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ABSTRACT. Beckenbach and Radé characterized logarithmically
subharmonic functions in the plane in terms of integral inequali-
ties involving spherical averages. In this work we generalize this
result to higher dimensions and thus answer to a question raised by
Beckenbach and Radé. We also consider generalizations of integral
inequalities suggested by Beckenbach and Radé and discuss con-
nections to reverse Holder inequalities and Muckenhoupt weights.

1. INTRODUCTION

This note studies certain inequalities involving integral averages of a
function. These inequalities are classically related to sub- and super-
harmonic functions. Indeed, a continuous function f : R” — R is
subharmonic if and only if

/ fly)dy < ][ fly) dH" " (y)
B(z,r) 0B(x,r)

for every z € R" and r > 0. Here H"~! denotes the normalized (n —
1)-dimensional Hausdorff measure. In the one-dimensional case this
condition reduces to

z+r o
L gty < fert e

which characterizes convexity of the function. When the inequality is
reversed, a similar characterization holds for superharmonic functions
and in the one-dimensional case for concave functions, respectively.
In the plane this has been studied by Beckenbach and Radé, see [5].
Rado has given characterizations of convexity of certain powers of the
function in the one-dimensional case through this kind of inequalities,
see [28].
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In [5] Beckenbach and Radé also proved a very interesting result about
logarithmically subharmonic functions: If f : R? — (0, 00) is a contin-
uous function, then log f is subharmonic if and only if

<][ B(M)f(y)2 dy>1/2 . ][BB(M) ) dH(y)

for every x € R?* and r > 0. This is based on a result of Carleman
in [7] for harmonic functions. On page 20 of his book [29] Radé asked
whether a similar characterization would be true in higher dimensions
as well. In this work we give an answer to this question using recent
sharp inequalities for harmonic functions by Hang, Wang and Yan, see
[15] and [16]. We show that if f : R™ — (0,00), n > 3, is a continuous
function, then f"~2/2 is subharmonic in R” if and only if

<][ B(a.r) )y dy>l/n = (]/BB(x ) fly) dH”—l(y)>1/ (=)

for every x € R" and r > 0. When n = 2 the result holds for log f by
the Beckenbach-Radé theorem. For n > 3 subharmonicity of f=2/»
is a geometric counterpart of logarithmic subharmonicity, see page 29
of [10]. We also give necessary and sufficient conditions for logarithmic
subharmonicity in higher dimensions. Again, for n = 2 this reduces to
the Beckenbach-Radé theorem. For related results, we refer to [2], [10],
[22], [23] and [24].

We also study generalizations of Beckenbach-Radé type inequalities.
This is related to another question raised by Beckenbach and Radé on
page 664 of [5]. Indeed, we consider non-negative locally integrable
functions which satisfy the inequality

</B(z,r) oy dy) v = A][8B(m,r) ) dH )

for almost every = € R" (with respect to n-dimensional Lebesgue mea-
sure) and almost every r > 0 (with respect to the one-dimensional
Lebesgue measure). Here A > 0 and p > 1 are constants that are
independent of x € R™ and r > 0. In the one-dimensional case the
previous inequality reads

(%r/wf(y)pdy)l/p <l it

2

We also consider reversed inequalities. The main difference to the
classical case studied by Beckenbach and Radé is that we have the
multiplicative constant A on the right-hand side. When A # 1, sub-
harmonicity is not relevant for us, but instead we focus on connections
to reverse Holder inequalities and Muckenhoupt weights. We also give
several examples that hopefully clarify the similarities and differences

of the conditions.
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For expository purposes, we only consider the case when the functions
are globally defined in R™, although corresponding results hold true also
for subdomains. We leave this kind of generalizations to the interested
reader.

Acknowledgements. Part of the research was done while the second
author visited Universita degli Studi di Napoli ”Federico II” and the
fourth author visited Helsinki University of Technology. We wish to
thank these insitutions for support.

