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ABSTRACT. We discuss definitions of first order Sobolev spaces and related capacities on a metric
measure space. We show that the natural Sobolev capacity is a Choquet capacity.
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1. Introduction

There are several seemingly different definitions available for first order Sobolev spaces in a metric
measure space, see for example [Che], [H], [KoM] and [N]. The definition of [H] is based on a maximal
derivative approach, whence [Che], [KoM] and [N] use an upper gradient definition. In general these
definitions lead to different spaces. This is the case, for example, if there are too few rectifiable curves
in the space. However, these definitions coincide under certain conditions, see [N]. For every space there
is a capacity which is the natural measure for exceptional sets for Sobolev functions. The rudiments of
capacity theory on metric measure spaces were established in [KiM]. We complete the picture here by
showing that the Sobolev capacity is a Choquet capacity. Hence the capacity of an arbitrary Borel set
can be estimated by capacities of compact sets from inside and by capacities open sets from outside.

There are somewhat unexpected difficulties in proving the Choquet property in a metric measure
space. Classically it is obtained as a consequence of strong subadditivity of the capacity or reflexivity of
the Sobolev space, see for example Theorem 2 on page 151 of [EG] and Theorem 2.3 in [MZ]. We use
neither of these properties here. A recent result of [Che] shows that an upper gradient definition implies
reflexivity. Moreover capacities related to the upper gradient definitions satisfy the strong subadditivity
property. Hence in this case the Choquet property follows easily from the classical arguments. However,
if we consider the maximal derivative definition, then we do not have reflexivity nor strong subadditivity
available. The two fundamental problems are that the operation of taking the maximal derivative is not
linear and that the maximal derivative need not vanish on the set where the function is constant. We
overcome these obstacles by a direct method which is based on the definitions.

2. Sobolev space

In this section we recall the definition due to Hajlasz of the first order Sobolev spaces on an arbitrary
metric space. The details can be found in [H]. Let (X, d) be a metric space and let p be a non-negative
Borel regular outer measure on X . In the following, we keep the triple (X, d, u) fixed, and for short, we
denote it by X. For 1 < p < 0o, LP(X) is the Banach space of all y-a.e. defined p-measurable functions

u: X — [—00, 00] for which the norm
1/p
lullzsey = ( [ 1ul? du)
X

is finite. Suppose that u: X — [—00, 00] is y-measurable. We denote by D(u) the set of all y-measurable
functions g: X — [0, o0] such that

(2.1) lu(z) — u(y)| < d(z,y)(g9(z) + 9(y))
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for every z,y € X \ N, z # y, with u(N) = 0. The space L'?(X) consists of all u-measurable functions
u with D(u) N LP(X) # (; the space L1'?(X) is endowed with the seminorm

(2.2) lullznoge) = inf {{lgllzox): g € D(w) N LP(X)}.

An application of the uniform convexity of LP(X) implies that there is a unique minimizer of (2.2). The
Sobolev space is
MYP(X) = LP(X) N LMP(X)
equipped with the norm
lullarn ey = (lala ) + lullfinix)
Then the Sobolev space M?(X) is a Banach space.
If X = R™ with the Euclidean metric and the Lebesgue measure, then

MYP(R™) = WHP(R™), 1<p<oo.

Moreover, the norms are comparable (see [H]). Here WP(R") is the classical Sobolev space, that is, the
space of functions in L?(R™) whose first distributional derivatives belong to LP(R™) with the norm

1/
lallwrr gy = (0l ggny + 1DulE )

The following simple lemma is useful in studying the capacity.

2.3. LEMMA. Suppose that u;, i =1,2,..., are u-measurable functions, let g; € D(u;), 1 =1,2,...,
and denote g = sup; g; and v = sup,; u;. Then g € D(u) provided u < oo p-a.e.

PROOF. Let z,y € X \ N with u(y) < u(z) < co. Here N is the union of exceptional sets for the
functions u; as in (2.1). Let € > 0 and choose 7 such that u(z) < u;(z) +¢. Since u(y) > u;(y), we obtain

lu(z) — u(y)| = u(z) —u(y) < uil@) +e —ui(y)
< d(z,y)(gi(z) + 9i(y)) + & < d(z,y)(g9(z) + 9(y)) +e.

