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Abstract. We study superparabolic functions related to nonlin-
ear parabolic equations. They are de�ned by means of a parabolic
comparison principle with respect to solutions. We show that ev-
ery superparabolic function satis�es the equation with a positive
Radon measure on the right-hand side, and conversely, for every
�nite positive Radon measure there exists a superparabolic func-
tion which is solution to the corresponding equation with measure
data.

1. Introduction
This work provides an existence result for superparabolic functions

related to nonlinear degenerate parabolic equations
∂u

∂t
− divA(x, t,∇u) = 0. (1.1)

The principal prototype of such an equation is the p-parabolic equation
∂u

∂t
− div(|∇u|p−2∇u) = 0 (1.2)

with 2 ≤ p < ∞. Superparabolic functions are de�ned as lower semi-
continuous functions that obey a parabolic comparison principle with
respect to continuous solutions of (1.1). The superparabolic functions
related to the p-parabolic equation are of particular interest because
they coincide with the viscosity supersolutions of (1.2), see [5]. Thus
there is an alternative de�nition in the theory of viscosity solutions and
our results automatically hold for the viscosity supersolutions of (1.2)
as well.

By de�nition, a superparabolic function is not required to have any
derivatives, and, consequently, it is not evident how to directly relate
it to the equation (1.1). However, by [9] a superparabolic function has
spatial Sobolev derivatives with sharp local integrability bounds. See
also [1], [2], and [7]. Using this result we show that every superparabolic
function u satis�es the equation with measure data

∂u

∂t
− divA(x, t,∇u) = µ, (1.3)
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where µ is the Riesz measure of u, see Theorem 3.9. A rather delicate
point here is that the spatial gradient of a superparabolic function is
not locally integrable to the natural exponent p. Consequently, the
Riesz measure does not belong to the dual of the natural parabolic
Sobolev space. For example, Dirac's delta is the Riesz measure for the
Barenblatt solution of the p-parabolic equation.

We also consider the converse question. Indeed, for every �nite non-
negative Radon measure µ, there is a superparabolic function which
satis�es (1.3), see Theorem 5.8. This result is standard, provided that
the measure belongs to the dual of the natural parabolic Sobolev space,
but we show that the class of superparabolic functions is large enough
to admit an existence result for general Radon measures. If the mea-
sure belongs to the dual of the natural parabolic Sobolev space, then
uniqueness with �xed intial and boundary conditions is also standard.
However, uniqueness questions related to (1.3) for general measures
are rather delicate. For instance, the question whether the Barenblatt
solution is the only solution of the p-parabolic equation with Dirac's
delta seems to be open. Hence, we will not discuss uniquess of solutions
here.

2. Preliminaries
Let Ω be an open and bounded set in Rn with n ≥ 1. We denote

ΩT = Ω× (0, T ),

where 0 < T < ∞. For an open set U in Rn we write
Ut1,t2 = U × (t1, t2),

where 0 < t1 < t2 < ∞. The parabolic boundary of Ut1,t2 is
∂pUt1,t2 =

(
∂U × [t1, t2]

) ∪ (U × {t1}).
As usual, W 1,p(Ω) denotes the Sobolev space of functions in Lp(Ω),

whose distributional gradient belongs to Lp(Ω). The space W 1,p(Ω) is
equipped with the norm

‖u‖W 1,p(Ω) = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

The Sobolev space with zero boundary values, denoted by W 1,p
0 (Ω), is

a completion of C∞
0 (Ω) with respect to the norm of W 1,p(Ω).

The parabolic Sobolev space Lp(0, T ; W 1,p(Ω)) consists of measurable
functions u : ΩT → [−∞,∞] such that for almost every t ∈ (0, T ), the
function x 7→ u(x, t) belongs to W 1,p(Ω) and

∫

ΩT

(|u|p + |∇u|p) dx dt < ∞. (2.1)

A function u ∈ Lp(0, T ; W 1,p(Ω)) belongs to the space Lp(0, T ; W 1,p
0 (Ω))

if x 7→ u(x, t) belongs to W 1,p
0 (Ω) for almost every t ∈ (0, T ). The local

2



space Lp
loc(0, T ; W 1,p

loc (Ω)) consist of functions that belong to the para-
bolic Sobolev space in every Ut1,t2 b ΩT .