2. GENERALIZATIONS OF THE BECKENBACH-RADO THEOREM

In this section we give the following generalization of the Beckenbach-
Radé theorem to the higher dimensional case. In the classical case
when n = 2, the claim holds for log f, see [5]. Our argument is similar
to that of [5] except for the fact that instead of Carleman’s inequality
for analytic functions in [7] we apply sharp inequalities for harmonic
functions by Hang, Wang and Yan in [15] and [16].

Theorem 2.1. Suppose that f : R" — (0,00), n > 3, is a continuous
function. Then f=2/2 is subharmonic in R™ if and only if

1/(n=1)

<]/ B(ar) " dy) < (][ 6”B(W)J‘"(y)"1 dH"’l(y)> (2.2)

for every x € R™ and r > 0.

Proof. First assume that (2.2) holds and let g = f"~!. For g inequality
(2.2) reads

][ g(y)"Vdy < (/ g(y) dH" " (y)
B(z,r) 0B(z,r)

By Theorem 3.21 (i) in [10], we conclude that

) n/(n—1)

g(n+2)/n—n2/(2(n—1)) _ f(n—?)/?

is subharmonic in R™.

Then assume that f("~2/2 is subharmonic in R”. Let h be harmonic
function in B(z,r) with h = f=2/2 on 9B(x,r). Since f™~2/2 is
subharmonic, the comparison principle implies that f™=2/2(y) < h(y)

for every y € B(x,r). By Theorem 3.1 in [16], see also the discussion
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before Theorem 1.1 in [15], we conclude that

(]/B(W)f(’y)" dy)l/n (][B(W) (y)/ =2 dy)l/n

(][ h(y)Q(nfl)/(nf2) dH™ L (y)
OB(z,r)

< ][ . fy)"HdH" " (y)

This completes the proof. O

IA

IA

)1/(71—1)

)1/(71—1)

We also give necessary and sufficient conditions for logarithmically sub-
harmonic functions. In the plane this has been proved in [5], but our
result applies in all dimensions n > 2.

Theorem 2.3. Suppose that f : R" — (0,00), n > 2, is a continuous
function.

(i) If
n/(n+2)
(f  swemora)™ < ey @
B(z,r) OB(z,r)
for every x € R™ and r > 0, then log f is subharmonic.
(i) Iflog f is subharmonic, then

(n—1)/n
(f  swrmva)™ < ey @
B(z,r) oB(z,r)

for every x € R™ and r > 0.

Proof. The claim (i) follows from [2]. See also Theorem 3.21 (ii) in [10].
To prove (ii), let A be harmonic function in B(x,r) with h = log f on
OB(z,r). Since log f is subharmonic, the comparison principle implies
that log f(y) < h(y) for every y € B(x,r). By Corollary 3.1 in [16],
see also discussion before Theorem 1.1 in [15], we conclude that

/(e (n—1)/n n/(n—1) (n—1)/n
(f  swrrea)" "< (f o) ay)
B(z,r) B(z,r)

< ]/ "W dH" (y)
oB(z,r)

=][ fly) dH" " (y).
OB(z,r)

This completes the proof. O



Remark 2.6. Observe that the exponents in (2.4) and (2.5) coincide for
n = 2. In this case we have the characterization of logarithmic subhar-
monicity by Beckenbach and Radd, see [5]. Armitage and Goldstein
gave an example in [2] which shows that the converse of the claim (i)
fails when n > 3. Hence there is no characterization of logarithmic
subharmonicity in terms of a single Beckenbach-Radé type inequality
when n > 3.

3. INTEGRAL INEQUALITIES OF THE FIRST KIND

Let f be a non-negative locally integrable function in R™. We say that
f satisfies the Beckenbach and Radé type condition (I), if there exist
an exponent p > 1 and a constant A > 0 such that

(][8]3(”) f)” d']‘["l(y>>1/p < A/B(w) f(y)dy (3.1)

for almost every x € R™ and almost every r > 0.

