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Abstract. Using the theory of Sobolev spaces on a metric measure space we are able
to apply calculus of variations and define p-harmonic functions as minimizers of the p-

Dirichlet integral. More generally, we study regularity properties of quasi-minimizers
of p-Dirichlet integrals in a metric measure space. Applying the De Giorgi method we

show that quasi-minimizers, and in particular p-harmonic functions, satisfy Harnack’s

inequality, the strong maximum principle, and are locally Hölder continuous, if the
space is doubling and supports a Poincaré inequality.

1. Introduction

The classical Dirichlet problem is to find a harmonic function with given bound-
ary values. An alternative variational formulation of this problem is to minimize
the Dirichlet integral ∫

|Du|2 dx

among all functions which have required boundary values. A more general nonlinear
variation of the classical Dirichlet problem is to study minimizers of the p-Dirichlet
integral ∫

|Du|p dx,

with 1 < p < ∞. The minimizers are solutions to the corresponding Euler-Lagrange
equation, which in this case is the p-Laplace equation

div(|Du|p−2Du) = 0,

1991 Mathematics Subject Classification. 49N60, 35J60.

Key words and phrases. Quasi-minima, variational integrals, Harnack inequality.

Typeset by AMS-TEX

1



and continuous solutions are called p-harmonic functions.
It is not clear what the counterpart for the p-Laplace equation is in a general

metric measure space, but the variational approach is available; it is possible to
define p-harmonic functions as minimizers of p-Dirichlet integral in a metric measure
space. The basic reason is that Sobolev spaces on a metric measure space can be
defined without the notion of partial derivatives; see [C], [H], [HeK] and [Sh2]. The
definitions in these references are different but by [Sh2] they give the same Sobolev
space under mild assumptions. Cheeger’s goal in [C] is to study differentiability of
Lipschitz functions on metric measure spaces. His definition of Sobolev spaces is
tailored to make lower semicontinuity of the Sobolev norm under Lp convergence
a virtual tautology. This leads to the existence of a differential as a measurable
section of a finite dimensional cotangent bundle from which the reflexivity of the
Sobolev space follows. Hence direct methods in the calculus of variations can be
easily applied to prove the existence for the p-Dirichlet problem; see section 7 in [C]
and [Sh1]. In this work we study the regularity properties of p-harmonic functions
on a metric measure space.

In the Euclidean case minimizers of the p-Dirichlet integral are known to be
locally Hölder continuous. There are at least two ways of seeing this. One possible
approach is to use Moser’s iteration technique (see [Mo1] and [Mo2]), which gives
Harnack’s inequality and then Hölder continuity follows from this in a standard way.
From our point of view there is a drawback in Moser’s argument; it is based on
the differential equation and it seems to us that it cannot be applied in the general
metric setting. However, there is another approach by De Giorgi [DeG], which relies
only on the minimization property. In contrast with Moser’s technique, De Giorgi’s
method gives Hölder continuity and then Harnack’s inequality can be obtained
as in [DT]. One of the advantages of De Giorgi’s method is that it is applicaple
to quasi-minimizers as well. We recall that a quasi-minimizer minimizes the p-
Dirichlet integral up to a multiplicative constant; see [GG1] and [GG2]. Hence, in
particular, p-harmonic functions are quasi-minimizers. We have chosen this more
general approach to emphazise the fact that the obtained properties hold in a very
general context and are very robust. For example, they are preserved under bi-
Lipschitz perturbations of the metric.

The purpose of this note is to adapt De Giorgi’s method to the metric setting.
We show that if the space is doubling in measure and supports a (1, q)-Poincaré
inequality, then quasi-minimizers, and in particular p-harmonic functions, satisfy
Harnack’s inequality, the strong maximum principle, and are locally Hölder con-
tinuous. We note that Harnack’s inequality is the strongest claim and all other
properties follow from it in a standard way. However, these claims are closely
related to each other, and for expository purposes we first prove Hölder continu-
ity, then the strong maximum principle, and finally Harnack’s inequality, since the
proofs of these properties are based on estimates which are needed in the proof of
Harnack’s inequality. De Giorgi’s method is based on two ingredients: Sobolev and
Caccioppoli type estimates. We observe that these estimates are available under our
assumptions. Here we use results of [HaK], which show that the Poincaré inequality
implies a Sobolev type estimate. Then we very closely follow the presentation of
[Gia] and [Giu] and show that De Giorgi’s method applies. However, there are a few
delicate points in the argument and hence we are somewhat careful in details. For
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example, the doubling condition comes into play in several occasions. In addition,
we do not have exactly the same exponents in the Sobolev type estimate as in the
Euclidean case. Finally, the proof of [DT] is based on the Krylov-Safonov covering
argument which is originally stated in terms of dyadic cubes. Instead of dyadic
cubes we use balls, doubling property and a simple maxoimal function argument.

