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Abstract. We give an intrinsic characterization of the property
that the zero extension of a Newtonian function, defined on an
open set in a doubling metric measure space supporting a strong
relative isoperimetric inequality, belongs to the Newtonian space
on the entire metric space. The theory of functions of bounded
variation is used extensively in the argument and we also provide a
structure theorem for sets of finite perimeter under the assumption
of a strong relative isoperimetric inequality. The characterization
is used to prove a strong version of quasicontinuity of Newtonian
functions.

1. Introduction

Sobolev spaces with zero boundary values are essential when we want
to specify or compare boundary values of Sobolev functions. This is
particularly important in connections with boundary value problems
in the calculus of variations and partial differential equations and with
comparison principles in potential theory. The Sobolev space with zero
boundary values is classically defined as a completion of compactly sup-
ported smooth functions with respect to the Sobolev space norm. In
analysis on metric measure spaces, in the absence of a Poincaré type
inequality, this approach seems to be too restrictive and therefore an al-
ternative definition is used instead. Indeed, a function is said to belong
to Newtonian space with zero boundary values if it can be extended by
zero to the complement so that the extended function belongs to the
Newtonian space on the entire metric space, see [KKM00] and [Sha01].

Our goal is to study pointwise characterizations that are related
to Lebesgue points of Newtonian functions. In the Euclidean setting
this has been studied by Havin [Hav68], Bagby [Bag72], Swanson and
Ziemer [SZ99] and Swanson [Swa07]. See also Theorem 9.1.3 in the
monograph of Adams and Hedberg [AdHe96]. In particular, we extend
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the Euclidean results of [SZ99] and [Swa07] to Newton-Sobolev func-
tions with zero boundary values in the setting of more general metric
measure spaces. The power of the theorem below lies in the fact that
it applies to a general open set Ω, and that u is assumed to belong to
the Newtonian space only in Ω. Now we state the main result of this
paper. The precise definitions are presented later in this work.

Theorem 1.1. Assume that µ is a doubling Borel regular outer mea-
sure on X and that X supports a strong relative isoperimetric inequal-
ity. Let Ω ⊂ X be an open and bounded set and let u ∈ N1,p(Ω) with
1 ≤ p <∞. Then u ∈ N1,p

0 (Ω) if and only if

lim sup
r→0

1

µ(B(x, r))

∫
B(x,r)∩Ω

|u| dµ = 0 (1.2)

for p-quasievery x ∈ ∂Ω.

One of the geometric tools we introduce in this paper is called the
strong relative isoperimetric inequality, which is also the main assump-
tion in Theorem 1.1. This condition gives control over the measure of
the piece of a Borel set inside a ball in terms of the codimension one
Hausdorff measure of the part of the measure theoretic boundary of
that set that lies inside the ball. More precisely, we say that X sup-
ports a strong relative isoperimetric inequality, if there exist positive
constants C and λ such that for all balls B(x, r) and for all Borel sets
E, we have

min{µ(B(x, r) ∩ E), µ(B(x, r) \ E)} ≤ CrH(B(x, λr) ∩ ∂∗E).

The more usual analog of relative isoperimetric inequality found in cur-
rent literature on BV theory in metric spaces (see [Amb02], [AMP04]
and [Mir03]) gives control of the left-hand side in terms of the perimeter
of the set, that is,

min{µ(B(x, r) ∩ E), µ(B(x, r) \ E)} ≤ Cr P (E,B(x, λr)).

In the event that the perimeter P (E,B(x, λr)) is finite, that is E is al-
ready known to be of finite perimeter in the enlarged ball B(x, λr), then
by results of [AMP04] we may replace P (E,B(x, λr)) withH(B(x, λr)∩
∂∗E) in the standard relative isoperimetric inequality. See Theorem 3.6
below for a statement of this result. Thus the strong relative isoperi-
metric inequality is a strengthening of the relative isoperimetric in-
equality, where we have control of the left-hand side of the above in-
equality in terms of H(B(x, λr) ∩ ∂∗E) even without knowing whether
E is of finite perimeter in B(x, λr) or not.

In the Euclidean case, a set is of finite perimeter if and only if the
codimension one Hausdorff measure of its measure-theoretic boundary
is finite; this result is due to Federer [Fed69] (see also [EG92]). In the
metric setting such a general structure theorem seems to be unknown.
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However, our Theorem 4.6 shows that the Federer type structure the-
orem holds under the assumption that X supports the strong rela-
tive isoperimetric inequality. In many situations, including weighted
Euclidean spaces (see [Cam08]), Riemannian manifolds, and more ex-
otic spaces such as Heisenberg groups and Bourdon-Pajot spaces (see
[BP99]) the strong relative isoperimetric inequality holds. This can be
seen by a pencil of curves type of argument by Semmes [Sem96] and the
details will be presented in the forthcoming paper [KKS]. In fact, the
authors do not know of an example of a doubling metric measure space
supporting a relative isoperimetric inequality that does not support a
strong relative isoperimetric inequality.

Because of the above mentioned obstacles, our proof diverges from
[SZ99] in many respects. Their proof relies heavily on the Euclidean
structure, and in particular on a characterization of Sobolev functions
and functions of bounded variation with respect to almost every line
segments parallel to the coordinate axes. Such a Cartesian character-
ization is not possible in the metric space setting. For Sobolev func-
tions on metric spaces an analog exists in terms of absolute continuity
on modulus almost every rectifiable path; however, no such analog is
known for functions of bounded variation. We use alternate, more geo-
metric methods in the proof. We also feel that arguments related to
the strong isoperimetric inequality and the structure theorem may be
of independent interest.

As an application of our main result we study a strong Lusin type
quasicontinuity result, which generalizes the Euclidean results by Michael
and Ziemer [MZ82] for 1 < p <∞ and Swanson [Swa07] for p = 1. See
also [BHS02]. An approximation by Hölder continuous functions has
been studied, for example in [Mal93], [HK98], [BHS02], and [KT07].

2. Newtonian spaces

We assume that X = (X, d, µ) is a complete metric measure space
equipped with a metric d and a Borel regular outer measure µ such
that 0 < µ(B) < ∞ for all balls B = B(x, r) = {y ∈ X : d(x, y) < r}.
For τ > 0, we write τB = B(x, τr). The results in this paper hold true
even without the extra assumption of completeness, but for simplicity
we assume that X is complete.

We also assume that the measure µ is doubling. This means that
there exists a constant cD ≥ 1, called the doubling constant of µ, such
that

µ(2B) ≤ cDµ(B)

for all balls B of X. As a complete metric space with a doubling
measure, X is proper, that is, closed and bounded sets are compact.