Remark 3.2. (1) If the condition (I) holds, then by Jensen’s inequality
we have

fly)dH"(y) < A]/ f(y)dy

OB(z,r) B(z,r)

<][aB(m) foy dHn_l(’y))l/p - A</B(

(2) If f is continuous and there is A > 1 such that

sup f(y)SA][B( )y

yEB(z,r)

and

Fwydy) "

z,r)

for every z € R™ and r > 0, then (3.1) holds for every 1 < p < oc.
Sometimes this is called either G,-condition or RH-condition refer-
ring to the fact that it is a limiting case of a reverse Holder inequality
when the exponent on the left-hand side tends to infinity. This condi-
tion has been studied, for example, by [1], [3], [4], [8], [11], [26], [27]
and [31]. Observe, that this condition holds, if f satisfies the Harnack
type inequality

sup f(y) <A inf f(y).
yEB(z,r) yEB(z,r)

The first goal is to show that the condition (I) is invariant under the

smoothing of the function. To this end, let ¢ € C5°(B(0,1)), ¢ > 0, be

the standard (Friedrichs) mollifier with ||¢|]; = 1. We define ¢ (z) =

e "p(x/e), e >0, and f. = f * .. A standard argument shows that

fe € C2°@R"), fo — fin LP(R™) for 1 < p < 0o and f. — [ almost
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everywhere in R™ as ¢ — (. We show that first we can restrict ourselves
to smooth functions in our arguments and then pass to the limit at the
end. This will be a useful fact for us later, especially when we consider
integral avarages and maximal functions over spheres.

Lemma 3.3. If f € L
condition (I), then

( ][ N fe(y)” dH"%y))l/p < A/ L)y

(z,r)

L(R™) is a non-negative function satisfying the

for every e >0, v € R® and r > 0.

Proof. By the Minkowski integral inequality we have

][aB(x,r)fE(y)p dH”_l(y)
~f o (L s0 —z>so6<>dz)”dwn—l<y>

<(/ (][ =2 () " =)’
=([(f,,. fo==rorw) e i)
< AP /R/B (y — 2) dype(z )dZ)p

(
< Ap(]f o o T =220 dzdy)”
<w(f pdy) |

The next result shows that the condition (I) is related to monotonicity
properties of integral averages. Observe, that by Remark 3.2 inequality
(3.5) holds for all functions satisfying the condition (I). The proof is
similar to that of Lemma 1.3 on page 82 of [30], where the argument is
used to show that mappings of bounded distortion are locally Holder
continuous.

Lemma 3.4. Let f € L (R") and A > 0. Then
]/ fly)dH" " (y) < A][ fy) dy (3.5)
OB(z,r) B(z,r)

for almost every x € R™ and almost every r > 0 if and only if

Y S
B(z,r)
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1s a decreasing function of r > 0 for almost every x € R™.

Proof. By the co-area formula

ay= [ dH" " (y)d
/B Ty / /BB(W)f(y) (v) dp

from which it follows that

([ swma)= [ swoe-io)

for almost every r > 0. This implies that (3.5) can be written as

1 0
fydyzr——</ fy)dy
/B(z,'r) ( ) nAor B(z,r) ( ) >
for almost every r > 0. By multiplying both sides by nAr="4=! we

obtain
0
nAT‘”A‘l/ fly)dy >r 4 — / fy) dy
B(z,r) ( ) 87"< B(z,r) ( ) >

or equivalently

G ([ swan) <o

This completes the proof. O

Remark 3.6. (1) If f is a continuous function and

/ f(y)dH”‘l(y)S][ £(y) dy (3.7)
OB (z,r) B(z,r)

for every x € R™ and r > 0, then Lemma 3.4 implies that
fo=twf fwazf s
r— B(z,r) B(z,r)
for every r > 0 and, consequently, f is superharmonic. Conversely, if

f is a continuous superharmonic function, then (3.7) holds for every
x € R" and r > 0, see [5] and [10].