Our work is closely related to the paper [C] of Cheeger. As he points out in
Remark 7.19 of [C], Moser’s iteration scheme can be used if the p-harmonic functions
are defined with respect to an L∞ Riemannian metric and the unit sphere is smooth
and strictly convex. Our approach shows that these additional assumptions are
not needed for local Hölder continuity and Harnack’s inequality. There exists a
remarkable literature on Harnack’s inequalities under various circumstances; see
for example [AC], [CDG], [FL], [FKS], [HS], [JX], [LU], [Ma], [SC1], and [SC2].
Finally we note that boundary continuity for quasi-minimizers on metric measure
spaces have recently been studied in [B].

This note is organized as follows. The second section focuses on the preliminary
notation and definitions needed in the rest of the paper. There we also fix the
general setup and conventions used later in the paper without further notice. In
addition, we prove a Sobolev type inequality for functions which vanish on a large
set. The third section explores the relationship between quasi-minimizers and the
De Giorgi class of functions. In particular, there we prove a Caccioppoli type
estimate. In the next two sections local boundedness and local Hölder continuity
properties of the De Giorgi class are studied. In section 6 we prove the strong
maximum principle and in section 7 the Harnack inequality for quasi-minimizers.

Acknowledgements. We are grateful to Piotr Haj lasz and Ilkka Holopainen for
helpful conversations on graphs, and Juha Heinonen and Pekka Koskela for their
encouragement. We also thank Jana Björn, Olli Martio and Seppo Rickman for
helpful suggestions on improving the paper. This research was completed while the
authors visited the Mittag-Leffler Institute; we wish to thank the Institute for the
support.

2. Preliminaries

In this section we recall basic definitions and describe the general setup of our
study.

We assume that X is a metric measure space equipped with a Borel regular
measure µ. Throughout the paper we assume that the measure of every nonempty
open set is positive and that the measure of every bounded set is finite. Later we
impose further requirements on the space and on the measure; see subsection 2.13.

2.1. Upper gradients. Let u : X → [−∞,∞] be a function. A non-negative
Borel measurable function g : X → [0,∞] is said to be an upper gradient of u if for
all compact rectifiable paths γ joining points x and y in X we have

(2.2) |u(x) − u(y)| ≤
∫

γ

g ds.

If u(x) = u(y) = ∞ or u(x) = u(y) = −∞, we define the left side of (2.2) to be
∞. See [C], [HeK], [KoM] and [Sh2] for a discussion of upper gradients. Observe
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that upper gradients are called very weak gradients in [HeK], but we use different
terminology here.

Let 1 ≤ p < ∞. The p-modulus of a family of paths Γ in X is the number

inf
ρ

∫

X

ρp dµ,

where the infimum is taken over all non-negative Borel measurable functions ρ such
that for all rectifiable paths γ which belong to Γ we have

∫

γ

ρ ds ≥ 1.

It is known that the p-modulus is an outer measure on the collection of all paths
in X. A property is said to hold for p-almost all paths, if the set of non-constant
paths for which the property fails is of zero p-modulus. If (2.2) holds for p-almost
all paths γ in X, then g is said to be a p-weak upper gradient of u.

2.3. Newtonian spaces. The upper gradient is a substitute for the modulus of
a gradient in a metric space, but in order to be able to do calculus of variations
we need a concept of Sobolev spaces in a metric measure space. Let 1 ≤ p < ∞.
We define the space Ñ1,p(X) to be the collection of all p-integrable functions u
that have a p-integrable p-weak upper gradient g. This space is equipped with a
seminorm

‖u‖Ñ1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all p-weak upper gradients of u. When p > 1,
by the uniform convexity of Lp(X) we have that whenever u ∈ N1,p(X) there is a
function gu in Lp(X)-convex hull formed by the set of all p-weak upper gradients
of u, called the minimal p-weak upper gradient of u, so that gu is a p-weak upper
gradient of u and

‖gu‖Lp(X) = inf ‖g‖Lp(X)

where the infimum is over all p-weak upper gradients g of u; see [Sh1] or [C].
We define an equivalence relation in Ñ1,p(X) by saying that u ∼ v if

‖u − v‖Ñ1,p(X) = 0.

