) (2010) 1528–1536.

[19] I. R. Titze, T. Riede, P. Popolo, Nonlinear source-filter coupling in phona-
tion: Vocal exercises, The Journal of the Acoustical Society of America
123 (4) (2008) 1902–1915. doi:10.1121/1.2832339.

[20] M. Zañartu, D. D. Mehta, J. C. Ho, G. R. Wodicka, R. E. Hillman, Ob-
servation and analysis of in vivo vocal fold tissue instabilities produced by
nonlinear source-filter coupling: A case study), The Journal of the Acous-
tical Society of America 129 (1) (2011) 326–339. doi:10.1121/1.3514536.

[21] K. L. Kelly, C. C. Lochbaum, Speech synthesis, in: Proceedings of the
Fourth International Congress on Acoustics, Paper G42, 1962, pp. 1–4.

[22] H. K. Dunn, The calculation of vowel resonances, and an electrical vocal
tract, The Journal of the Acoustical Society of America 22 (1950) 740–753.

[23] S. El-Masri, X. Pelorson, P. Saguet, P. Badin, Development of the transmis-
sion line matrix method in acoustics. Applications to higher modes in the
vocal tract and other complex ducts, Intermational Journal of Numerical
Modelling: Electronic Networks, Devices and Fields 11 (1998) 133–151.

[24] J. Mullen, D. Howard, D. Murphy, Waveguide physical modeling of vocal
tract acoustics: Flexible formant bandwith control from increased model
dimensionality, IEEE Transactions on Audio, Speech, and Language Pro-
cessing 14 (3) (2006) 964–971.

[25] S. Rienstra, A. Hirschberg, An introduction to acoustics, Tech. rep., Eind-
hoven University of Technology (2013).

29

http://scitation.aip.org/content/asa/journal/jasa/132/1/10.1121/1.4728170
http://scitation.aip.org/content/asa/journal/jasa/132/1/10.1121/1.4728170
http://dx.doi.org/10.1121/1.4728170
http://dx.doi.org/10.1121/1.2384846
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2933042
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2933042
http://scitation.aip.org/content/asa/journal/jasa/123/5/10.1121/1.2933042
http://dx.doi.org/10.1121/1.2933042
http://dx.doi.org/10.1121/1.2832337
http://dx.doi.org/10.1121/1.2832339
http://scitation.aip.org/content/asa/journal/jasa/129/1/10.1121/1.3514536
http://scitation.aip.org/content/asa/journal/jasa/129/1/10.1121/1.3514536
http://scitation.aip.org/content/asa/journal/jasa/129/1/10.1121/1.3514536
http://dx.doi.org/10.1121/1.3514536
http://www.win.tue.nl/~sjoerdr/papers/boek.pdf


[26] K. van den Doel, U. M. Ascher, Real-time numerical solution of Webster’s
equation on a nonuniform grid, IEEE Transactions on Audio, Speech, and
Language Processing 16 (6) (2008) 1163–1172.

[27] J. Horáček, V. Uruba, V. Radolf, J. Veselỳ, V. Bula, Airflow visualization
in a model of human glottis near the self-oscillating vocal folds model,
Applied and Computational Mechanics 5 (2011) 21–28.

[28] J. C. Ho, M. Zañartu, G. R. Wodicka, An anatomically based, time-domain
acoustic model of the subglottal system for speech production, The Journal
of the Acoustical Society of America 129 (3) (2011) 1531–1547. doi:10.
1121/1.3543971.

[29] T. Murtola, Modelling vowel production, Licentiate thesis, Aalto University
School of Science (Department of Mathematics and Systems Analysis 2014).

[30] K. N. Stevens, Acoustic phonetics, Vol. 30, MIT press, 2000.

[31] H. Hirose, Investigating the physiology of laryngeal structures, The hand-
book of phonetic sciences (2010) 130–52.

[32] H. Gray, Anatomy of the human body, Lea & Febiger, Philadelphia, 1918.