(2) If f is non-negative and 0 < r < R < oo, then

][ O (L) ]/ L

In particular, this implies that for every ball B(xz,r) in R™ we have

d c d 3.8
/B(z727ﬂ)f(y) y < / fy)dy (3.8)

B(z,r)
with the constant ¢ > 0 that is independent of the ball B(x,r). In other

words, a function that satisfies the condition (I) induces a doubling

measure. This will be a useful fact for us later. In particular, this
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implies that if a non-negative function f is zero in any open subset of
R™ then f is zero almost everywhere in R™.

(3) If 0 < A < 1, then by the Lebesgue differentiation theorem

0 < pn=4) ]/ f(y) dy < lim "= ]/ fly)dy =0
B(z,r) B(z,r)

r—0

for almost every x € R™. This implies that f = 0 almost everywhere.
Hence the only non-trivial case is when A > 1.

Now we present the main result of this section, which states that the
condition (I) implies a reverse Holder inequality. Hence every function
satisfying the condition (I) is a Muckenhoupt A.-weight. For the def-
initions and properties of Muckenhoupt weights we refer to [25] and
[14].

Theorem 3.9. If f € L] _(R™) is a non-negative function satisfying

loc

the condition (I), then there is ¢ = c¢(n, A) such that

( ][ s fy)” dy>1/p < c][ e f(y)dy

for every x € R™ and r > 0.

Proof. By Lemma 3.3, we may assume that f is smooth. In particular,
this implies that the spherical integral average in the condition (I) is
well defined for every x € R™ and r > 0. We denote 7B = B(x,1r),
where 7 > 0. Let By = B(zg,79) be an open ball in R". We define a
local Hardy-Littlewood maximal function of f as

Msop, f(z) = SUP/B f(y)dy,

where the supremum is taken over all open balls B C 30B; containing
x. The local spherical maximal function of f is

Ss0B, f(x) = sup f(y) dHn_l(y)7
dB

where the supremum is taken over all open balls B C 30B; containing
x.

Let x € B(z,7) C 30By. By the co-area formula

/B @@ﬂy) dy = /O ' /8 " Fly) dH™ 1 (y) dp

" Wiy —
< wn153030f(1‘)/ " tdp =" n 153030f(3€),
0
8




from which we conclude that
/ . f(y) dy < Ssop, f(z),
B(z,r

for every ball B(z,r) C 30B, containing x. Here w, 1 = nf), is the
normalized (n — 1)-dimensional Hausdorff measure of 0B(0,1). By
taking the supremum over all such balls we have

MgoBOf(fE) < S?)OBof(‘r)

for every x € 30B,y. This applies to fP as well and hence we have

(Msos, f7(2))"/7 < (Ssom, f7(x))"/?
for every x € 30B,.

The condition (I) implies an inequality to the reverse direction. Indeed,
by taking the supremum first on the right-hand side of (3.1) and then
on the left-hand side we have

(S0 ()" < AM3op, f ()
for every x € 30By. Consequently

(Msop, f7(2))"/P < (Ssop, f*(2))/P < AMzop, f () (3.10)

for every x € By.

We denote
E, = {iIZ' € 308 : MgOBOf(SC) > )\},
where A > 0. Let
A> ;tleano Msop, f ().
For every x € By N E) we define
ry = dist(z, By \ Ey).