The Newtonian space N1,p(X) is defined to be the space Ñ1,p(X)/ ∼ with the norm

‖u‖N1,p(X) = ‖u‖Ñ1,p(X).

For basic properties of the Newtonian spaces we refer to [Sh2]. We recall here some
facts for future reference. It can be shown that N1,p(X) is a Banach space. It is
also very useful to know that if 1 < p < ∞ every function u that has a p-integrable
upper gradient has a minimal p-integrable p-weak upper gradient, denoted gu, in
the sense that if g is another p-weak upper gradient of u, then gu ≤ g µ-almost
everywhere. The functions in N1,p(X) are absolutely continuous on p-almost every
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path, which means that u ◦ γ is absolutely continuous on [0, length(γ)] for p-almost
every rectifiable arc-length parametrized path γ in X.

The p-capacity of a set E ⊂ X is defined by

Cp(E) = inf
u

‖u‖p
N1,p(X),

where the infimum is taken over all functions u ∈ N1,p(X), whose restriction to a
neighbourhood of E is bounded below by 1. Capacity is the natural measure for
exceptional sets of Sobolev functions. It is easy to see that sets of zero capacity are
also of measure zero, but the converse is not true in general. See [KM] for more
properties of the capacity.

In order to be able to compare the boundary values of Sobolev functions we
need a notion of Sobolev spaces with zero boundary values in a metric measure
space. Let E be an arbitrary subset of X. Following the method of [KKM], we
define Ñ1,p

0 (E) to be the set of functions u : E → [−∞,∞] for which there exists a
function ũ ∈ Ñ1,p(X) such that ũ = u µ-almost everywhere in E and

Cp({x ∈ X \ E : ũ(x) 6= 0}) = 0.

Next we define an equivalence relation on Ñ1,p
0 (E) by saying that u ∼ v if u = v

µ-almost everywhere on E. Finally we let N1,p
0 (E) = Ñ1,p

0 (E)/ ∼, equipped with
the norm

‖u‖N1,p
0 (E) = ‖ũ‖Ñ1,p(X),

be the Newtonian space with zero boundary values. The norm is unambiguously
defined by [Sh1] and the obtained space is a Banach space.

We use the following observation several times: suppose that there is a Borel set
A ⊂ X so that u is constant µ-almost everywhere in X \ A. Then if g is an upper
gradient of u, then gχA is a p-weak upper gradient of u, and hence the minimal
p-weak upper gradient gu = 0 µ-almost everywhere on X \ A. Here χA is the
characteristic function of A. For open sets A this has been proved in [Sh1] and
the general claim follows from fact that a locally finite Borel measure is a Radon
measure, and hence the measure of a Borel set can be approximated by measures
of open sets containing the set. It follows from this that if u and v are functions
such that u = v µ-almost everywhere on a Borel set A, then gu = gv µ-almost
everywhere; see Corollary 2.25 in [C].

2.4. Poincaré inequalities. A metric measure space X is said to be doubling if
there is a constant cd ≥ 1 so that

(2.5) µ(B(z, 2r)) ≤ cdµ(B(z, r))

for every open ball B(z, r) in X. Throughout the work we use the convention
that B(z, r) refers to an open ball. The constant cd in (2.5) is called the doubling
constant of µ. Note that by the doubling property, if B(y, R) is a ball in X,
z ∈ B(y, R) and 0 < r ≤ R < ∞, then

(2.6)
µ(B(z, r))
µ(B(y, R))

≥ c
( r

R

)Q

5



for some c and Q depending only on the doubling constant.
Let 1 ≤ q < ∞. The space X is said to support a weak (1, q)-Poincaré inequality

if there are constants c0 > 0 and τ ≥ 1 such that

(2.7)
∫

B(z,r)

|u − uB(z,r)| dµ ≤ c0r
(∫

B(z,τr)

gq dµ
)1/q

for all balls B(z, r) in X, for all integrable functions u in B(z, r) and for all upper
gradients g of u. The word weak refers to the possibility that τ > 1. If τ = 1,
the space is said to support a (1, q)-Poincaré inequality. A result of [HaK] shows
that in a doubling measure space a weak (1, q)-Poincaré inequality implies a weak
(t, q)-Poincaré inequality for some t > q possibly with a different τ . More precisely,
there are c > 0 and τ ′ ≥ 1 such that