[33] A. Aalto, A low-order glottis model with nonturbulent flow and mechan-
ically coupled acoustic load, Master’s thesis, Helsinki University of Tech-
nology, Department of Mathematics and Systems Analysis (2009).

[34] J. Horáček, P. Šidlof, J. G. Švec, Numerical simulation of self-oscillations
of human vocal folds with Hertz model of impact forces, Journal of Fluids
and Structures 20 (6) (2005) 853–869. doi:10.1016/j.jfluidstructs.
2005.05.003.

[35] J. Liljencrants, A translating and rotating mass model of the vocal folds,
STL-QPSR 32 (1) (1991) 1–18.

[36] N. J. C. Lous, G. C. J. Hofmans, R. N. J. Veldhuis, A. Hirschberg, A
symmetrical two-mass vocal-fold model coupled to vocal tract and trachea,
with application to prosthesis design, Acta Acustica united with Acustica
84 (6) (1998) 1135–1150.

[37] X. Pelorson, A. Hirschberg, R. R. van Hassel, A. P. J. Wijnands, Y. Au-
regan, Theoretical and experimental study of quasisteady-flow separation
within the glottis during phonation. Application to a modified two-mass
model, The Journal of the Acoustical Society of America 96 (6) (1994)
3416–3431. doi:10.1121/1.411449.

[38] B. H. Story, I. R. Titze, Voice simulation with a body-cover model of the
vocal folds, The Journal of the Acoustical Society of America 97 (2) (1995)
1249–1260. doi:10.1121/1.412234.

[39] F. Alipour, C. Brucker, D. D. Cook, A. Gommel, M. Kaltenbacher,
W. Mattheus, L. Mongeau, E. Nauman, R. Schwarze, I. Tokuda, S. Zorner,
Mathematical models and numerical schemes for the simulation of human
phonation, Current Bioinformatics 6 (3) (2011) 323–343. doi:10.2174/
157489311796904655.

30

http://dx.doi.org/10.1121/1.3543971
http://dx.doi.org/10.1121/1.3543971
http://dx.doi.org/10.1016/j.jfluidstructs.2005.05.003
http://dx.doi.org/10.1016/j.jfluidstructs.2005.05.003
http://scitation.aip.org/content/asa/journal/jasa/96/6/10.1121/1.411449
http://scitation.aip.org/content/asa/journal/jasa/96/6/10.1121/1.411449
http://scitation.aip.org/content/asa/journal/jasa/96/6/10.1121/1.411449
http://dx.doi.org/10.1121/1.411449
http://scitation.aip.org/content/asa/journal/jasa/97/2/10.1121/1.412234
http://scitation.aip.org/content/asa/journal/jasa/97/2/10.1121/1.412234
http://dx.doi.org/10.1121/1.412234
http://www.ingentaconnect.com/content/ben/cbio/2011/00000006/00000003/art00005
http://www.ingentaconnect.com/content/ben/cbio/2011/00000006/00000003/art00005
http://dx.doi.org/10.2174/157489311796904655
http://dx.doi.org/10.2174/157489311796904655


[40] P. Birkholz, A survey of self-oscillating lumped-element models of the vocal
folds, in: B. J. Kröger, P. Birkholz (Eds.), Studientexte zur Sprachkommu-
nikation: Elektronische Sprachsignalverarbeitung, 2011, pp. 47–58.

[41] B. D. Erath, M. Zañartu, K. C. Stewart, M. W. Plesniak, D. E. Sommer,
S. D. Peterson, A review of lumped-element models of voiced speech, Speech
Communication 55 (5) (2013) 667–690. doi:10.1016/j.specom.2013.02.
002.

[42] J. Horáček, J. G. Švec, Aeroelastic model of vocal-fold-shaped vibrating
element for studying the phonation threshold, Journal of Fluids and Struc-
tures 16 (7) (2002) 931–955. doi:10.1006/jfls.2002.0454.