We define Sobolev spaces on X using upper gradients, see [Sha00]
and [Hei01]. By replacing X with an open set Ω ⊂ X, we may define
define the corresponding concepts in Ω.
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Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real valued function u on X if for all paths γ
joining points x and y in Ω we have

|u(x)− u(y)| ≤
∫
γ

g ds, (2.2)

whenever both u(x) and u(y) are finite, and
∫
γ
g ds =∞ otherwise. If

(2.2) holds for p-almost every path, then g is a p-weak upper gradient
of u.

In this work, a path in X is a rectifiable nonconstant continuous
mapping from a compact interval to X. By saying that (2.2) holds for
p-almost every path with 1 ≤ p < ∞, we mean that it fails only for a
path family with zero p-modulus, see [Hei01].

Definition 2.3. We say that X supports a (weak) (1, p)-Poincaré in-
equality if there exist constants cP > 0 and λ ≥ 1 such that for all
balls B of X, all locally integrable functions u and for all p-weak upper
gradients g of u, we have∫

B

|u− uB| dµ ≤ cP r
(∫

λB

gp dµ
)1/p

, (2.4)

where

uB =

∫
B

u dµ =
1

µ(B)

∫
B

u dµ

and r is the pre-assigned radius of the ball B.

Definition 2.5. Let 1 ≤ p < ∞. If u is a function that is integrable
to power p in X, let

‖u‖N1,p(X) =
(∫

X

|u|p dµ+ inf
g

∫
X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,
where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

Definition 2.6. Let 1 ≤ p <∞. The p-capacity of a set E ⊂ X is the
number

Capp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all functions u ∈ N1,p(X) such that
u = 1 on E. If there are no functions which satisfy the requirements,
then we set Capp(E) =∞.

We point out here that the functions in N1,p(X) are necessarily p-
quasicontinuous whenever the measure on X is doubling and X sup-
ports a (1, p)-Poincaré inequality (see [BBS08]) and thus the above
definition of the capacity agrees with the classical definition where the
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functions are required in addition to satisfy u = 1 in a neighbourhood
of E (see [FZ73] or [EG92]). The p-quasicontinuity of the function u
means that for every ε > 0 there is an open set U with Capp(U) < ε
such that the restriction of u to X \U , denoted by u|X\U , is continuous.

Definition 2.7. For E ⊂ X, the Newtonian space with zero boundary
values is

N1,p
0 (E) = {u ∈ N1,p(X) : u = 0 in X \ E}.

Note that we obtain the same class of functions as above if we require
u to vanish p-quasi everywhere in X \E, since Newtonian functions are
defined pointwise outside sets of zero capacity.

We begin with the following simple characterization of Newtonian
spaces with zero boundary values. In the Euclidean case with 1 <
p < ∞ the previous result has been proved by Havin [Hav68] and
Bagby [Bag72] for an open set E. Recently, the case p = 1 has been
studied by Swanson in [Swa07]. Our result holds true with an arbitrary
set E, which is a slight generalization of known results already in the
Euclidean case.

Theorem 2.8. Assume that u ∈ N1,p(X) with 1 ≤ p < ∞ and let E
be a subset of X. Then u ∈ N1,p

0 (E) if and only if

lim
r→0

∫
B(x,r)

u dµ = 0

for p-quasievery x ∈ X \ E.

Proof. If u ∈ N1,p
0 (E), then by the definition u = 0 in X \ E. By

Theorem 4.1 in [KL02] for 1 < p < ∞ and Theorem 4.1 in [KKST08]
for p = 1, p-quasievery point of X is a Lebesgue point of u. Hence

lim
r→0

∫
B(x,r)

u dµ = 0

for p-quasievery x ∈ X \ E.
Assume then that u ∈ N1,p(X) and

lim
r→0

∫
B(x,r)

u dµ = 0

for p-quasievery x ∈ X \E. Since p-quasievery point of X is a Lebesgue
point of u, we conclude that u = 0 p-quasi everywhere in X \ E. �

3. Functions of bounded variation and the perimeter
measure

We recall the definition and properties of functions of bounded vari-
ation on metric measure spaces, see [Mir03].
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Definition 3.1. For u ∈ L1
loc(X), we define

‖Du‖(X)

= inf
{

lim inf
i→∞

∫
X

gui dµ : ui ∈ Liploc(X), ui → u in L1
loc(X)

}
,

where gui is a 1-weak upper gradient of ui. We say that a function
u ∈ L1(X) is of bounded variation, u ∈ BV (X), if ‖Du‖(X) < ∞.
Moreover, a measurable set E ⊂ X is said to have finite perimeter if
‖DχE‖(X) < ∞. By replacing X with an open set Ω ⊂ X, we may
define ‖Du‖(Ω) and we denote

P (E,Ω) = ‖DχE‖(Ω),

the perimeter of E in Ω.

Remark 3.2. Observe that in [Mir03] the functions of bounded variation
are defined in terms of the local Lipschitz constant

Lip u(x) = lim inf
r→0

sup
y∈B(x,r)

|u(x)− u(y)|
d(x, y)

,

but we may use the 1-weak upper gradient instead. Indeed, if u is a
locally Lipschitz continuous function, its local Lipschitz constant is an
upper gradient of u. We observe that all results of [Mir03] hold for
upper gradients as well.

From Theorem 3.4 in [Mir03], we have that ‖Du‖ is a Borel regular
outer measure.

Theorem 3.3. Let u ∈ BV (X). For a set A ⊂ X, we define

‖Du‖(A) = inf
{
‖Du‖(Ω) : Ω ⊃ A, Ω ⊂ X is open

}
.

Then ‖Du‖(·) is a finite Borel outer measure.

Let E be a set of finite perimeter in X. For every set A ⊂ X, we
denote

P (E,A) = ‖DχE‖(A).

The following coarea formula will be useful for us, see Proposition
4.2 in [Mir03].

Theorem 3.4 (Coarea formula). If u ∈ L1
loc(X) and A ⊂ X is open,

then

‖Du‖(A) =

∫ ∞
−∞

P ({u > t}, A) dt. (3.5)

In particular, if u ∈ BV (X), then the set {u > t} has finite perimeter
for almost every t ∈ R and formula (3.5) holds for all Borel sets A ⊂ X.