(2.8)
(∫

B(z,r)

|u − uB(z,r)|t dµ
)1/t

≤ cr
(∫

B(z,τ ′r)

gq dµ
)1/q

,

where 1 ≤ t < Qq/(Q − q) if q < Q and t ≥ 1 if q ≥ Q, for all balls B(z, r)
in X, for all integrable functions u in B(z, r) and for all upper gradients g of u.
Conversely, by the Hölder inequality we see that a (t, q)-Poincaré inequality implies
the same inequality for smaller values of t and larger values of q. In particular, if
the space supports a weak (t, q)-Poincaré inequality, then it also supports a weak
(1, q)-Poincaré inequality. It can also be shown that in a space supporting a weak
(1, q)-Poincaré inequality, every ball, whose complement is non-empty, has a non-
empty boundary. This is a strengthening of the topological notion of uniform
perfectness; see the comments following inequality (2.11).

Moreover, in inequalities (2.7) and (2.8) we can replace the upper gradient g with
any p-weak upper gradient in Lp

loc(X), because of the result in [KoM] which states
that every p-weak upper gradient in Lp

loc(X) can be approximated in Lp(X) by an
upper gradient in Lp

loc(X). Indeed, given any p-weak upper gradient g1 ∈ Lp
loc(X)

of u and any ε > 0 we can find an upper gradient g2 so that ‖g2−g1‖Lp(X) < ε. Here
Lp

loc(X) is the space of all measurable functions that are p-integrable on bounded
subsets of X.

2.9. Sobolev inequalities. Next we prove a Sobolev type inequality for functions
which vanish on a large set. The paper [B] has a better capacitary version of this
inequality, but for our purposes it suffices to consider the more easily proved version
below.

2.10. Lemma. Let X be a doubling metric measure space supporting a weak
(1, q)-Poincaré inequality for some 1 < q < p. Suppose that u ∈ N1,p(X) and let
A = {x ∈ B(z, R) : |u(x)| > 0}. If µ(A) ≤ γµ(B(z, R)) for some γ with 0 < γ < 1,
then there is a constant c > 0 so that

(∫

B(z,R)

|u|t dµ
)1/t

≤ cR
(∫

B(z,τ ′R)

gq
u dµ

)1/q

,

where t and τ ′ are as in (2.8). The constant c depends only on γ and the constants
c and τ ′ of (2.8).
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Proof. By the Minkowski inequality and (2.8) we have
(∫

B(z,R)

|u|t dµ
)1/t

≤
(∫

B(z,R)

|u − uB(z,R)|t dµ
)1/t

+ |uB(z,R)|

≤ cR
(∫

B(z,τ ′R)

gq
u dµ

)1/q

+ |uB(x,R)|.

The Hölder inequality implies that

|uB(z,R)| ≤
( µ(A)

µ(B(z, R))

)1−1/t(∫

B(z,R)

|u|t dµ
)1/t

≤ γ1−1/t
(∫

B(z,R)

|u|t dµ
)1/t

.

Hence we obtain

(1 − γ1−1/t)
(∫

B(z,R)

|u|t dµ
)1/t

≤ cR
(∫

B(z,τ ′R)

gq
u dµ

)1/q

,

from which the claim follows since 0 < γ < 1.

We observe that Lemma 2.10 gives a Sobolev inequality for Sobolev functions
with zero boundary values. To be more precise, there exists c > 0 so that for every
ball B(z, R) with 0 < R ≤ diam(X)/3 and every u ∈ N1,p

0 (B(z, R)) we have

(2.11)
(∫

B(z,R)

|u|t dµ
)1/t

≤ cR
(∫

B(z,R)

gq
u dµ

)1/q

.

This follows easily from Lemma 2.10 after noting that gu = 0 almost everywhere on
X\B(z, R) and by observing that there must be a point on the sphere ∂B(z, 2R).
If there is no such point, then it is easy to construct a function which violates the
Poincaré inequality.

2.12. Quasi-minimizers. Now we are ready to formulate the minimization prob-
lem for the p-Dirichlet integral in a metric measure space. By N1,p

loc (Ω) we mean the
space of all functions u ∈ Lp

loc(Ω) that have an upper gradient in Lp
loc(Ω), where

Lp
loc(Ω) is the space of all measurable functions that are p-integrable on bounded

subsets of X.
Suppose that Ω ⊂ X is open. A function u ∈ N1,p

loc (Ω) is called p-harmonic on
Ω, if for every bounded open subset Ω′ of Ω with Ω