[43] M. Zañartu, L. Mongeau, G. R. Wodicka, Influence of acoustic loading on an
effective single mass model of the vocal folds, The Journal of the Acoustical
Society of America 121 (2) (2007) 1119–1129. doi:10.1121/1.2409491.

[44] J. van den Berg, J. T. Zantema, P. Doornenbal, On the air resistance and
the Bernoulli effect of the human larynx, The Journal of the Acoustical
Society of America 29 (5) (1957) 626–631. doi:10.1121/1.1908987.

[45] L. P. Fulcher, R. C. Scherer, T. Powell, Pressure distributions in a static
physical model of the uniform glottis: Entrance and exit coefficients, The
Journal of the Acoustical Society of America 129 (3) (2011) 1548–1553.
doi:10.1121/1.3514424.

[46] T. Lukkari, J. Malinen, Webster’s equation with curvature and dissipation,
SubmittedarXiv:1204.4075.

[47] A. Aalto, T. Lukkari, J. Malinen, Acoustic wave guides as infinite-
dimensional dynamical systems, ESAIM: Control, Optimisation and Cal-
culus of Variations 21 (2) (2015) 324–347. doi:10.1051/cocv/2014019.

[48] T. Lukkari, J. Malinen, A posteriori error estimates for Webster’s equation
in wave propagation, Journal of Mathematical Analysis and Applications
427 (2) (2015) 941–961. doi:10.1016/j.jmaa.2015.02.074.

[49] P. M. Morse, K. U. Ingard, Theoretical acoustics, McGraw-Hill, 1968.

[50] T. Hélie, X. Rodet, Radiation of a pulsating portion of a sphere: application
to horn radiation, Acta Acustica united with Acustica 89 (2003) 565–577.

[51] P. Birkholz, D. Jackel, B. Kröger, Simulation of losses due to turbulence in
the time-varying vocal system, IEEE Transactions on Audio, Speech, and
Language Processing 15 (4) (2007) 1218–1226. doi:10.1109/TASL.2006.
889731.

[52] B. Story, I. Titze, E. Hoffman, Vocal tract area functions from magnetic res-
onance imaging, The Journal of the Acoustical Society of America 100 (1)
(1996) 537–554.

[53] B. H. Story, I. R. Titze, E. A. Hoffman, Vocal tract area functions for
an adult female speaker based on volumetric imaging, The Journal of the
Acoustical Society of America 104 (1) (1998) 471–487. doi:10.1121/1.
423298.

31

http://dx.doi.org/10.1016/j.specom.2013.02.002
http://dx.doi.org/10.1016/j.specom.2013.02.002
http://dx.doi.org/10.1006/jfls.2002.0454
http://scitation.aip.org/content/asa/journal/jasa/121/2/10.1121/1.2409491
http://scitation.aip.org/content/asa/journal/jasa/121/2/10.1121/1.2409491
http://dx.doi.org/10.1121/1.2409491
http://dx.doi.org/10.1121/1.1908987
http://dx.doi.org/10.1121/1.3514424
http://arxiv.org/abs/1204.4075
http://dx.doi.org/10.1051/cocv/2014019
http://www.sciencedirect.com/science/article/pii/S0022247X1500195X
http://www.sciencedirect.com/science/article/pii/S0022247X1500195X
http://dx.doi.org/10.1016/j.jmaa.2015.02.074
http://dx.doi.org/10.1109/TASL.2006.889731
http://dx.doi.org/10.1109/TASL.2006.889731
http://scitation.aip.org/content/asa/journal/jasa/104/1/10.1121/1.423298
http://scitation.aip.org/content/asa/journal/jasa/104/1/10.1121/1.423298
http://dx.doi.org/10.1121/1.423298
http://dx.doi.org/10.1121/1.423298


[54] B. H. Story, I. R. Titze, Parameterization of vocal tract area functions by
empirical orthogonal modes, Journal of Phonetics 26 (3) (1998) 223–260.
doi:10.1006/jpho.1998.0076.