The restricted spherical Hausdorff content of codimension one on X
is defined as

HR(E) = inf
{∑

i∈I

µ(B(xi, ri))

ri
: E ⊂

⋃
i∈I

B(xi, ri), ri ≤ R
}
,
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where 0 < R <∞. When R =∞, the infimum is taken over coverings
with finite radius. The number H∞(E) is the Hausdorff content of E.
The Hausdorff measure of codimension one of E ⊂ X is defined as

H(E) = lim
R→0
HR(E).

The measure theoretic boundary of E, denoted by ∂∗E, is the set of
points x ∈ X, where both E and its complement have positive density,
i.e.

lim sup
r→0

µ(E ∩B(x, r))

µ(B(x, r))
> 0 and lim sup

r→0

µ(B(x, r) \ E)

µ(B(x, r))
> 0.

A combination of Theorems 4.4. and 4.6 in [AMP04] gives the follow-
ing equivalence of the perimeter measure and the Hausdorff measure
of codimension one for sets with finite perimeter.

Theorem 3.6. Assume that E is a set of finite perimeter. The measure
P (E, ·) is concentrated on ∂∗E and

1

C
P (E,A) ≤ H(∂∗E ∩ A) ≤ CP (E,A), (3.7)

where C depends only on the doubling constant and the Poincaré in-
equality.

Note carefully that the theorem above does not imply that the Haus-
dorff measure of ∂∗E would be infinite whenever the perimeter measure
of E is infinite. See also Theorem 4.6.

Theorem 5.3 in [AMP04] gives us the following useful decomposition
of the perimeter measure.

Theorem 3.8. Let u ∈ BV (X). Then we have

‖Du‖ = ‖Dgu‖+ ‖Dcu‖+ ‖Dju‖.
Here d‖Dgu‖ = g dµ and g is the density of ‖Du‖ with respect to µ.
The measure ‖Dju‖, the “jump” part of ‖Du‖, is absolutely continu-
ous with respect to the Hausdorff measure of codimension one, and is
concentrated on the jump set of u i.e. the set J consisting of all points
x ∈ X where

lim sup
r→0

∫
B(x,r)

|u− a|dµ > 0 for all a ∈ R. (3.9)

The measure ‖Dcu‖ is the Cantor part of ‖Du‖ and it is concentrated
inside X \ J .

The following result is from Theorems 6.2.3 and 6.2.2 in [Cam08].

Theorem 3.10. We have that u ∈ N1,1
loc (Ω) if and only if u ∈ BVloc(Ω)

and ‖Du‖ is absolutely continuous with respect µ. In this case, for
every Ω′ b Ω,

‖Du‖(Ω′) =

∫
Ω′
gu dµ,
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where gu is the minimal upper gradient of u.

4. Strong relative isoperimetric inequality

In this section, we give the definition for the strong isoperimetric
inequality and show that this property implies the standard relative
isoperimetric inequality. The main result of this section is Theorem
4.6, which shows that Borel sets whose measure theoretic boundary
has finite Hausdorff measure of codimension one are of finite perimeter
if the space satisfies the strong isoperimetric inequality. This structure
theorem will be crucial for us later in this work.

Definition 4.1. We say that X supports a strong relative isoperimetric
inequality if there exist positive constants C and λ such that for all balls
B ⊂ X and for all Borel sets E ⊂ X, with r denoting the (pre-chosen)
radius of B, we have

min{µ(B ∩ E), µ(B \ E)} ≤ CrH(λB ∩ ∂∗E).

First we observe that the strong isoperimetric inequality implies the
(1, 1)-Poincaré inequality. The proof of this result is a rather straight-
forward modification of Theorem 1.1 and Lemma 3.1 in [BH97]. For
the sake of completeness, we present the required modification here.

Theorem 4.2. If X supports a strong relative isoperimetric inequality,
then X supports a (1, 1)-Poincaré inequality.

Proof. Fix a ball B ⊂ X and consider the normalized measure

ν =
1

µ(λB)
µ|λB

on λB. The measure ν is then a Radon probability measure. Let

ν+(A) = lim sup
ε→0

ν
(⋃

x∈∂AB(x, ε) ∩ λB
)

ε

be the codimension one upper Minkowski content of ∂A and

L(u) =

∫
B

|u− uB| dµ.

A modification of Theorem 1.1 and (1.4) of [BH97] states that for some
constant C > 0, the following two conditions are equivalent:

(i) For all Borel sets A ⊂ B,

max{L(χA),L(−χA)} ≤ Cν+(A).

(ii) For all Lipschitz functions u on λB,

L(u) ≤ C

∫
λB

Lipu dν.
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The definition of ν+ used in [BH97] is slightly different from that used
above. The only difference is that we need to consider not merely
the outer Minkowski content but the entire Minkowski content of the
boundary of level sets of Lipschitz functions, and we have to consider
the symmetric difference (uh − u−h)/(2h) rather than one-sided differ-
ence (uh − u)/h. Here,

uh(x) = sup
d(x,y)<h

u(y) and u−h(x) = inf
d(x,y)<h

u(y).

Indeed, the modification needed in the proof of Lemma 3.1 of [BH97]
is as follows. For a bounded non-negative Lipschitz function u, we
denote

A−ht = {x ∈ X : u−h(x) > t} and Aht = {x ∈ X : uh(x) > t}.

Then the inequality (3.4) of [BH97] becomes∫
X

uh − u−h
2h

dµ =

∫ ∞
0

µ(Aht \ A−ht )

2h
dt,

and

lim sup
h→0+

uh(x)− u−h(x)

2h

≤ 2−1

(
lim sup
h→0+

uh(x)− u(x)

h
+ lim sup

h→0+

u(x)− u−h(x)

h

)
≤ lim sup

y→x

|u(y)− u(x)|
d(x, y)

= Lipu(x).

The remaining portions of the proof now go through directly. Hence it
suffices to show that the condition (i) holds.

Let A ⊂ B be a Borel set. Then

L(χA) = 2
µ(A ∩B)µ(B \ A)

µ(B)2
= L(−χA),

and consequently

min{µ(A ∩B), µ(B \ A)}
µ(B)

≤ L(χA) ≤ 2
min{µ(A ∩B), µ(B \ A)}

µ(B)
.