We assume that the following structural conditions hold for the di-
vergence part of our equation for some exponent p ≥ 2:

(1) (x, t) 7→ A(x, t, ξ) is measurable for all ξ ∈ Rn,
(2) ξ 7→ A(x, t, ξ) is continuous for almost all (x, t) ∈ Ω×R,
(3) A(x, t, ξ) · ξ ≥ α|ξ|p for almost all (x, t) ∈ Ω×R and ξ ∈ Rn,
(4) |A(x, t, ξ)| ≤ β|ξ|p−1 for almost all (x, t) ∈ Ω×R and ξ ∈ Rn,
(5) (A(x, t, ξ)−A(x, t, η)) · (ξ−η) > 0 for almost all (x, t) ∈ Ω×R

and all ξ, η ∈ Rn, ξ 6= η.
Solutions are understood in the weak sense in the parabolic Sobolev

space.
De�nition 2.2. A function u ∈ Lp

loc(0, T ; W 1,p
loc (Ω)) is a weak solution

of (1.1) in ΩT , if

−
∫

ΩT

u
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇u) · ∇ϕ dx dt = 0 (2.3)

for all test functions ϕ ∈ C∞
0 (ΩT ). The function u is a supersolution if

the integral in (2.3) is nonnegative for nonnegative test functions. In a
general open set V of Rn+1, the above notions are to be understood in
a local sense, i.e. u is a solution if it is a solution in all sets Ut2,t2 b V .

By parabolic regularity theory, every weak solution has a locally
Hölder continuous representative.

The de�nition of a weak solution does not refer to the time derivative
of u. We would, nevertheless, like to employ test functions depending
on u, and thus the time derivative ∂u

∂t
inevitably appears. The standard

way to overcome this di�culty is to use a molli�cation procedure, for
instance Steklov averages or convolution with the standard molli�er,
in the time direction; see, e.g., [3]. Let uε denote the molli�cation of
u. For each ϕ ∈ C∞

0 (ΩT ), the regularized equation reads∫

ΩT

∂uε

∂t
ϕ dx dt +

∫

ΩT

A(x, t,∇u)ε · ∇ϕ dx dt = 0,

for small enough ε > 0. The aim is to obtain estimates that are in-
dependent of the time derivatives of uε, and then pass to the limit
ε → 0.

3. A-superparabolic functions
We illustrate the notion ofA-superparabolic functions by considering

the Barenblatt solution Bp : Rn+1 → [0,∞) �rst. It is given by the
formula

Bp(x, t) =





t−n/λ

(
c− p− 2

p
λ1/(1−p)

( |x|
t1/λ

)p/(p−1))(p−1)/(p−2)

+

, t > 0,

0, t ≤ 0,
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where λ = n(p− 2) + p, p > 2, and the constant c is usually chosen so
that ∫

Rn

Bp(x, t) dx = 1

for every t > 0.
The Barenblatt solution is a weak solution of the p-parabolic equa-

tion (1.2) in the open upper and lower half spaces, but it is not a
supersolution in any open set that contains the origin. It is the a priori
integrability of ∇Bp that fails, since

∫ 1

−1

∫

Q

|∇Bp(x, t)|p dx dt = ∞,

where Q = [−1, 1]n ⊂ Rn. In contrast, the truncated functions
min(Bp(x, t), k), k = 1, 2, . . . ,

belong to the correct parabolic Sobolev space and are weak superso-
lutions in Rn+1 for every k. This shows that an increasing limit of
supersolutions is not necessarily a supersolution.

In order to include the Barenblatt solution in our exposition we de�ne
a class of superparabolic functions, as in [6].
De�nition 3.1. A function u : ΩT → (−∞,∞] is A-superparabolic in
ΩT , if

(1) u is lower semicontinuous,
(2) u is �nite in a dense subset, and
(3) If h is a solution of (1.1) in Ut1,t2 b ΩT , continuous in U t1,t2 ,

and h ≤ u on the parabolic boundary ∂pUt1,t2 , then h ≤ u in
Ut1,t2 .

We say that u is A-hyperparabolic, if u satis�es properties (1) and (3)
only.