By the choice of A we have By \ E\ # () and consequently r, < 2rg
for every x € By N E). By a Vitali type covering argument there are
countably many disjoint balls B; = B(x;,7,,), i = 1,2,..., for which
we have

ByNEx C | J5B:.
i=1
Since 5B; C 30By intersects By \ E) there is a point z; € 5B; N By such
that

Msop, f(2:) < A
for every i = 1,2,.... From this and (3.10) we conclude that

fP(y) dy < Msop, fP(2) < AP(Msop, f(2:))P < APAP

5B;



for every ¢+ = 1,2,... This implies that
| twrasy [ ferag<awy s
BoNE) i=1 5B; i=1
<5"APNY T |B| < 5"APN|3By N Ey|.
i=1

The final inequality follows from the fact that B, C 3By for every
1 = 1,2,... and the balls B;, « = 1,2,..., are pairwise disjoint. It
follows that
fordy= [ jwray [ swrdy
Bg BoNEy BO\E)\

< 5"APNP|3By N Ey\| + NP|By \ E\|

< BTAPNPI3By| < 15" APNP| By
for every A > inf,cp, M3op, f(x). Dividing by the measure of By and
letting A — inf,cp, M3op, f(z), we obtain

1/p
( fly)P dy) < 15™PA inf Msop, f(z).
Bo € B

Next we prove a standard weak type estimate which states that

n

Bl< [ )y (3.11)

30Bg

for every A > 0. If E) = (), the claim is clear. For every x € F) there
is a ball B, C 308, such that z € B, and

fly)dy > A
By

By a Vitali type covering argument there are countably many disjoint
balls B; = B,,, 1 =1,2,..., so that

E\c| 5B
i=1
This implies that

B\ <Y [5Bi| =5 |Bi|
=1 =1

5" 5
< oy fly)dy < 5y fy)dy.
Uz, B; 30Bg

We claim that (3.11) implies that

inf Msop, f(z) < 5”/ f(y) dy.
reEB 30B,
10



Indeed, if we choose A < inf,ep, Msop, f(z) in (3.11), we have

n

5
Bl <IBA < [ fw)dy

30Bg

and hence
A< ][ 1(y) dy.
30Bo

Since this holds for any such A, we may let A — inf,cp, M30p, f(x) and
we arrive at

if M, f(2) <5 fw)d.

€ B 308,
Thus we have

(f fwrdy)” <cinf Mg, f()
Bo ~  z€By 30Bo

< c]f fwdy < fly)dy,
30Bg Bg

where ¢ = ¢(n, A). The last inequality follows from (3.8). m

Remark 3.12. It is a natural question to ask whether every Mucken-
houpt A..-weight satisfies the condition (I) for some exponent p > 1
and some constant A > 1. For example, in the one-dimensional case
f:R =R, f(x) = |z|% is a Muckenhoupt A..-weight if and only if
a > —1, see Example 9.1.6 in [14]. Moreover, we have

/ |z|* dx = re
a+1

for every r > 0. Clearly f satisfies the monotonicity condition in
Lemma 3.4 if and only if « < A — 1. Hence by choosing « large
enough, for every A > 1 we have a Muckenhoupt A..-weight that does
not satisfy the condition (I) with constant A and with any exponent
p > 1. Hence Muckenhoupt A,.-condition does not imply the condition
(I), in general. Higher dimensional examples can be constructed in the
same way.

Since reverse Holder inequalities are self-improving by Gehring’s lemma
[12], we obtain the following higher integrability result.

Corollary 3.13. If f € Li.(R™) is a non-negative function satisfying
the condition (I), then there are ¢ = q(n,p, A) > p and ¢ = ¢(n, p,q, A)

such that
1/q
(f  swra)”<ef  swa
B(z,r) B(z,r)

for every x € R™ and r > 0.
11



Remark 3.14. This implies that functions satisfying the condition (I)
are locally integrable to a higher power than p in a quantitative way. It
would be interesting to know whether (3.1) is self improving. In other
words, under the assumptions of the previous corollary, does there exist
q=¢q(n,p,A) > pand c = ¢(n,p,q, A) and such that

(]/BB(;L’,T) fu) d’anl(y)> " = C][B(m,r) Jw)dy

for almost every x € R"™ and almost every r > 07 It would also be
interesting to obtain optimal bounds for the exponent ¢.