[55] A. Kivelä, Acoustics of the Vocal Tract: MR image segmentation for mod-
elling, Master’s thesis, Aalto University School of Science, Department of
Mathematics and Systems Analysis (2015).

[56] A. Ojalammi, J. Malinen, Automated segmentation of upper airways from
MRI: Vocal tract geometry extraction, in: BIOIMAGING 2017, 2017, pp.
77–84.

[57] B. Cranen, L. Boves, Pressure measurements during speech production
using semiconductor miniature pressure transducers: Impact on models for
speech production, The Journal of the Acoustical Society of America 77 (4)
(1985) 1543–1551. doi:10.1121/1.391997.

[58] B. Cranen, L. Boves, On subglottal formant analysis, The Journal of the
Acoustical Society of America 81 (3) (1987) 734–746. doi:10.1121/1.
394842.

[59] I. R. Titze, Physiologic and acoustic differences between male and female
voices, The Journal of the Acoustical Society of America 85 (4) (1989)
1699–1707.

[60] D. K. Chhetri, Z. Zhang, J. Neubauer, Measurement of Young’s modulus of
vocal folds by indentation, Journal of Voice 25 (2011) 1–7. doi:10.1016/
j.jvoice.2009.09.005.

[61] D. Scimarella, C. d’Alessandro, On the acoustic sensitivity of a symmetric
two-mass model of the vocal folds to the variation of control parameters,
Acta Acustica united with Acustica 90 (2004) 746–761.

[62] P. Lieberman, R. Knudson, J. Mead, Determination of the rate of change
of fundamental frequency with respect to subglottal air pressure during
sustained phonation, The Journal of the Acoustical Society of America
45 (6) (1969) 1537–1543. doi:10.1121/1.1911635.

[63] I. R. Titze, On the relation between subglottal pressure and fundamental
frequency in phonation, The Journal of the Acoustical Society of America
85 (2) (1989) 901–906. doi:10.1121/1.397562.

[64] V. Havu, J. Malinen, The Cayley transform as a time discretization scheme,
Numerical Functional Analysis and Optimization 28 (7-8) (2007) 825–851.
doi:10.1080/01630560701493321.

[65] S. M. Lulich, H. Arsikere, Tracheo-bronchial soft tissue and cartilage res-
onances in the subglottal acoustic input impedance, The Journal of the
Acoustical Society of America 137 (6) (2015) 3436–3446. doi:10.1121/1.
4921281.

[66] K. Neumann, V. Gall, H. K. Schutte, D. G. Miller, A new method to record
subglottal pressure waves: Potential applications, Journal of Voice 17 (2)
(2003) 140–159. doi:10.1016/S0892-1997(03)00037-7.

32

http://www.sciencedirect.com/science/article/pii/S0095447098900766
http://www.sciencedirect.com/science/article/pii/S0095447098900766
http://dx.doi.org/10.1006/jpho.1998.0076
http://dx.doi.org/10.1121/1.391997
http://scitation.aip.org/content/asa/journal/jasa/81/3/10.1121/1.394842
http://dx.doi.org/10.1121/1.394842
http://dx.doi.org/10.1121/1.394842
http://dx.doi.org/10.1016/j.jvoice.2009.09.005
http://dx.doi.org/10.1016/j.jvoice.2009.09.005
http://scitation.aip.org/content/asa/journal/jasa/45/6/10.1121/1.1911635
http://scitation.aip.org/content/asa/journal/jasa/45/6/10.1121/1.1911635
http://scitation.aip.org/content/asa/journal/jasa/45/6/10.1121/1.1911635
http://dx.doi.org/10.1121/1.1911635
http://dx.doi.org/10.1121/1.397562
http://dx.doi.org/10.1080/01630560701493321
http://scitation.aip.org/content/asa/journal/jasa/137/6/10.1121/1.4921281
http://scitation.aip.org/content/asa/journal/jasa/137/6/10.1121/1.4921281
http://dx.doi.org/10.1121/1.4921281
http://dx.doi.org/10.1121/1.4921281
http://www.sciencedirect.com/science/article/pii/S0892199703000377
http://www.sciencedirect.com/science/article/pii/S0892199703000377
http://dx.doi.org/10.1016/S0892-1997(03)00037-7