The class of A-superparabolic functions is strictly larger than that of
weak supersolutions as the Barenblatt solution discussed above shows.
If u and v are A-superparabolic functions, so are their pointwise min-
imum min(u, v), and the functions u + α for all α ∈ R. This is an
immediate consequence of the de�nition. However, the functions u + v
and αu are not superparabolic in general. This is well in accordance
with the corresponding properties of supersolutions. In addition, the
class of superparabolic functions is closed with respect to the increas-
ing convergence, provided the limit function is �nite in a dense subset.
This is also a straightforward consequence of the de�nition.
Theorem 3.2. Let (uj) be an increasing sequence of A-superparabolic
functions in ΩT . Then the limit function u = limj→∞ uj is always A-
hyperparabolic, and A-superparabolic whenever it is �nite in a dense
subset.
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A much less straightforward property of A-superharmonic functions
is the following theorem.
Theorem 3.3 ([8, 10]). A locally bounded A-superparabolic function is
a weak supersolution.

These two results give a characterization of A-superparabolicity. In-
deed, if we have an increasing sequence of continuous supersolutions
and the limit function is �nite in dense subset, then the limit function
is A-superparabolic. Moreover, if the limit function is bounded, then
it is a supersolution. On the other hand, the truncations min(v, k),
k = 1, 2, . . . , of an A-superparabolic function v are supersolutions and
hence every A-superparabolic function can be approximated by an in-
creasing sequence of supersolutions.

The reader should carefully distinguish between supersolutions and
A-superparabolic functions. Notice that an A-superparabolic function
is de�ned at every point in its domain, but supersolutions are de�ned
only up to a set of measure zero. On the other hand, weak superso-
lutions satisfy the comparison principle and, roughly speaking, they
are A-superparabolic, provided the issue about lower semicontinuity is
properly handled. In fact, every weak supersolution has a lower semi-
continuous representative as the following theorem shows. Hence every
weak supersolution is A-superparabolic after a rede�nition on a set of
measure zero.
Theorem 3.4 ([11]). Let u be a weak supersolution in ΩT . Then there
exists a lower semicontinuous weak supersolution that equals u almost
everywhere in ΩT .

Supersolutions have spatial Sobolev derivatives and they satisfy a
di�erential inequality in a weak sense. By contrast, no di�erentiability
is assumed in the de�nition of a A-superparabolic function. The only
tie to the di�erential equation is through the comparison principle.
Nonetheless, [9] gives an integrability result with an exponent smaller
than p. See also [1] and [2].
Theorem 3.5. Let u be A-superparabolic in ΩT . Then u belongs to the
space Lq

loc(0, T ; W 1,q
loc (Ω)) with 0 < q < p− n/(n + 1).

In particular, this shows that an A-superparabolic function u has a
spatial weak gradient and that it satis�es

−
∫

ΩT

u
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇u) · ∇ϕ dx dt ≥ 0

for all nonnegative test functions ϕ ∈ C∞
0 (ΩT ). Note carefully that

the integrability of the gradient is below the natural exponent p and
hence u is not a weak supersolution. Although u satis�es the integral
inequality, it seems to be very di�cult to employ this property directly.
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A key ingredient in the proof of Theorem 3.5 is the following lemma,
see [9, Lemma 3.14]. We will use it below.

Lemma 3.6. Suppose that v is a positive function such that vk =
min(v, k) belongs to Lp(0, T ; W 1,p

0 (Ω)). If there is a constant M > 0,
independent of k, such that

∫

ΩT

|∇vk|p dx dt + ess sup
0<t<T

∫

Ω

v2
k dx ≤ Mk, k = 1, 2, . . . ,

then v and ∇v belong to Lq(ΩT ) for 0 < q < p − n/(n + 1) and their
Lq norms have an estimate in terms of n, p, q, |ΩT |, and M .

Next we study the connection between A-superparabolic functions
and parabolic equations with measure data. First we de�ne weak solu-
tions to the measure data problem (1.3). Recall our assumption p ≥ 2.

De�nition 3.7. Let µ be a Radon measure on Rn+1. A function
u ∈ Lp−1

loc (0, T ; W 1,p−1
loc (Ω)) is a weak solution of (1.3) in ΩT , if

−
∫

ΩT

u
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇u) · ∇ϕ dx dt =

∫

ΩT

ϕ dµ (3.8)

for all ϕ ∈ C∞
0 (ΩT ).