Since µ+(A) = µ(λB) ν+(A) and the measure is doubling, the condition
(i) is equivalent to

min{µ(A ∩B), µ(B \ A)} ≤ C µ+(A). (4.3)

Here µ+ is defined in a similar way as ν+. We will use the strong
isoperimetric inequality to show that (4.3) holds. Let ε < λ/2 and let
{Bi}i∈I be a countable covering of ∂A with the balls Bi = B(xi, ε) such
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that for each i, xi ∈ ∂A and the balls 1
5
Bi are disjoint. Such a cover

exists by the doubling property of µ; see [Hei01]. Then

∂A ⊂
⋃
i∈I

Bi ⊂
⋃
x∈∂A

B(x, ε) ∩ λB,

This implies that

H(λB ∩ ∂∗A) ≤ H(∂A) ≤ lim inf
ε→0

∑
i∈I

µ(Bi)

ε
,

where by the doubling property of µ we have∑
i∈I

µ(Bi) ≤ C
∑
i∈I

µ
(

1
5
Bi

)
= Cµ

(⋃
i∈I

1
5
Bi

)
≤ Cµ

(⋃
i∈I

Bi

)
.

The middle equality in the above series of inequalities used the fact that
the balls 1

5
Bi, i ∈ I, are pairwise disjoint. Thus the strong isoperimetric

inequality now implies that

min{µ(A ∩B), µ(B \ A)} ≤ CrH(λB ∩ ∂∗A)

≤ Cr lim inf
ε→0

∑
i∈I

µ(Bi)

ε
≤ Cr lim sup

ε→0

µ
(⋃

i∈I Bi

)
ε

= Cr lim sup
ε→0

µ
(⋃

i∈I Bi ∩ λB
)

ε
≤ Crµ+(A),

where r is the radius of B. This shows the validity of (4.3) with the
constant Cr. It then follows from Theorem 1.1 of [BH97] that for all
Lipschitz functions u on X,∫

B

|u− uB| dµ ≤ Cr

∫
λB

Lipu dµ.

The above is the (1, 1)-Poincaré inequality for Lipschitz functions to-
gether with the local Lipschitz constants. The (1, 1)-Poincaré inequal-
ity for all function-upper gradient pairs now follows from Theorem 1.3.4
of [Kei03]. We note here that [Kei03] assumes that X is a geodesic
space. However, as the (1, 1)-Poincaré inequality for Lipschitz function-
local Lipschitz constant pairs implies that X is a quasiconvex space
(that is, every pair of points x, y ∈ X can be connected by a curve
with length controlled by Cd(x, y), see Section 6 of [Kei03]), such an
assumption is not necessary for our setting. �

Next we recall the definition of the standard relative isoperimetric
inequality.

Definition 4.4. We say that X supports a relative isoperimetric in-
equality if there exist positive constants C and λ such that for all balls
B ⊂ X and for all Borel sets E ⊂ X, with r denoting the (pre-chosen)
radius of B, we have

min{µ(B ∩ E), µ(B \ E)} ≤ Cr P (E, λB).
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We obtain the following corollary because the (1, 1)-Poincaré in-
equality implies the relative isoperimetric inequality, see Theorem 4.5
in [Mir03].

Corollary 4.5. If X supports a strong relative isoperimetric inequality,
then X also supports a relative isoperimetric inequality.

We point out here that because of Theorem 3.6, the relative isoperi-
metric inequality and the strong relative isoperimetric inequality are
equivalent provided that we know E to be of finite perimeter. The
following structure theorem is the main result of this section.

Theorem 4.6. If X supports a strong relative isoperimetric inequality,
then all Borel sets E with H(∂∗E) <∞ are of finite perimeter in X.

Proof. It suffices to find a sequence of locally Lipschitz continuous func-
tions uε on X such that uε → χE in L1(X) as ε→ 0, and

sup
ε
‖Duε‖(X) <∞,

see, for example, Theorem 3.7 in [Mir03].
We use a discrete convolution to find such a sequence (uε). Let ε > 0,

and let {Bi}i∈I be a countable cover of X by balls Bi = B(xi, ε) such
that the bounded overlap property∑

i∈I

χ4λBi
≤ C

holds. Let {ϕi}i∈I be the corresponding partition of unity; that is,
0 ≤ ϕi ≤ 1, ϕi is C/ε-Lipschitz continuous, supp(ϕi) ⊂ 2Bi and∑

i∈I

ϕi(x) = 1

for every x ∈ X. We set

uε(x) =
∑
i∈I

(χE)Bi
ϕi(x) =

∑
i∈I

µ(Bi ∩ E)

µ(Bi)
ϕi(x).

First we show that uε → χE in L1(X). For a ball Bj, let

Ij = {i ∈ I : 2Bi ∩Bj 6= ∅}.

For x ∈ Bj, we have

uε(x)− χE(x) =
∑
i∈Ij

(
µ(Bi ∩ E)

µ(Bi)
− χE(x)

)
ϕi(x),
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and hence∫
Bj

|uε − χE| dµ

≤
∑
i∈Ij

[(
1− µ(Bi ∩ E)

µ(Bi)

)
µ(Bj ∩ E) +

µ(Bi ∩ E)

µ(Bi)
µ(Bj \ E)

]

≤
∑
i∈Ij

µ(Bj ∩ E)µ(Bi \ E) + µ(Bi ∩ E)µ(Bj \ E)

µ(Bi)
.

If i ∈ Ij, then Bi ⊂ 4Bj. Therefore, by the bounded overlap property
and by the doubling property of µ,∫

Bj

|uε − χE| dµ ≤ C
µ(4Bj ∩ E)µ(4Bj \ E)

µ(4Bj)

≤ C min{µ(4Bj ∩ E), µ(4Bj \ E)}.
An application of the strong isoperimetric inequality now yields∫

Bj

|uε − χE| dµ ≤ CεH(4λBj ∩ ∂∗E),

and another application of the bounded overlap property shows that∫
X

|uε − χE| dµ ≤
∑
j∈I

∫
Bj

|uε − χE| dµ ≤ CεH(∂∗E).

Letting ε→ 0, we see that uε → χE in L1(X).
Let x, y ∈ Bj. Then

uε(x)− uε(y) =
∑
i∈Ij

µ(Bi ∩ E)

µ(Bi)
(ϕi(x)− ϕi(y))

=
∑
i∈Ij

[
µ(Bi ∩ E)

µ(Bi)
− µ(Bj ∩ E)

µ(Bj)

]
(ϕi(x)− ϕi(y)).