4. INTEGRAL INEQUALITIES OF THE SECOND KIND

Let f be a non-negative locally integrable funtion in R". We say that
f satisfies the Beckenbach and Radé type condition (II), if there exist
an exponent p > 1 and a constant A > 0 such that

<][ B(a,r) Fwy dy>1/p = A][ OB(x.r) W) (1)

for almost every x € R™ and almost every r > 0.

Remark 4.2. (1) If the condition (II) holds, then by Jensen’s inequality
we have

f f@w@SA/’ F(y) a1 (y)
B(z,r) OB(z,r)

<][B(a:,r) fwr dy>1/p = A<][BB(

(2) Armitage and Goldstein showed in [2] that every non-negative
subharmonic function uw in R™ satisfies the condition (II) for every
0 <p<n/(n—1). The upper bound for the exponent is sharp.

and

fy)? dH"‘l(y)> Up-

"E7T)

(3) If f is continuous and there is ¢ > 1 such that the following Muck-
enhoupt A; condition

!{m Sy m S0) (4.3)

yEB(x,r)

holds for every x € R" and r > 0, then (4.1) holds for some p > 1.
Indeed, every A;-weight f satisfies the reverse Holder inequality

(]/B(ac,r) f(y)p dy> " = CfB(x,r) f(y) dy

for every x € R™ and r > 0, see, for example, Theorem 9.2.2 in [14].
Here p > 1 and the constant ¢ is independent of x € R™ and » > 0.
The condition (II) follows from this and (4.3) immediately.

12



Example 4.4. Recall that an orientation preserving homemorphims
f:R" = R" is K-quasiconformal with 1 < K < oo, if f € WL"(R")
and

IDf(2)|" < K det Df(x)

for almost every x € R™. By the isoperimetric inequality we have

n/(n—1)
§ aepiwarz({ IpswIrt o)
B(z,r) OB(z,r)

for almost every x € R™ and almost every r > 0. Consequently, for
K-quasiconformal mappings we have

(n=1)/n_gqm-17,y)" Y
det Df(y) dy < K ( (det Df ()"~ /" dH" ()
B(z,r) oB(z,r)

for almost every x € R™ and almost every » > 0. Hence the Jacobian
determinant of a quasiconformal mapping provides an example of a
function which satisfies (4.1).

Next we show that the condition (IT) is preserved under mollification.
The proof is similar to that of Lemma 3.3 and we leave it to the reader.

Lemma 4.5. If f € Ll _(R"™) is a non-negative function satisfying the
condition (II), then

<][B(:Jc,r) fwy dy>1/p = A/@B(m) S )

for every e >0, v € R" and r > 0.

The condition (II) is also related to monotonicity properties of integral
averages. The following result is a counterpart of Lemma 3.4.

Lemma 4.6. Let f € L. _(R™) and A > 0. Then

loc

f ﬂw@SA/ f(y) dH 1 (y) (4.7)
B(z,r) OB(z,r)

for almost every x € R™ and almost every r > 0 if and only if
po U )y
B(z,r)

is an increasing function of r > 0 for almost every x € R™.

Proof. The inequality (4.7) can be written as

/B - fly)dy < r%%( /B - f() dy)

13



for almost every r > 0. By multiplying both sides by r~/4~1n /A we
obtain

n

0
_T—n/A—l/ d <T—n/A_ / d
" B(mf(y) y < ar< B(mf(y) y)

or equivalently

This completes the proof. O

Remark 4.8. (1) If f is a continuous function and

/ f<y>dys][ £(y) dH 1 (y) (4.9)
B(z,r) 0B(z,r)

for every x € R and r > 0, then the previous lemma implies that

f(z) = lim fy)dy é][ f(y) dy

r—0 B(z,r) B(z,r)

for every » > 0. This implies that f is subharmonic. Conversely, if f
is continuous subharmonic function, then (4.9) holds for every x € R"
and r > 0. For this we refer, for example, to [5] and [10].