The Barenblatt solution satis�es
∂Bp

∂t
− div(|∇Bp|p−2∇Bp) = δ

in the weak sense of De�nition 3.7, where the right-hand side is Dirac's
delta at the origin. In other words, Dirac's delta is the Riesz mass of
the Barenblatt solution.

Theorem 3.5 implies the existence of the Riesz measure of any A-
superparabolic function.

Theorem 3.9. Let u be a A-superparabolic function. Then there exists
a positive Radon measure µ such that u satis�es (1.3) in the weak sense.

Proof. Theorem 3.5 implies that |u|p−1, |∇u|p−1 ∈ L1
loc(ΩT ). Let ϕ ∈

C∞
0 (ΩT ) with ϕ ≥ 0 and denote uk = min(u, k). Then

A(x, t,∇uk) · ∇ϕ → A(x, t,∇u) · ∇ϕ

pointwise almost everywhere as k →∞ by continuity of ξ 7→ A(x, t, ξ),
as ∇uk → ∇u almost everywhere. Using the structure of A, we have

|A(x, t,∇uk) · ∇ϕ| ≤ C|∇uk|p−1|∇ϕ| ≤ C|∇u|p−1|∇ϕ|.
The majorant established above allow us to use the dominated con-

vergence theorem and the fact that the functions uk are supersolutions
6



to conclude that

−
∫

ΩT

u
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇u) · ∇ϕ dx dt

= lim
k→∞

(
−

∫

ΩT

uk
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇uk) · ∇ϕ dx dt

)
≥ 0.

The claim now follows from the Riesz representation theorem. ¤

4. Compactness of A -superparabolic functions
In this section we prove a compactness property of A-superparabolic

functions. It will be essential in the proof of the fact that every �nite
Radon measure there exists a superparabolic function, which solves
the corresponding equation with measure data. We use the following
convergence result for weak supersolutions from [10].

Theorem 4.1. Let (uj) be a bounded sequence of supersolutions in ΩT

and assume that uj converges to a function u almost everywhere in
ΩT . Then the limit function u is a weak supersolution, and ∇uj → ∇u
almost everywhere.

Note that a pointwise limit of supersolutions is not necessarily a
supersolution if we drop the boundedness assumption, as illustrated by
the Barenblatt solution at the beginning of Section 3.

We also use the following Caccioppoli estimate from [3]. The straight-
forward proof employs the test function −uϕ.

Lemma 4.2. Let u ≤ 0 be a weak supersolution in ΩT , and ϕ ∈
C∞

0 (ΩT ) with ϕ ≥ 0. Then
∫

ΩT

|∇u|pϕp dx dt

≤ C

(∫

ΩT

|u|p|∇ϕ|p dx dt +

∫

ΩT

|u|2
∣∣∣∣
∂ϕ

∂t

∣∣∣∣ ϕp−1 dx dt

)
.

Next we show that general superparabolic functions have a compact-
ness property. Note that the limit function may very well be identically
in�nite.

Theorem 4.3. Let (uj) be a sequence of positive A-superparabolic
functions in ΩT . Then there exist a subsequence (ujk

) and an A-
hyperparabolic function u such that

ujk
→ u almost everywhere in ΩT ,

and
∇ujk

→ ∇u almost everywhere in {(x, t) ∈ ΩT : u(x, t) < ∞}.
7



Proof. Assume �rst that uj ≤ M < ∞. If we could extract a sub-
sequence that converges pointwise almost everywhere to a function u,
Theorem 4.1 would imply that u is a supersolution and that ∇uj → ∇u
almost everywhere. By Theorem 3.4, we could then assume that u is
lower semicontinuous and thus A-superparabolic.

Once the result for bounded sequences is available, we can remove
the boundedness assumption by a diagonalization argument. Indeed,
we can �nd a subsequence (u1

j) and an A-superparabolic function u1

such that

min(u1
j , 1) → u1 and ∇min(u1

j , 1) → ∇u1

almost everywhere in ΩT . We proceed inductively and pick a subse-
quence (uk

j ) of (uk−1
j ) such that

min(uk
j , k) → uk and ∇min(uk

j , k) → ∇uk

almost everywhere in ΩT . We observe that if l ≥ k and uk(x, t) < k,
we have ul(x, t) = uk(x, t). Thus the sequence (uk) is increasing, and
we conclude that the limit

u = lim
k→∞

uk

exists and de�nes the desired A-hyperparabolic function in ΩT . We
note that by construction min(u, k) = uk, so that for the diagonal
sequence (uk

k) it holds that ∇uk
k → ∇u almost everywhere in the set

{(x, t) ∈ ΩT : u(x, t) < ∞}.