For i ∈ Ij, by the doubling property of µ we have∣∣∣∣µ(Bi ∩ E)

µ(Bi)
−µ(Bj ∩ E)

µ(Bj)

∣∣∣∣ =

∣∣∣∣µ(Bi ∩ E)µ(Bj)− µ(Bj ∩ E)µ(Bi)

µ(Bi)µ(Bj)

∣∣∣∣
=

∣∣∣∣µ(Bi ∩ E)µ(Bj \ E)− µ(Bj ∩ E)µ(Bi \ E)

µ(Bi)µ(Bj)

∣∣∣∣
≤ µ(Bi ∩ E)µ(Bj \ E) + µ(Bj ∩ E)µ(Bi \ E)

µ(Bi)µ(Bj)

≤ C
µ(4Bj \ E)µ(4Bj ∩ E)

µ(4Bj)2

≤ C
min{µ(4Bj \ E), µ(4Bj ∩ E)}

µ(4Bj)
.
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The C/ε-Lipschitz continuity of ϕi, the bounded overlap property, the
above equation, and the strong isoperimetric inequality yield

|uε(x)− uε(y)| ≤ C

ε
d(x, y)

∑
i∈Ij

∣∣∣∣µ(Bi ∩ E)

µ(Bi)
− µ(Bj ∩ E)

µ(Bj)

∣∣∣∣
≤ C

ε
d(x, y)

min{µ(4Bj \ E), µ(4Bj ∩ E)}
µ(4Bj)

≤ Cd(x, y)
H(4λBj ∩ ∂∗E)

µ(4Bj)
.

Hence, for x ∈ X,

Lipuε(x) ≤ C min

{
H(4λBk ∩ ∂∗E)

µ(4Bk)
: x ∈ Bk

}
.

Thus by the bounded overlap property and the doubling property of µ,

‖Duε‖(X) ≤
∑
j∈I

∫
Bj

Lipuε dµ

≤ C
∑
j∈I

H(4λBj ∩ ∂∗E) ≤ CH(∂∗E).

This completes the proof. �

5. A Lebesgue point characterization

In this section we prove the main result of this paper, Theorem 1.1.
For technical reasons, the theorem is stated only for bounded sets, but
since the question is essentially local, the assumption on boundedness
can be removed. We start with a technical lemma which is needed in
the proof of the main theorem.

Lemma 5.1. Let 1 ≤ p < q <∞ and assume that X supports a (1, p)-
Poincaré inequality. If u ∈ N1,p(X) and both u and its p-weak upper
gradient belong to Lq(X), then there is a modification of u on a set of
measure zero that also belongs to N1,q(X).

Remark 5.2. If X does not support a (1, p)-Poincaré inequality, then
the above lemma fails: if X is the Fred Gehring bow-tie (two triangular
regions pasted together at one vertex), then the function that takes on
the value 1 in one triangle and 0 in the other triangle has 0 as a p-weak
upper gradient when p < 2, and this weak upper gradient is in Lq(X)
for all q > 2, but this function is not in N1,q(X) for any q > 2, not
even locally.

Proof of Lemma 5.1. Let the covering {Bi}i∈I and the partition of unity
{ϕi}i∈I be as in the proof of Theorem 4.6. We define the discrete con-
volution of u at the scale ε > 0 as

uε(x) =
∑
i∈I

uBi
ϕi(x).
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By the bounded overlap property of the cover, we have∫
X

|uε|q dµ ≤ C
∑
i∈I

(∫
2Bi

|uBi
ϕi| dµ

)q
≤ C

∑
i∈I

∫
2Bi

|uBi
|q dµ ≤ C

∫
X

|u|q dµ.

For x, y ∈ Bj, we have

|uε(x)− uε(y)| =

∣∣∣∣∣∑
i∈I

(uBi
− uBj

)(ϕi(x)− ϕi(y))

∣∣∣∣∣
≤
∑
i∈Ij

|uBi
− uBj

||ϕi(x)− ϕi(y)|

≤ C

ε
d(x, y)

∑
i∈Ij

|uBi
− uBj

|

≤ C

ε
d(x, y)

∑
i∈Ij

∫
4Bj

|u− u4Bj
| dµ,

where we used the doubling property of µ and that if i ∈ Ij, then
Bi ⊂ 4Bj and Bj ⊂ 4Bi. Here Ij is the same set of indices as in
the proof of Theorem 4.6. By the bounded overlap property and the
(1, p)-Poincaré inequality we obtain

|uε(x)− uε(y)| ≤ C

ε
d(x, y)

∫
4Bj

|u− u4Bj
| dµ

≤ Cd(x, y)

(∫
4λBj

gp dµ

)1/p

for every p-weak upper gradient g of u. This implies that

gε(x) = C
∑
j∈I

(∫
4λBj

gp dµ

)1/p

χBj
(x),

is an upper gradient of uε. Moreover, by the bounded overlap property
of the cover and Hölder’s inequality, we have∫

X

gqε dµ ≤ C
∑
j∈I

µ(Bj)

∫
4λBj

gq dµ ≤ C

∫
X

gq dµ.

Thus the sequence uε is bounded in N1,q(X). As q > 1 and uε → u
almost everywhere, by Mazur’s lemma a modification of u on a set of
measure zero gives a function in N1,q(X). �

Proof of Theorem 1.1. First suppose that u ∈ N1,p(Ω) is nonnegative
and bounded and that the condition (1.2) holds for every x ∈ ∂Ω. For
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x ∈ X, let

u∗(x) =

lim
r→0

1

µ(B(x, r))

∫
B(x,r)∩Ω

u dµ if the limit exists,

0 otherwise.

The set of points x ∈ Ω for which u(x) 6= u∗(x) is of zero p-capacity,
and hence u∗ = u on Ω from the point of view of N1,p(Ω). This is
shown for p > 1 by Theorem 4.1 in [KL02] and for p = 1 by Theorem
4.1 in [KKST08]. By assumption (1.2), u∗(x) = 0 for every x ∈ X \Ω.

Our first goal is to show that u∗ ∈ BV (X). For t ∈ R, let

E∗t = {x ∈ X : u∗(x) > t}.

Whenever

lim
r→0

∫
B(x,r)

|u∗ − u∗(x)| dµ = 0,

we have

lim
r→0

µ(E∗t ∩B(x, r))

µ(B(x, r))
=

{
1, if t < u∗(x),

0, if t > u∗(x).
(5.3)

Let g be a p-weak upper gradient of u (and hence also of u∗) in Ω. Since
Ω is bounded, g is also an integrable 1-weak upper gradient of u and
u∗ in Ω. We have u∗ ∈ BV (Ω) because N1,p(Ω) ⊂ N1,1(Ω) ⊂ BV (Ω).
Since by the coarea formula∫ ∞

0

P (E∗t ,Ω) dt = ‖Du∗‖(Ω) ≤
∫

Ω

g dµ <∞,

we observe that P (E∗t ,Ω) is finite for almost every 0 < t < ∞. By
Theorem 3.6, H(∂∗E∗t ∩ Ω) is comparable with P (E∗t ,Ω) for all such
values of t. Now by the assumption and (5.3), we have ∂∗E∗t ⊂ Ω for
every t > 0 and thus

H(∂∗E∗t ∩ Ω) = H(∂∗E∗t ).