′ ⊂ Ω and v ∈ N1,p(Ω′) with
u − v ∈ N1,p

0 (Ω′) we have ∫

Ω′
gp

u dµ ≤
∫

Ω′
gp

v dµ,

where gu and gv are the minimal weak upper gradients of u and v respectively.
A function u is said to be a quasi-minimizer on Ω if there is a constant K > 0

so that for all bounded open subsets Ω′ of Ω with Ω
′ ⊂ Ω and for all functions

v ∈ N1,p(Ω′) with u − v ∈ N1,p
0 (Ω′) the inequality∫

Ω′∩{u6=v}
gp

u dµ ≤ K

∫

Ω′∩{u6=v}
gp

v dµ

is satisfied.
In particular, every p-harmonic function is a quasi-minimizer with K = 1. p-

harmonic functions on metric measure spaces have been studied in [C] and [Sh1].
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2.13. General setup. A very interesting fact for us is that if the metric measure
space is doubling and supports the (1, p)-Poincaré inequality with 1 < p < ∞, then
N1,p(X) is reflexive. This result has been proved in [C] by Cheeger. He employs a
different definition of Sobolev spaces on a metric measure space using only upper
gradients and a concept of generalized upper gradients and bypassing the notions
of moduli of path families and weak upper gradients. However, our definition gives
rise to the same space as his when 1 < p < ∞; see [Sh2]. Since the notion of
p-weak upper gradients provides insight into the geometric aspect of this function
space, we use the definition developed in [Sh1] in the De Giorgi method given here,
which itself is a geometric argument. Cheeger has also shown that the minimal
upper gradient of a locally Lipschitz function can be obtained as the pointwise
Lipschitz constant µ-almost everywhere provided the space is doubling and supports
a Poincaré inequality; see section 6 of [C]. There is yet another definition of Sobolev
spaces on a metric measure spaces given by Haj lasz [H] based on a maximal function
inequality. If the measure is doubling and the space supports a weak (1, q)-Poincaré
inequality for some q with 1 < q < p, then all three definitions yield the same space.
Therefore doubling and Poincaré type assumptions seem to form a natural context
for us to work with.

From now on we assume without further notice that the metric measure space X
is equipped with a doubling Borel regular measure for which the measure of every
nonempty open set is positive and the measure of every bounded set is finite. Fur-
thermore we assume that the space supports a weak (1, q)-Poincaré inequality for
some q with 1 < q < p.

3. Quasi-minimizers and De Giorgi class

In this section we show that quasi-minimizers, and in particular p-harmonic
functions, satisfy a Caccioppoli type estimate on level sets.

3.1. Definition. Let Ω be an open subset of X. The function u ∈ N1,p
loc (Ω) belongs

to the De Giorgi class DGp(Ω), if there exists a constant c > 0 such that for all
k ∈ R, z ∈ Ω, and 0 < ρ < R ≤ diam(X)/3 so that B(z, R) ⊂ Ω, we have

(3.2)
∫

Az(k,ρ)

gp
u dµ ≤ c

(R − ρ)p

∫

Az(k,R)

(u − k)p dµ,

where Az(k, r) = {x ∈ B(z, r) : u(x) > k}. In the rest of the discussion we drop
the subscript z from Az(k, r) as z ∈ Ω is fixed. Observe that (3.2) is equivalent to

(3.3)
∫

B(z,ρ)

gp
(u−k)+

dµ ≤ c

(R − ρ)p

∫

B(z,R)

(u − k)p
+ dµ,

where we denote by (u − k)+ the function max{u − k, 0}.

To prove the local Hölder continuity, the strong maximum principle and Har-
nack’s inequality for a quasi-minimizer u, we show that u and −u belong to the De
Giorgi class and in the subsequent sections we prove that such functions satisfy the
corresponding property.
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Suppose that u is a quasi-minimizer on Ω. We show that u ∈ DGp(Ω). Let
B(z, R) ⊂ Ω and 0 < ρ < R ≤ diam(X)/3. Let η be a c/(R − ρ)-Lipschitz cutoff
function so that 0 ≤ η ≤ 1, η = 1 on B(z, ρ) and the support of η is contained in
B(z, R). Set

v = u − η max(u − k, 0).

Then u − v ∈ N1,p
0 (A(k, R)). By the energy quasi-minimizing property of u em-

ployed on the subdomain B(z, R) (see section 2.12), we have∫

A(k,ρ)

gp
u dµ ≤

∫

A(k,R)

gp
u dµ ≤ K

∫

A(k,R)

gp
v dµ.