To extract the pointwise convergent subsequence from a bounded
sequence of supersolutions, we start by observing that the sequence
(∇uj) is bounded in Lp(τ1, τ2; L

p(Ω′)) for all subdomains Ω′
τ1,τ2

= Ω′×
(τ1, τ2) b ΩT . This follows from Lemma 4.2 applied to uj − M and
the boundedness of (uj). Let µj denote the measure associated to uj

by Theorem 3.9, and choose open polyhedra U b U ′ b Ω and intervals
(t1, t2) b (s1, s2) b (0, T ). If η ∈ C∞

0 (U ′
s1,s2

) with 0 ≤ η ≤ 1 and η = 1
in Ut1,t2 , we have

µj(Ut1,t2) ≤
∫

U ′s1,s2

η dµj

= −
∫

U ′s1,s2

∂η

∂t
uj dx dt +

∫

U ′s1,s2

A(x, t,∇uj) · ∇η dx dt

≤ CM + C

(∫

U ′s1,s2

|∇uj|p dx dt

)1/p

.
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Hence the sequence (µj(Ut1,t2)) is bounded. For ϕ ∈ C∞
0 (Ut1,t2), we

have

|〈u′j, ϕ〉| =
∣∣∣∣∣−

∫

Ut1,t2

uj
∂ϕ

∂t
dx dt

∣∣∣∣∣

=

∣∣∣∣∣−
∫

Ut1,t2

A(x, t,∇uj) · ∇ϕ dx dt +

∫

Ut1,t2

ϕ dµj(x, t)

∣∣∣∣∣

≤ C




(∫

Ut1,t2

|∇uj|p dx dt

)1/p

+ µj(Ut1,t2)


 ‖ϕ‖L∞(t1,t2;W 1,∞

0 (U)),

so that the sequence (u′j) is bounded in L1(t1, t2; W
−1,1
0 (U)). Recall

that U is a polyhedron and hence W 1,p(U) embeds compactly to L1(U)
by the Rellich-Kondrachov compactness theorem. Moreover, L1(U) is
contained in W−1,1

0 (U), so it follows from Theorem 5 in [14] that (uj) is
relatively compact in L1(Ut1,t2). This allows us to pick a subsequence
that converges pointwise almost everywhere in Ut1,t2 to a function u.

To pass to the whole set Ω× (0, T ), we employ another diagonaliza-
tion argument. Choose polyhedra U1 b U2 b . . . U j b U j+1 . . . and
intervals (t11, t

1
2) b (t21, t

2
2) b . . . so that

ΩT =
∞⋃
i=1

U i
ti1,ti2

.

The above reasoning allows us to pick a subsequence (u1
j) that converges

pointwise almost everywhere in U1
t11,t12

to a function u1. We proceed
inductively, and pick a subsequence (uk+1

j ) of (uk
j ) that converges almost

everywhere in Uk+1

tk+1
1 ,tk+1

2

to a function uk+1. Since limits are unique,
uk = ul almost everywhere in Uk

tk1 ,tk2
if l > k. Hence the diagonal

sequence (uk
k) converges almost everywhere in ΩT to a function u. As

explained above, this completes the proof. ¤

5. Existence of A -superparabolic solutions
In this section we prove our main existence result, Theorem 5.8.

Recall that a sequence of measures (µj) converges weakly to a measure
µ if

lim
j→∞

∫

ΩT

ϕ dµj =

∫

ΩT

ϕ dµ

for all ϕ ∈ C∞
0 (ΩT ). The following well-known result asserts that

for each �nite positive Radon measure there exists an approximating
sequence of functions in L∞(ΩT ) in the sense of a weak convergence
of measures. We repeat the proof given, for example, in [12] for the
convenience of the reader.
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Lemma 5.1. Let µ be a �nite positive Radon measure on ΩT . Then
there is a sequence (fj) of positive functions fj ∈ L∞(ΩT ) such that