Hence Theorem 4.6 implies that P (E∗t , X) is finite for almost every t.
Note that here we need the assumption of strong relative isoperimetric
inequality. Using again the coarea formula and Theorem 3.6, we obtain

‖Du∗‖(X) =

∫ ∞
0

P (E∗t , X) dt ≤ C

∫ ∞
0

H(∂∗E∗t ) dt

= C

∫ ∞
0

H(∂∗E∗t ∩ Ω) dt ≤ C

∫ ∞
0

P (E∗t ,Ω) dt <∞.

This implies that ‖Du∗‖ is finite, and hence u∗ ∈ BV (X).
The following step is to show that u∗ ∈ N1,1(X). Since u∗ ∈

BV (X), we have a decomposition of the measure ‖Du∗‖ into three
parts: ‖Dgu∗‖, ‖Dcu∗‖ and ‖Dju∗‖, see Theorem 3.8. Since u∗ ∈
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N1,1(Ω), the jump part ‖Dju∗‖ and the Cantor part ‖Dcu∗‖ are con-
centrated on ∂Ω. By the coarea formula and Theorem 3.6,

‖Dcu∗‖(X) + ‖Dju∗‖(X) =‖Dcu∗‖(X \ Ω) + ‖Dju∗‖(X \ Ω)

≤‖Du∗‖(X \ Ω) =

∫ ∞
0

P (E∗t , X \ Ω) dt

≤C
∫ ∞

0

H(∂∗E∗t \ Ω) dt = 0.

Hence ‖Du∗‖ is absolutely continuous with respect to µ. Thus Theo-
rem 3.10 implies that u ∈ N1,1(X). Since g is a 1-weak upper gradient
of u∗ in Ω and the zero function is an upper gradient of u∗ in X \ Ω
we have that the zero extension of g is a 1-weak upper gradient of u∗,
see Lemma 4.3 in [Sha00] and the proof of Lemma 7.17 in [Haj03].
Therefore, u∗ ∈ N1,1(X).

Then we consider the case p > 1. Now u∗ ∈ N1,1(X) and both u∗

and its 1-weak upper gradient g belong to Lp(X). Thus by Lemma 5.1,
a modification of u∗ on a set of measure zero belongs to N1,p(X). How-
ever, we do not have to modify the function at Lebesgue points of the
function (see for example [KL02]), and as by the assumption every point
in ∂Ω is a Lebesgue point for u∗, we see that u∗ belongs to N1,p(X).
As u∗ = 0 everywhere in X \ Ω, we conclude that u∗ ∈ N1,p

0 (Ω).
Now assume that (1.2) holds only outside a set E ⊂ ∂Ω with p-

capacity zero. Then for every ε > 0, there exists 0 ≤ ϕε ≤ 1 such that
ϕε = 1 in a neighbourhood of E and

‖ϕε‖N1,p(X) < ε.

Then define uε = (1− ϕε)u. As uε ∈ N1,p(Ω) and uε satisfies the con-
dition (1.2) for all x ∈ ∂Ω, the proof above shows that uε ∈ N1,p

0 (Ω).
Using the properties of weak upper gradients and the dominated con-
vergence theorem, we have uε → u in N1,p(Ω) as ε→ 0. By complete-
ness, this implies that u ∈ N1,p

0 (Ω). Finally, we remove the assumptions
that u is non-negative and bounded. We first remove the assumption
that u is non-negative. If u ∈ N1,p(Ω) is bounded and satisfies (1.2)
for p-quasievery x ∈ ∂Ω, then also the positive and negative parts u+

and u− have the same properties. Hence by the previous arguments,
u+ and u− are in N1,p

0 (Ω). Thus so does u = u+ − u−.
If u is unbounded, then we look at its truncations

uk = max{min{u, k},−k}, k = 1, 2, . . . .

The set of points x ∈ ∂Ω where (1.2) fails for uk is a subset of points
where it fails for u. Thus by the previous arguments, uk ∈ N1,p

0 (Ω) for
every k = 1, 2, . . .. Now the claim follows since uk → u in N1,p(Ω) as
k →∞ and N1,p

0 (Ω) is a Banach space.
To prove the converse implication, assume that u ∈ N1,p

0 (Ω). Then
u ∈ N1,p(X) and u = 0 in X \ Ω. By Theorem 4.1 in [KL02] and
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Theorem 4.1 in [KKST08], p-quasievery point of X is a Lebesgue point
of u. Hence for p-quasievery x ∈ X \ Ω, we have

0 = u(x) = lim
r→0

∫
B(x,r)

u dµ = lim
r→0

1

µ(B(x, r))

∫
B(x,r)∩Ω

u dµ. �

Remark 5.4. The assumption that Ω is open can be replaced with
the condition that Ω is Borel measurable in Theorem 1.1. This is a
generalization of the known result for open sets already in the Euclidean
case. Let us briefly explain, how this extension can be obtained. Since
N1,p

0 (intE) ⊂ N1,p
0 (E), we see that by applying Theorem 1.1 to the

restriction of u to intE and noting that ∂(intE) ⊂ ∂E, we get an
extension f ∈ N1,p

0 (E) such that f = u in intE. By the fact that u
satisfies inequality (1.2) p-capacity almost everywhere in ∂E and so
does f , by Lebesgue differentiation theorem we know that u = f µ-a.e.
in E (note that a set of zero p-capacity is necessarily of zero µ-measure).
Since the restriction of f to E and the function u agree µ-a.e. in E
and both belong to N1,p(E), we have that u = f p-capacity almost
everywhere in E (see [Sha00]). It follows that u ∈ N1,p

0 (E).

6. Extendability of sets of finite perimeter

In this section, we assume that X supports a (1, 1)-Poincaré inequal-
ity. We will show that if the Hausdorff measure of codimension one of
the boundary is finite, we do not need to assume the validity of a
strong relative isoperimetric inequality in order to prove Theorem 1.1.
We start with two simple lemmas.

Lemma 6.1. If H(A) is finite, then µ(A) = 0.

Proof. Let ε > 0, and let {Bi}i∈I , Bi = B(xi, ri), be a countable cover
of A such that ri < ε for all i ∈ I and∑

i∈I

µ(Bi)

ri
< H(A) + ε.