Note that v = u − η(u − k) = (1 − η)(u − k) + k on A(k, R). Hence µ-almost
everywhere on this set

gv ≤ (u − k)gη + (1 − η)gu;

see Lemma 2.4 in [Sh1] or [C]. Since gη ≤ c/(R − ρ), we get
∫

A(k,ρ)

gp
u dµ ≤c

∫

A(k,R)

(
(u − k)pgp

η + (1 − η)pgp
u

)
dµ

≤ c

(R − ρ)p

∫

A(k,R)

(u − k)p dµ + c

∫

A(k,R)\A(k,ρ)

gp
u dµ.

Here we used the fact that 1 − η = 0 on A(k, ρ). Adding the term c
∫
A(k,ρ)

gp
u to

the left and right hand sides of the inequality above, we see that

(1 + c)
∫

A(k,ρ)

gp
u dµ ≤ c

∫

A(k,R)

gp
u dµ +

c

(R − ρ)p

∫

A(k,R)

(u − k)p dµ.

This implies that∫

A(k,ρ)

gp
u dµ ≤ θ

∫

A(k,R)

gp
u dµ +

c

(R − ρ)p

∫

A(k,R)

(u − k)p dµ,

where θ = c/(c + 1) < 1. Hence, if 0 < ρ < r ≤ R, then

(3.4)
∫

A(k,ρ)

gp
u dµ ≤ θ

∫

A(k,r)

gp
u dµ +

c

(r − ρ)p

∫

A(k,R)

(u − k)p dµ.

Now we recall a technical lemma; see Lemma 5.1 in [Gia].

3.5. Lemma. Let R > 0 and f : (0, R] → [0,∞) be a bounded function. Suppose
that for 0 < ρ < r ≤ R < ∞ we have

(3.6) f(ρ) ≤ γ(r − ρ)−α + θf(r)

with α > 0, 0 ≤ θ < 1, and γ ≥ 0. Then there is a constant c = c(α, θ) so that

(3.7) f(ρ) ≤ cγ(r − ρ)−α.

for 0 < ρ < r ≤ R.

From (3.4) and Lemma 3.5 we conclude that there is a constant c depending
only on p and the quasi-minimizer constant K so that

(3.8)
∫

A(k,ρ)

gp
u dµ ≤ c

(R − ρ)p

∫

A(k,R)

(u − k)p dµ,

and hence u is in the De Giorgi class. Finally we observe that if u is a quasi-
minimizer, then so is −u. Thus we have proved the following result.
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3.9. Proposition. Let Ω be an open subset of X. If u is a quasi-minimizer in Ω,
then u ∈ DGp(Ω) and −u ∈ DGp(Ω).

4. De Giorgi class and boundedness

Suppose that a function u is in DGp(Ω). Let 0 < R/2 < ρ < R ≤ diam(X)/3
such that B(z, R) ⊂ Ω. Then g(u−k)+ ≤ guχA(k,R) in B(z, R) and by inequality
(3.3) we see that

(4.1)
∫

B(z,(R+ρ)/2)

gp
(u−k)+

dµ ≤ c

(R − ρ)p

∫

B(z,R)

(u − k)p
+ dµ.

Here we use the product rule again; see Lemma 2.4 in [Sh1] or [C]. Let η be a
c/(R− ρ)-Lipschitz cutoff function so that 0 ≤ η ≤ 1, the support of η is contained
in B(z, (R + ρ)/2), and η = 1 on B(z, ρ). Then, letting v = η(u − k)+, we have

gv ≤ g(u−k)+η + (u − k)+gη ≤ g(u−k)+ +
c

R − ρ
(u − k)+.

Inequality (4.1) implies that
∫

B(z,(R+ρ)/2)

gp
v dµ

≤ c

∫

B(z,(R+ρ)/2)

gp
(u−k)+

dµ +
c

(R − ρ)p

∫

B(z,(R+ρ)/2)

(u − k)p
+ dµ

≤ c

(R − ρ)p

∫

B(z,R)

(u − k)p
+ dµ.

Since the space supports a weak (1, p)-Poincaré inequality, by inequality (2.11) we
get t > p (see the discussion after (2.8)) so that

(4.2)

(∫

B(z,ρ)

(u − k)t
+ dµ

)p/t

≤ c
(∫

B(z,(R+ρ)/2)

|v|t dµ
)p/t

≤ cRp
(∫

B(z,(R+ρ)/2)

gq
v dµ

)p/q

≤ c
Rp

(R − ρ)p

∫

B(z,R)

(u − k)p
+ dµ.

The Hölder inequality implies that
∫

B(z,ρ)

(u − k)p
+ dµ ≤

(∫

B(z,ρ)

(u − k)t
+ dµ

)p/t( µ(A(k, ρ)
µ(B(z, ρ))

)1−p/t

.