∫

ΩT

fj dx dt ≤ µ(ΩT )

and
lim
j→∞

∫

ΩT

ϕfj dx dt =

∫

ΩT

ϕ dµ

for every ϕ ∈ C∞
0 (ΩT ). In other words, the sequence of measures (µj)

given by dµj(x, t) = fj dx dt converges weakly to µ.
Proof. Let Qi,j, i = 1, . . . , Nj, be the dyadic cubes with side length 2−j

such that Qi,j b ΩT . We de�ne

fj(x, t) =

Nj∑
i=1

µ(Qi,j)

|Qi,j| χQi,j
(x, t),

and show that the sequence (fj) has the desired properties. Observe
that ∫

ΩT

fj dx dt =

Nj∑
i=1

µ(Qi,j) ≤ µ(ΩT ),

and thus the �rst property holds. Let then (xi,j, ti,j) be the center of
Qi,j. By the smoothness of ϕ, there is a constant C depending only on
ϕ, such that

|ϕ(x, t)− ϕ(xi,j, ti,j)| ≤ C2−j

for all (x, t) ∈ Qi,j. Hence,∣∣∣∣
∫

ΩT

ϕdµ−
∫

ΩT

fjϕ dx dt

∣∣∣∣

≤
Nj∑
i=1

∣∣∣∣∣
∫

Qi,j

ϕdµ−
∫

Qi,j

ϕ(xi,j) dµ

+

∫

Qi,j

ϕ(xi,j) dµ−
∫

Qi,j

µ(Qi,j)

|Qi,j| ϕdx dt

∣∣∣∣∣

≤ C2−j

Nj∑
i=1

∫

Qi,j

dµ ≤ C2−jµ(ΩT ).

This proves the claim as j →∞. ¤

In the proof of the next theorem we utilize the following standard
existence result, see, e.g., Example 4.A. in [13]. Suppose that f ∈
L∞(ΩT ) has a compact support in ΩT . Then there exists a unique
function

u ∈ Lp(0, T ; W 1,p
0 (Ω))
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such that

−
∫

ΩT

u
∂ϕ

∂t
dx dt +

∫

ΩT

A(x, t,∇u) · ∇ϕ dx dt =

∫

ΩT

ϕf dx dt (5.2)

for every ϕ ∈ C∞
0 (ΩT ) and

lim
t→0

1

t

∫ t

0

∫

Ω

|u|2 dx dt = 0.

In particular, if f ≥ 0, then u is a supersolution.
The following lemma provides us with a key estimate, cf. Lemma 3.6

above.
Lemma 5.3. Let u be a solution of (5.2) with f ≥ 0. Then∫

ΩT

|∇min(u, k)|p dx dt + ess sup
0<t<T

∫

Q

min(u, k)2 dx ≤ Ck

∫

ΩT

f dx dt,

(5.4)
for k = 1, 2, . . . .
Proof. For each ϕ ∈ C∞

0 (ΩT ), the molli�cation uε of u satis�es the
regularized equation∫

ΩT

∂uε

∂t
ϕ dx dt +

∫

ΩT

A(x, t,∇u)ε · ∇ϕ dx dt =

∫

ΩT

f εϕ dx dt (5.5)

for small enough ε > 0. We prove the lemma by establishing a lower
bound for the left-hand side, and an upper bound for the right-hand
side.

First, we choose a piecewise linear approximation χh, h > ε, of χ(0,T )

such that 



∂χh

∂t
= 1/h, if h < t < 2h,

χh = 1, if 2h < t < T − 2h,
∂χh

∂t
= −1/h, if T − 2h < t < T − h,

χh = 0, otherwise,
and set uε

k = min(uε, k). We use ϕ = uε
kχh (here ϕ = 0, if t ≤ h or

t ≥ T − h) as a test function, observing that χh gives enough room for
the molli�cation because h > ε. We have

∂uε

∂t
uε

k =
∂uε

k

∂t
uε

k + k
∂(uε − k)+

∂t
.

Thus the �rst term in the left-hand side of (5.5) becomes, after inte-
gration by parts,

−
∫

ΩT

1

2
(uε

k)
2∂χh

∂t
dx dt−

∫

ΩT

k(uε − k)+
∂χh

∂t
dx dt.