Since A ⊂
⋃
i∈I Bi, it follows that

µ(A) ≤
∑
i∈I

µ(Bi) ≤ ε
∑
i∈I

µ(Bi)

ri
≤ ε
(
H(A) + ε

)
.

Letting ε→ 0 gives the desired result. �

Lemma 6.2. Let x ∈ X and r > 0 such that X \ B(x, 4r) is non-
empty. Then there exists ρ ∈ [r, 2r] such that B(x, ρ) is a set of finite
perimeter in X with

1

C

µ(B(x, ρ))

ρ
≤ P (B(x, ρ), X) ≤ C

µ(B(x, ρ))

ρ
,

where the constant C is independent of x, r and ρ.
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Proof. Recall that as X supports a (1, 1)-Poincaré inequality, for all x ∈
X and r > 0, the sphere {y ∈ X : d(x, y) = r} is non-empty whenever
X \B(x, r) is non-empty. Since X \B(x, 4r) 6= ∅, by the remark above
there is a point y ∈ B(x, 2r) \B(x, r) such that d(x, y) = 3r/2. Hence
B(y, r/2) ⊂ B(x, 2r) \ B(x, r) and by the doubling property of µ we
have

µ(B(x, 2r) \B(x, r)) ≥ µ(B(y, r/2)) ≥ 1

C
µ(B(x, r)).

By the relative isoperimetric inequality,

µ(B(x, r)) ≤ C min{µ(B(x, r)), µ(B(x, 2r) \B(x, r))}
≤ Cr P (B(x, r), B(x, 2r)) = Cr P (B(x, r), X).

This implies that

µ(B(x, ρ))

ρ
≤ C P (B(x, ρ), X)

for every ρ ∈ [r, 2r] and the lower bound follows.
To prove the upper bound, let u be the compactly supported Lips-

chitz function defined by

u(y) = max

{
0,min

{
2r − d(x, y)

r
, 1

}}
.

Observe that g = r−1χB(x,2r)\B(x,r) is an upper gradient of u, so by the
coarea formula∫ 1

0

P (B(x, (2− t)r), X) dt =

∫ 1

0

P ({u > t}, X) dt ≤
∫
X

g dµ.

Hence it follows from the doubling property of µ that∫ 1

0

P (B(x, (2− t)r), X) dt ≤ C

r
µ(B(x, 2r) \B(x, r))

≤ C

r
µ(B(x, r)) <∞.

We choose ρ ∈ [r, 2r] such that

P (B(x, ρ), X) ≤
∫ 1

0

P (B(x, (2− t)r), X) dt,

from which it follows that

P (B(x, ρ), X) ≤ C

r
µ(B(x, r)) ≤ C

ρ
µ(B(x, ρ)).

This gives the required upper bound. �

Proposition 6.3. Let Ω ⊂ X be an open set such that H(∂Ω) is finite
and let E ⊂ Ω be a Borel set such that P (E,Ω) is finite. Then P (E,X)
is finite.
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Proof. Let ε > 0. Since H(∂Ω) < ∞, there is a countable cover of ∂Ω

with the balls B̃i = B(xi, ri), i ∈ I, such that ri < ε for every i ∈ I,
and ∑

i∈I

µ(B̃i)

ri
< H(∂Ω) + ε.

By Lemma 6.2, for each i ∈ I there is ρi ∈ [ri, 2ri] such that with
Bi = B(xi, ρi), we have

1

C

µ(Bi)

ρi
≤ P (Bi, X) ≤ C

µ(Bi)

ρi
.

This implies that∑
i∈I

P (Bi, X) ≤ C
∑
i∈I

µ(Bi)

ρi

≤ C
∑
i∈I

µ(B̃i)

ri
≤ C

(
H(∂Ω) + ε

)
.

(6.4)

Let

J = {i ∈ I : Bi ∩ E 6= ∅} and Eε = E ∪
⋃
i∈J

Bi.

By the proof of Lemma 6.1, we conclude that χEε → χE in L1(X) as
ε → 0. Furthermore, by the properties of the perimeter measure, we
have

P (Eε, X) ≤ P (E,Ω) +
∑
i∈J

P (Bi, X)

≤ P (E,Ω) + C
(
H(∂Ω) + ε

)
→ P (E,Ω) + CH(∂Ω)

as ε → 0. Hence by the lower semicontinuity of the BV -norm (see
[Mir03]), we obtain

P (E,X) ≤ lim inf
ε→0

P (Eε, X) <∞.

Thus E is of finite perimeter in X. �

Note that, in Theorem 1.1, the strong relative isoperimetric inequal-
ity is only needed to show that the level sets E∗t have finite perimeter
not only in Ω but also in X. If H(∂Ω) is finite, this easily follows from
Proposition 6.3. In fact, the perimeters are even equal, as the following
theorem demonstrates.

Theorem 6.5. Let Ω ⊂ X be an open set such that H(∂Ω) is finite
and E ⊂ Ω such that P (E,Ω) is finite and H(∂∗E ∩ ∂Ω) = 0. Then

P (E,X) = P (E,Ω).
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Proof. By Proposition 6.3, we know that χE ∈ BV (X). By [Mir03],
the perimeter measure P (E, ·) is a finite Radon measure on X, and
by [AMP04], we know that this measure is supported on ∂∗E and
is absolutely continuous with respect to H

∣∣
∂∗E

. The conclusion now
follows from the fact that H(∂∗E ∩ ∂Ω) = 0. �

7. A Lusin type theorem

In the Euclidean case Michael and Ziemer [MZ82] for 1 < p < ∞
and Swanson [Swa07] for p = 1 showed that Sobolev functions are qua-
sicontinuous in a strong sense. See also [BHS02]. The difference to the
standard quasicontinuity is that the approximating function is a con-
tinuous Sobolev function on the entire metric space. Using a discrete
convolution and Theorem 1.1, we give an analog for the Newtonian
space.

Theorem 7.1. If X supports the strong relative isoperimetric inequal-
ity and u ∈ N1,p(X), then for every ε > 0 there is an open set Eε and
a continuous function uε ∈ N1,p(X) such that Capp(Eε) < ε, u = uε
on X \ Eε, and ‖u− uε‖N1,p(X) < ε.