Therefore, inequality (4.2) gives us

(4.3)

∫

B(z,ρ)

(u − k)p
+ dµ

≤ c
Rp

(R − ρ)p

( µ(A(k, ρ)
µ(B(z, ρ))

)1−p/t
∫

B(z,R)

(u − k)p
+ dµ.
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Let h < k. Then

(4.4)

(k − h)pµ(A(k, ρ)) =
∫

A(k,ρ)

(k − h)p dµ

≤
∫

A(k,ρ)

(u − h)p dµ ≤
∫

A(h,ρ)

(u − h)p dµ.

Let

u(h, ρ) =
(∫

B(z,ρ)

(u − h)p
+ dµ

)1/p

.

Then, by inequality (4.4) and the doubling condition, we have

µ(A(k, ρ)) ≤ µ(B(z, ρ))
(k − h)p

u(h, ρ)p ≤ c
µ(B(z, R))
(k − h)p

u(h, R)p,

and by inequality (4.3) we obtain

(4.5)
u(k, ρ) ≤ c

R

R − ρ

( µ(A(k, ρ)
µ(B(z, ρ))

)1/p−1/t

u(k, R)

≤ c
R

R − ρ
(k − h)−θu(h, R)1+θ,

where θ = 1 − p/t > 0.

The following proposition is a modification of Proposition 5.1 in [Gia].

4.6. Proposition. For any number k0 ∈ R we have u(k0 + d, R/2) = 0, where

(4.7) dθ = c 2(1+θ)2/θ+1u(k0, R)θ.

Here c and θ are as in (4.5).

Proof. Let kn = k0 + d(1 − 2−n) and ρn = R/2 + 2−n−1R, n = 0, 1, 2, . . . Then
ρ0 = R, ρn ↘ R/2, and kn ↗ k0 + d as n → ∞. Next we show that for every
n = 0, 1, 2, . . . we have

(4.8) u(kn, ρn) ≤ 2−µnu(k0, R),

where µ = (1 + θ)/θ.
It is clear that (4.8) holds when n = 0. Suppose then that (4.8) holds for some

n. Then, by inequality (4.5), we obtain

u(kn+1, ρn+1) ≤c
ρn

ρn − ρn+1
(kn+1 − kn)−θu(kn, ρn)1+θ

≤c
R

2−n−2R
(2−n−1d)−θ u(k0, R)1+θ

2µn(1+θ)
= 2−µ(n+1)u(k0, R).

Thus (4.8) is proved by induction.
Hence limn→∞ u(kn, ρn) = 0. As kn ≤ k0 + d and R/2 ≤ ρn ≤ R for every

n = 0, 1, 2, . . . , using the doubling property we conclude that

0 ≤ u(k0 + d, R/2) ≤ c u(kn, ρn).

The claim follows by letting k → ∞.

11



Now we are ready to prove the following weak Harnack inequality; see Theorem
5.1 in [Gia]. It implies that functions in the De Giorgi class are locally bounded
and the obtained estimate is a basis of our work.

4.9. Theorem. Let Ω be an open subset of X, B(z, R) ⊂ Ω with 0 < R ≤
diam(X)/3, and k0 ∈ R. If u ∈ DGp(Ω), then there is a constant c > 0 such that

sup
B(z,R/2)

u ≤ k0 + c
(∫

B(z,R)

(u − k0)p
+ dµ

)1/p

.

The constant c depends only on the constant in De Giorgi’s condition, the doubling
constant, p, q, and constants c and τ ′ from (2.8). In particular, the constant is
independent of the ball B(z, R).

Proof. By Proposition 4.6 we have u(k0 + d, R/2) = 0, where d is as in (4.7). This
implies that

sup
B(z,R/2)

u ≤ k0 + d = k0 + c
(∫

B(z,R)

(u − k0)p
+ dµ

)1/p

.

Thus the result follows.

Taking k0 = 0 we see that the following theorem is true.

4.10. Theorem. Suppose that the hypothesis of Theorem 4.9 hold and, in addi-
tion, −u ∈ DGp(Ω). Then

sup
B(z,R/2)

|u| ≤ c
(∫

B(z,R)

|u|p dµ
)1/p

,

where c > 0 is as in Theorem 4.9.

4.11. Remarks. (1) It is easy to see that there is nothing particular in the factor
1/2 in the claims of Theorem 4.10. Indeed, if 0 < ρ < r ≤ R, then

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/r)Q/p

(∫

B(z,r)

|u|p dµ
)1/p

.