[67] Y. Koike, M. Hirano, Glottal-area time function and subglottal-pressure
variation, The Journal of the Acoustical Society of America 54 (6) (1973)
1618–1627. doi:10.1121/1.1914458.

[68] E. R. Weibel, Morphometry of the human lung, Springer, Berlin, 1963.
doi:10.1007/978-3-642-87553-3.

[69] H.-C. Yeh, G. Schum, Models of human lung airways and their application
to inhaled particle deposition, Bulletin of Mathematical Biology 42 (3)
(1980) 461–480. doi:10.1016/S0092-8240(80)80060-7.

[70] D. Sciamarella, G. Artana, A water hammer analysis of pressure and flow
in the voice production system, Speech Communication 51 (4) (2009) 344–
351. doi:10.1016/j.specom.2008.10.004.

[71] A. Aalto, D. Aalto, J. Malinen, M. Vainio, Interaction of vocal fold and
vocal tract oscillations, in: Proceedings of the 24th Nordic Seminar on
Computational Mechanics, 2011, pp. 186–189.

[72] A. Aalto, J. Malinen, Composition of passive boundary control systems,
Mathematical Control and Related Fields 3 (1) (2013) 1–19. doi:10.3934/
mcrf.2013.3.1.

[73] I. R. Titze, Regulating glottal airflow in phonation: Application of the
maximum power transfer theorem to a low dimensional phonation model,
The Journal of the Acoustical Society of America 111 (1) (2002) 367–376.
doi:10.1121/1.1417526.

[74] B. D. Erath, S. D. Peterson, M. Zañartu, G. R. Wodicka, M. W. Plesniak, A
theoretical model of the pressure field arising from asymmetric intraglottal
flows applied to a two-mass model of the vocal folds, The Journal of the
Acoustical Society of America 130 (1) (2011) 389–403. doi:10.1121/1.
3586785.

[75] P. Punčochářová-Pořízková, K. Kozel, J. Horáček, J. Fürst, Numerical sim-
ulation of unsteady compressible low Mach number flow in a channel, En-
gineering Mechanics 17 (2-3) (2010) 83–97.

[76] B. D. Erath, M. W. Plesniak, An investigation of asymmetric flow features
in a scaled-up driven model of the human vocal folds, Experiments in Fluids
49 (1) (2010) 131–146. doi:10.1007/s00348-009-0809-0.

[77] I. Steinecke, H. Herzel, Bifurcations in an asymmetric vocal-fold model,
The Journal of the Acoustical Society of America 97 (3) (1995) 1874–1884.
doi:10.1121/1.412061.

[78] T. Vampola, J. Horáček, A.-M. Laukkanen, J. G. Švec, Human vocal
tract resonances and the corresponding mode shapes investigated by three-
dimensional finite-element modelling based on CT measurement, Logope-
dics Phoniatrics Vocology 40 (1) (2013) 1–10. doi:10.3109/14015439.
2013.775333.

[79] T. Vampola, A.-M. Laukkanen, J. Horáček, J. G. Švec, Finite element mod-
elling of vocal tract changes after voice therapy, Applied and Computational
Mechanics 5 (1) (2011) 77–88.