Next, we would like to let ε → 0, but we only know that uε
k converges

to uk strongly for almost all real values of k. To deal with this, let
us assume that an increasing sequence of numbers k such that the
convergence holds has been chosen; then the conclusion of the lemma

11



holds for these numbers, and this technicality plays no further role. We
get the limit

−1

h

∫ 2h

h

∫

Ω

1

2
u2

k dx dt +
1

h

∫ T−h

T−2h

∫

Ω

1

2
u2

k dx dt

− 1

h

∫ 2h

h

∫

Ω

k(u− k)+ dx dt +
1

h

∫ T−h

T−2h

∫

Ω

k(u− k)+ dx dt

as ε → 0. The negative terms in the above expression vanish as h → 0
by the initial condition while the positive terms can be ignored since
we are proving a lower bound.

The second term on the left-hand side reads∫

ΩT

A(x, t,∇u)ε · ∇(uε
kχh) dx dt.

Here, we can simply let ε → 0, and then h → 0. This and the structure
of A gives us the estimate

α

∫

ΩT

|∇uk|p dx dt ≤
∫

ΩT

A(x, t,∇uk) · ∇uk dx dt.

To deal with the right-hand side of (5.5), we note that∫

ΩT

ukfχh dx dt ≤
∫

ΩT

ukf dx dt ≤ k

∫

ΩT

f dx dt.

Furthermore, the �rst term in the above estimate equals in the limit
with the right-hand side of (5.5) as ε → 0.

We have so far proved that∫

ΩT

|∇uk|p dx dt ≤ Ck

∫

ΩT

f dx dt. (5.6)

To �nish the proof, we repeat the above arguments with χ(0,T ) replaced
by χ(0,τ), where 0 < τ < T is chosen so that∫

Ω

uk(x, τ) dx ≥ 1

2
ess sup
0<t<T

∫

Ω

uk(x, t) dx.

By the choice of τ , we obtain the inequality∫

Ωτ

|∇uk|p dx dt + ess sup
0<t<T

∫

Ω

uk(x, t)2 dx ≤ Ck

∫

ΩT

f dx dt. (5.7)

A combination of (5.6) and (5.7) now completes the proof. ¤
Next we establish the existence of a solution to the measure data

problem.
Theorem 5.8. Let µ be a �nite positive Radon measure in ΩT . Then
there is an A-superparabolic function u in ΩT such that min(u, k) ∈
Lp(0, T ; W 1,p(Ω)) for all k > 0 and

∂u

∂t
− divA(x, t,∇u) = µ

12



in the weak sense.
Proof. Let (fj) be the approximating sequence to µ obtained from
Lemma 5.1 and denote by (uj) the corresponding sequence of superso-
lutions satisfying (5.2).

By Theorem 4.3, there is an A-hyperparabolic function u such that
we can assume that

uj → u and ∇min(uj, k) → ∇min(u, k)

almost everywhere by passing to a subsequence.
As the �rst step, we prove that u is �nite almost everywhere, and

thus u is A-superparabolic. To this end, according to Lemmas 5.3 and
5.1, we have∫

ΩT

|∇min(uj, k)|p dx dt ≤Ck

∫

ΩT

fj dx dt ≤ Cµ(ΩT )k. (5.9)

Since min(uj, k) ∈ Lp(0, T ; W 1,p
0 (Ω)), the Sobolev-Poincaré inequal-

ity and (5.9) imply
∫

ΩT

|min(uj, k)|p dx dt ≤ C

∫

ΩT

|∇min(uj, k)|p dx dt

≤ Cµ(ΩT )k,

(5.10)

where C is independent of k and j. Since uj → u almost everywhere,
it follows from Fatou's lemma and (5.10) that

∫

ΩT

|min(u, k)|p dx dt ≤ Cµ(ΩT )k.

This estimate implies that u is �nite almost everywhere. Indeed, de-
noting

E = {(x, t) ∈ ΩT : u(x, t) = ∞},
we have

|E| = 1

kp

∫

E

kp dx dt ≤ 1

kp

∫

ΩT

|min(u, k)|p dx dt ≤ Ck1−p → 0

as k → ∞. Thus, u is A-superparabolic and by Theorem 3.9, there
exists a measure ν such that

∂u

∂t
− divA(x, t,∇u) = ν (5.11)

in the weak sense.
We will complete the proof by showing that µ = ν. The constants

on the right-hand sides of (5.9) and (5.10) are independent of j. Thus
Lemma 3.6 implies that the sequence (|∇uj|p−1) is bounded in Lq(ΩT )
for some q > 1 . Next we use the structure of A, and obtain∫

ΩT

|A(x, t,∇uj)|q dx dt ≤ C

∫

ΩT

|∇uj|q(p−1) dx dt ≤ C.