Proof. A careful study of the proofs of Theorem 4.1 in [KKST08], for
p = 1, and Theorem 4.1 in [KL02], for 1 < p < ∞, gives an open set
Eε ⊂ X with Capp(Eε) < ε such that the restriction of u to X \ Eε is
continuous and ∫

B(x,r)

|u− u(x)| dµ→ 0

uniformly in X \ Eε as r → 0.
The next step is to find a continuous extension of u

∣∣
X\Eε

to Eε. To

do so, we use a Whitney type cover of the open set Eε; we refer the
interested reader to [CW71] and Theorem 3.1 in [BBS07] for explicit
construction of such a cover. From this construction, we obtain a
countable collection of balls {Bi}i∈I , where Bi = B(xi, ri) with ri ≈
dist(xi, X \ Eε), satisfying

Eε =
⋃
i∈I

Bi =
⋃
i∈I

2λCBi,

where λ ≥ 1 is the scaling constant in the Poincaré inequality and C ≥
2 is a contant that depends only on the doubling constant and the con-
stant in the Poincaré inequality. Moreover, the collection {2CλBi}i∈I
has a bounded overlap property and if 2Bi ∩ 2Bj is non-empty, then
Bi ⊂ CBj.

We then fix a Lipschitz partition of unity subordinate to this cover,
that is, a collection of functions {ϕi}i∈I such that supp(ϕi) ⊂ 2Bi,
0 ≤ ϕi ≤ 1 and ϕi is C/ri-Lipschitz continuous and∑

i∈I

ϕi(x) = 1
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for every x ∈ Eε. We define the discrete convolution vε on Eε as

vε(x) =
∑
i∈I

uBi
ϕi(x).

By the bounded overlap property of the cover, the sum above is locally
finite and hence vε is locally Lipschitz continuous on the open set Eε.
Moreover, as in the proof of Lemma 5.1, we have∫

Eε

|vε|p dµ ≤ C

∫
Eε

|u|p dµ.

Furthermore, if x, y ∈ Bj, then by the Lipschitz property of the
functions ϕi,

|vε(x)− vε(y)| =

∣∣∣∣∣∑
i∈I

(uBi
− uBj

)(ϕi(x)− ϕi(y))

∣∣∣∣∣
≤ Cd(x, y)

∑
i∈Ij

1

ri
|uBi
− uBj

|,

where Ij is the same set of indices as in the proof of Theorem 4.6. By
the properties of the cover given above and the doubling property of
µ, we now see that there are at most C number of balls Bi such that
2Bi intersect Bj, and all of them have radii comparable to rj.

Recall that by Theorem 4.2, the strong relative isoperimetric in-
equality implies the (1, 1)-Poincaré inequality and consequently also
the (1, p)-Poincaré inequality. Hence

|vε(x)− vε(y)| ≤ C

rj
d(x, y)

∑
i∈Ij

|uBi
− uBj

|

≤ C

rj
d(x, y)

∑
i∈Ij

ri

∫
CBj

|u− uCBj
| dµ

≤ Cd(x, y)

(∫
CλBj

gpu dµ

)1/p

.

It follows that the function

g(x) = C
∑
j∈I

(∫
CλBj

gpu dµ

)1/p

χBj
(x),

is a p-weak upper gradient of vε in Eε whenever gu is a p-weak upper
gradient of u. As in the proof of Lemma 5.1, we also have∫

Eε

gp dµ ≤ C

∫
Eε

gpu dµ.

It follows from the above estimates that

‖vε‖N1,p(Eε) ≤ C‖u‖N1,p(Eε),
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and we can choose Eε to be small enough so that by the absolute
continuity of the integral we have

‖vε‖N1,p(Eε) < ε. (7.2)

Now we define the function uε = vεχEε + uχX\Eε . It is clear that the
restrictions of uε to Eε and to X \ Eε are continuous. We now show
that uε is continuous on X. To do so, it suffices to show that for all
x ∈ ∂Eε, we have

lim
Eε3y→x

uε(y) = uε(x) = u(x).

For y ∈ Eε we can choose (by the properness of X) y′ ∈ X \ Eε such
that d(y, y′) = dist(y,X \ Eε) = δ(y). Then

|uε(x)− uε(y)| = |u(x)− vε(y)| ≤ |u(x)− u(y′)|+ |u(y′)− vε(y)|,
and because d(y, y′) ≤ d(y, x), when y → x we see that d(y, y′)→ 0 as
well and hence y′ → x. Because y′ ∈ X \ Eε, by the continuity of the
restriction of u to this set we see that |u(y′)−u(x)| → 0 as y ∈ Eε with
y → x. Hence it suffices now to show that we have |u(y′)− vε(y)| → 0
as y ∈ Eε with y → x. To this end, we use the doubling property of µ
and the fact that if y ∈ 2Bi then ri ≈ δ(y), to see that

|u(y′)− vε(y)| ≤
∑
i∈I

|uBi
− u(y′)|ϕi(y)

≤
∑
i∈I

ϕi(y)

∫
Bi

|u(z)− u(y′)| dµ(z)

≤
∑
i∈J

∫
Bi

|u(z)− u(y′)| dµ(z)

≤ C
∑
i∈J

∫
B(y,δ(y))

|u(z)− u(y′)| dµ(z),

where J = {i ∈ I : y ∈ 2Bi}.
By the bounded overlap property of the cover and the doubling prop-

erty of µ, it follows that

|u(y′)− vε(y)| ≤ C

∫
B(y,δ(y))

|u(z)− u(y′)| dµ(z)

≤ C

∫
B(y′,2δ(y))

|u(z)− u(y′)| dµ(z).

Because y ∈ Eε and y → x, we have δ(y) → 0, and by the uniform
convergence of the integral average on X \ Eε, we have

lim
Eε3y→x

∫
B(y′,2δ(y))

|u(z)− u(y′)| dµ(z) = 0,

and it follows that |vε(y)− u(y′)| → 0 as desired. This implies that uε
is continuous on X.
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Finally we show that uε ∈ N1,p(X). Observe that uε − u = 0 on
X \ Eε, and that uε − u ∈ N1,p(Eε) by (7.2). Since uε is continuous,
every point of X is a Lebesgue point of uε. On the other hand, by
Theorem 4.1 in [KL02] and Theorem 4.1 in [KKST08], p-quasievery
point of X is a Lebesgue point of u ∈ N1,p(X). This implies that p-
quasievery point of X is a Lebesgue point of u− uε. Since u− uε = 0
on ∂Eε, we conclude that

lim
r→0

∫
B(x,r)

|uε − u| dµ = 0

for p-quasievery x ∈ ∂Eε. The desired conclusion now follows from
Theorem 1.1. It also follows from (7.2) that

‖u− uε‖N1,p(X) = ‖u− uε‖N1,p(Eε) < ε,

completing the proof. �
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