Letting € — 0 we obtain the result. O

3. Capacity

There is a natural capacity in the Sobolev space; this was studied in [KiM]. For 1 < p < oo, the
Sobolev p-capacity of the set £ C X is the number

Cp(E) =inf {||u||’1’wl,p(x): u € A(E)},

where
A(E) = {u € M"?(X) :u > 1 on a neighbourhood of E}.
If A(E) =0, we set C,(E) = oo. Functions belonging to A(E) are called admissible functions for E.
Since M1?(X) is closed under truncation, and truncation does not increase the Sobolev norm, we may
restrict ourselves to those admissible functions u for which 0 < u < 1. The Sobolev capacity enjoys the
following properties:
(3.1) C,(0) =0.
(3.2) If Ey C Es, then Cp(F;) C Cp(E2) (monotonicity).
(33) fE; C X,i=1,2,..., then
0o oo
Cp ( U Ez) <Y C(E)
=1 i=1
(subadditivity).
(3.4) C,(E) =inf{Cp(0): O D E open} (C, is an outer capacity).
(3.5) If C;,i=1,2,..., are compact sets so that X D C; D Cy D ..., then

S, (NC) = Jim C,(C).
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(3.6) If 0;,i=1,2,..., are open sets so that O; C O C ... C X, then
oo
c, (U o,-) = lim C,(0).
i=1 1—00
For the proofs, we refer to [KiM].

4. Choquet property

Finally we show that the Sobolev capacity is a Choquet capacity. To prove this we need a version of
(3.6) for arbitrary sets.

4.1. THEOREM. If E;,i=1,2,..., are sets so that £y C E5 C --- C X, then

(4.2) C, ([_'j E;) = lim Cy(Ey).

Proor. Let E = |J;2, E;. Monotonicity yields lim;_,o Cp(E;) < Cp(E). To prove the opposite
inequality, we may assume that lim; ., Cp(E;) < co. Let € > 0, u; € A(E;), 0 < w; < 1,i=1,2,...,
and g, € D(u;) N LP(X) be such that

”Ui”ip(x) + [|Gus: ip(X) < Cp(Ei) +e.

Now (u;) and (g,) are bounded sequences in LP?(X) and hence there are subsequences, which we denote
again by (u;) and (gy,), such that u; — u weakly in LP(X) and g,, — g weakly in LP(X) as i — oc.
Using the Mazur lemma we obtain a sequence (v;) of convex combinations of u;’s and g,, € D(v;)NLP(X)
such that v; € A(E;), v; & v in LP(X) and p-a.e. and g,, = g in LP(X). This sequence can be found
in the following way. Let ig be fixed. Since every subsequence of (u;) converges to u weakly in LP(X),
we may use the Mazur lemma for the subsequence (u;);>i,. We obtain a convex combination of finitely
many u;’s as close to u as we want in LP(X). For every ¢ = ig,499 + 1,..., there is an open set O; such
that u; = 1 p-a.e. in O;. Then the intersection of finitely many O;’s is an open neighbourhood of E;,
and the obtained convex combination equals one p-a.e. in this neighbourhood. Passing to subsequences,
if necessary, we may assume that for every i = 1,2,... we have

||Ui+1 - ’Ul'”ip(x) < 2_i and ||g’l)i+1 — Qu; ip(X) < 2_i'

For j =1,2,... set

w; = Sup v;.
i2j
Then
o0
wj <vj+ Y i1 — vil
i=j
for every j =1,2,..., and this implies that w; € L”(X). Since w; < oo p-a.e. by Lemma 2.3 we have

Gw; = SUD g, € D(w;)
i>j

for every j =1,2,.... Let

00
9j = Gv; + Z |g’Ui+1 — Gu;
i=j

for j = 1,2,... Clearly g, < g; and g; € LP(X) for all j = 1,2,... from which we conclude that
9; € D(w;) N LP(X). On the other hand, it is easy to see that w; = 1 p-a.e. in a neighbourhood of E.
This shows that w; € A(FE) and hence

C:D(E) < ij”II),p(X) + ||gj||ip(x)-
Since this holds for every j, we have

Cp(E) < h]rgggf (”wj”ip(x) + ||gj||2p(x))-
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Since wj is a decreasing sequence converging to u p-a.e., the dominated convergence theorem implies that
lw;llze(x) = llulle(x)- On the other hand, we see that [|g;||z»(x) — [|9]lz»(x) and hence

Co(B) < Mlullyn ) + 190170y -

Since u; — u and g; — g weakly in LP(X), the weak lower semicontinuity of norms implies

||U||§,p(x) + ||9||IL)p(X) < liirgioglf (”Ui”IL)p(x) + 119w I]ip(x)) < zlggo C,,(E,-) +e€.

Letting € — 0 we complete the proof. O

A set function satisfying properties (3.1)—(3.5) and (4.2) in Theorem 4.1 is called a Choguet capacity.
Hence we have shown that C,, is a Choquet capacity. A set £ C X is capacitable if

Cp(E) =sup{C,(C): C C E, C compact}
inf { C,(0): O D E, O open}.
All K-analytic sets are capacitable by Choquet’s theorem [Cho]. In particular all K-Borel sets are

capacitable. Recall that the o-algebra of K-Borel sets in X is the smallest o-algebra that contains all
compact subsets of X.
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