13



Thus the sequence (A(x, t,∇uj)) is also bounded in Lq(ΩT ), and it fol-
lows from the pointwise convergence of ∇uj to ∇u, and the continuity
of ξ 7→ A(x, t, ξ) that A(x, t,∇uj) → A(x, t,∇u) pointwise almost ev-
erywhere, and thus weakly in Lq(ΩT ) at least for a subsequence, since
the pointwise limit identi�es the weak limit. Similarly, the sequence
(uj) is bounded in L(p−1)q(ΩT ) and thus a subsequence converges weakly
in L(p−1)q(ΩT ). We use the weak convergences and (5.11) to conclude
that

lim
j→∞

∫

ΩT

ϕ dµj = lim
j→∞

∫

ΩT

−uj
∂ϕ

∂t
+A(x, t,∇uj) · ∇ϕ dx dt

=

∫

ΩT

−u
∂ϕ

∂t
+A(x, t,∇u) · ∇ϕ dx dt

=

∫

ΩT

ϕ dν,

which completes the proof. ¤
Observe that we can not directly deduce from the boundedness of

gradients that (A(x, t,∇uj)) converges weakly to A(x, t,∇u) above.
The additional information needed is the pointwise convergence of the
gradients from Theorem 4.3 and the continuity of A with respect to
the gradient variable.

We close the paper by recording the following simple observation.
Note that the current tools do not allow us to prove the claim for any
solution of (5.13), since solutions to equations involving measures are
not unique in general. Recall that in a general open set V of Rn+1 u
is a solution if it is a solution in all sets Ut2,t2 b V .
Theorem 5.12. If u is a weak solution of

∂u

∂t
− divA(x, t,∇u) = µ (5.13)

in ΩT given by Theorem 5.8, then u is a weak solution of
∂u

∂t
− divA(x, t,∇u) = 0 (5.14)

in ΩT \ spt µ.
Proof. The proof consists of verifying two facts. First, we must check
that the limit has the right a priori integrability, and then show that
it satis�es the weak formulation.

Let (µj) be the approximating sequence of µ from Lemma 5.1. From
the proof of the lemma, we see that the support of µj is contained in
the set

Ej = {(x, t) ∈ ΩT : dist(z, spt µ) ≤ c 2−j},
where the constant c is independent of j. Thus the corresponding
supersolution uj is a nonnegative solution of (5.14) in ΩT \ Ej.
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Pick any set Ut1,t2 b ΩT \ spt µ. Then Ut1,t2 b ΩT \ Ej for all su�-
ciently large j. We take the subsequence from the proof of the previous
theorem with uniform bounds in L(p−1)q(Ut1,t2), q > 1, converging to a
limit u. We combine the bound for the sequence (uj) in L(p−1)q(Ut1,t2)
with a weak Harnack estimate (see [4] or [11]) to conclude that the se-
quence (uj) is bounded in Ut1,t2 , and hence the limit function u is also
bounded. The boundedness of u and Lemma 4.2 imply that u belongs
to Lp(t1, t2; W

1,p(U)).
We are left with the task of checking the weak formulation. Recall

from the proof of Theorem 5.8 that (uj) and (A(x, t,∇uj)) converge
weakly in Lq(ΩT ) to u and A(x, t,∇u), respectively. This implies that

0 = lim
j→∞

(
−

∫ t2

t1

∫

U

uj
∂ϕ

∂t
dx dt +

∫ t2

t1

∫

U

A(x, t,∇uj) · ∇ϕ dx dt

)

=−
∫ t2

t1

∫

U

u
∂ϕ

∂t
dx dt +

∫ t2

t1

∫

U

A(x, t,∇u) · ∇ϕ dx dt

for all ϕ ∈ C∞
0 (Ut1,t2). Since Ut1,t2 b ΩT \ spt µ was arbitrary, this

implies that u is a solution in ΩT \ spt µ. ¤
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