33

http://scitation.aip.org/content/asa/journal/jasa/54/6/10.1121/1.1914458
http://scitation.aip.org/content/asa/journal/jasa/54/6/10.1121/1.1914458
http://dx.doi.org/10.1121/1.1914458
http://dx.doi.org/10.1007/978-3-642-87553-3
http://www.sciencedirect.com/science/article/pii/S0092824080800607
http://www.sciencedirect.com/science/article/pii/S0092824080800607
http://dx.doi.org/10.1016/S0092-8240(80)80060-7
http://dx.doi.org/10.1016/j.specom.2008.10.004
http://dx.doi.org/10.3934/mcrf.2013.3.1
http://dx.doi.org/10.3934/mcrf.2013.3.1
http://scitation.aip.org/content/asa/journal/jasa/111/1/10.1121/1.1417526
http://scitation.aip.org/content/asa/journal/jasa/111/1/10.1121/1.1417526
http://dx.doi.org/10.1121/1.1417526
http://scitation.aip.org/content/asa/journal/jasa/130/1/10.1121/1.3586785
http://scitation.aip.org/content/asa/journal/jasa/130/1/10.1121/1.3586785
http://scitation.aip.org/content/asa/journal/jasa/130/1/10.1121/1.3586785
http://dx.doi.org/10.1121/1.3586785
http://dx.doi.org/10.1121/1.3586785
http://dx.doi.org/10.1007/s00348-009-0809-0
http://dx.doi.org/10.1007/s00348-009-0809-0
http://dx.doi.org/10.1007/s00348-009-0809-0
http://scitation.aip.org/content/asa/journal/jasa/97/3/10.1121/1.412061
http://dx.doi.org/10.1121/1.412061
http://informahealthcare.com/doi/abs/10.3109/14015439.2013.775333
http://informahealthcare.com/doi/abs/10.3109/14015439.2013.775333
http://informahealthcare.com/doi/abs/10.3109/14015439.2013.775333
http://dx.doi.org/10.3109/14015439.2013.775333
http://dx.doi.org/10.3109/14015439.2013.775333


[80] N. Ruty, X. Pelorson, A. van Hirtum, Influence of acoustic waveguides
lengths on self-sustained oscillations: Theoretical prediction and experi-
mental validation, in: Proceedings of Acoustics ’08, Paris, 2008, pp. 1243–
1247.

[81] I. R. Titze, Parameterization of the glottal area, glottal flow, and vocal
fold contact area, The Journal of the Acoustical Society of America 75 (2)
(1984) 570–580. doi:10.1121/1.390530.

[82] H. Pulakka, Analysis of human voice production using inverse filtering,
high-speed imaging, and electroglottography, Master’s thesis, Helsinki Uni-
versity of Technology, Department of Computer Science and Engineering
(2005).

[83] A. Aalto, P. Alku, J. Malinen, A LF-pulse from a simple glottal flow model,
in: Proceedings of the 6th International Workshop on Models and Analysis
of Vocal Emissions for Biomedical Applications (MAVEBA2009), Florence,
Italy, 2009, pp. 199–202.

34

http://dx.doi.org/10.1121/1.390530

	1  Introduction
	2  Model of the Vocal Folds
	2.1 Anatomy, physiology, and control of phonation
	2.2 Glottis model
	2.3 Forces during the closed phase

	3 Glottal Flow and the Aerodynamic Force
	4  Vocal Tract and Subglottal Acoustics
	4.1 Modelling VT acoustics by Webster's equation
	4.2  Subglottal tract acoustics
	4.3  The acoustic counter pressure

	5 Anatomic Data and Model Parameters
	5.1 Area functions for VT and SGT
	5.2 Static parameter values

	6 Computational Aspects
	6.1  Parameter control for obtaining vowel glides
	6.2 Numerical realisation

	7  Simulation Results
	8  Sensitivity and Robustness
	8.1 Acoustics of the vocal tract by Webster's equation
	8.2 Subglottal acoustics
	8.3 Flow model

	9  Discussion
	9.1 Acoustics
	9.2 Vocal fold geometry and glottal flow

	10 Conclusions