(2) If 0 < A < 1, then f = 0 almost everywhere. To see this, assume
that x is a Lebesgue point of f and f(x) > 0. Then

oo = lim ,rn(ll/A)][ f(y) dy < 7,Tb(ll/A)][ f(y) dy
B(z,r) B(z,r)

r—0

for every r > 0. This implies that f is not locally integrable. Hence,
the only non-trivial case is when A > 1.

Then we show that functions satisfying the condition (II) also have
local higher integrability property.

Theorem 4.10. If f € L} (R") is a non-negative function satisfying

loc

the condition (II), then there are ¢ = q(n,p, A) > p and ¢ = ¢(n, p,q, A)

such that
1/q
(f  swra)"<ef pwd @
B(z,r) B(z,2r)

for every x € R™ and r > 0.
14



Proof. By the assumption and the co-area formula we have

» 2 ,
(/B(r,r)f )’ dy>1/ = % / ( /B(zﬁp)f(y)” dy) "

A 2r (ann)l/p .
= AL dH" d
/r /6 B(zﬁp)f(y) H"(y) dp

7 Wn—lpn_l
2r
<S [ [ pgan
T Jo OB(z,p)

< v / F(y) dy.
B(z,2r)

This implies that

( / o S0P ay) " < of oy SO

for every x € R™ and r > 0. Hence f satisfies a weak reverse Holder
inequality. The term weak refers to the fact that the radius of ball on
the right side is doubled. By a theorem of Giaquinta and Modica [13]
we conclude that there are ¢ = g(n,p, A) > p and ¢ = ¢(n, p, ¢, A) such

that )
<fB(x,r)f(y>q dy> " = CfB(x,Qr)f<y) W

for every x € R™ and r > 0. This completes the proof. |

Remark 4.12. (1) The obtained estimate (4.11) is weaker than in Corol-
lary 3.13. The difference is that the ball in the right side is larger and,
in particular, this does not imply that the function is a Muckenhoupt
Aoo-weight. Indeed, the following example shows that a function satis-
fying the condition (II) does not belong to the Muckenhoupt class Ay,
in general. We recall, that every function belonging to the Mucken-
houpt class A, satisfies the doubling condition

| twase| sy (4.13)
B(z,2r) B(z,r)
for some constant ¢ > 1 that is independent of the ball B(xz,r). We give

a one-dimensional example of a function which violates this property.

Let 1 < a < oo and = (a+2)/3. By a theorem on page 282 of [28],
a non-negative function g : R — R is convex if and only if

(& [ o) < (e sty

-

for every x € R and r > 0. Let g be a convex function, which vanishes

on a nontrivial interval, say g(z) = max(Jz| — 1,0) and let o > 1.
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Denote f(x ) (z)% and p = 3a/(a + 2), then

/p —
/ rapa)” < fe=n) i)

for every x € R and r > 0. This means that f satisfies the condition
(IT), but obviously f does not satisfy (4.13).

(2) If f satisfies the condition (II) and the doubling condition (4.13),

then
<][B(:v,r) for dy>1/q = C/B(x,zr) F)%
= C(]/ Ba) for dy>1/p

/ £(y) dH ().
OB(z,r)

This implies that, in this case, inequality (4.1) is self improving. Ob-
serve, that (4.13) holds, for example, if f is a Muckenhoupt weight or
a Jacobian of a quasiconformal mapping.

IN

(3) The previous theorem implies that functions satisfying the condi-
tion (II) are locally integrable to a higher power than p in a quantitative
way. It would be interesting to know whether (4.1) is self improving.
In other words, under the assumptions of the previous theorem, does
there exist ¢ = q(n,p, A) > p and ¢ = ¢(n,p, q, A) such that

<][B(fc,r) fyt dy) " = c][aB(z,r) f )

for almost every x € R"™ and almost every r > 07 It would also be
interesting to obtain sharp bounds for the exponent ¢. Asymptotic
results for standard reverse Holder inequalities can be found in [6], [9],
[17], [18], [19], [20], [21], [31] and [32].
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