To see this, let ε > 0 and take y ∈ B(z, ρ) so that |u(y)|p ≥ (supB(z,ρ) |u|)p − ε.
Then by Theorem 4.10 we have

( sup
B(z,ρ)

|u|)p ≤ ε + |u(y)|p ≤ ε + ( sup
B(y,(r−ρ)/4)

|u|)p

≤ ε + c

∫

B(y,(r−ρ)/2)

|u|p dµ.

Doubling property (2.6) of the measure µ implies that

µ(B(y, (r − ρ)/2)) ≥ c(1 − ρ/r)Qµ(B(z, r))

12



from which the claim follows.
(2) It is useful to observe that the claim of Theorem 4.10 hold for every exponent

q > 0. To be more precise, for every q > 0 there is constant c such that

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/R)Q/q

(∫

B(z,R)

|u|q dµ
)1/q

when 0 < ρ < R < ∞. If q > p, the claim follows directly from Hölder’s inequality.
Suppose then that 0 < q < p and let 0 < ρ < r ≤ R. Then an application of
Young’s inequality gives

sup
B(z,ρ)

|u| ≤ c

(1 − ρ/r)Q/p

(∫

B(z,r)

|u|q|u|p−q dµ
)1/p

≤ c

(1 − ρ/r)Q/p

(∫

B(z,r)

|u|q dµ
)1/p(

sup
B(z,r)

|u|
)1−q/p

≤ ε sup
B(z,r)

|u| +
c(ε)

(1 − ρ/r)Q/q

(∫

B(z,r)

|u|q dµ
)1/q

≤ ε sup
B(z,r)

|u| +
c(ε)

(r − ρ)Q/q

(
RQ

∫

B(z,R)

|u|q dµ
)1/q

,

where 0 < ε < 1. In the last inequality we used doubling property (2.6). The claim
follows now from Lemma 3.5

5. De Giorgi class and Hölder continuity

The aim of this section is to prove De Giorgi’s theorem [DeG], which states that
functions in De Giorgi’s class are locally Hölder continuous.

Suppose that u ∈ DGp(Ω) and let 0 < r < R < diam(X)/(3τ ′) be such that
B(z, 2τ ′R) ⊂ Ω. Assume that µ(A(h, R)) ≤ γµ(B(z, R)) for some γ with 0 < γ < 1.
Let k > h, and define

v(x) = min{u(x), k} − min{u(x), h}.

Since u ∈ N1,p(Ω), we note that v ∈ N1,p(Ω). By hypothesis,

µ({x ∈ B(z, R) : v(x) > 0}) ≤ γµ(B(z, R)).

Since the space is assumed to support a weak (1, q)-Poincaré inequality for some q
with 1 < q < p, we may use Lemma 2.10 with t = q and we obtain

(k − h)µ(A(k, R)) =
∫

A(k,R)

v dµ ≤
∫

B(z,R)

|v| dµ

≤ cµ(B(z, R))1−1/q
( ∫

B(z,R)

|v|q dµ
)1/q

≤ cRµ(B(z, R))1−1/q
( ∫

B(z,τ ′R)

gq
v dµ

)1/q

≤ cRµ(B(z, R))1−1/q
( ∫

A(h,τ ′R)\A(k,τ ′R)

gq
v dµ

)1/q

,
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where the constant c > 0 has the same dependencies as the constant in Lemma
2.10. Here we used the fact that gv = gvχ{h<u≤k} µ-almost everywhere. Hence, by
Hölder’s inequality we have

(k − h)µ(A(k, R)) ≤ cRµ(B(z, R))1−1/q

·
( ∫

A(h,τ ′R)

gp
v dµ

)1/p(
µ(A(h, τ ′R)) − µ(A(k, τ ′R))

)1/q−1/p
.

Since u ∈ DGp(Ω), we conclude that for R < diam(X)/(3τ ′) so that B(z, 2τ ′R) ⊂
Ω,

(5.1)
(k − h)µ(A(k, R)) ≤ cµ(B(z, R))1−1/q

·
( ∫

A(h,2τ ′R)

(u − h)p dµ
)1/p(

µ(A(h, τ ′R)) − µ(A(k, τ ′R))
)1/q−1/p

.

Here c depends on γ and on other parameters.

The following result is Proposition 5.2 in [Gia]. We denote

m(R) = inf
B(z,R)

u and M(R) = sup
B(z,R)

u.

By the results of Section 4, M(R) is finite.

5.2. Proposition. Suppose that u ∈ DGp(Ω) is locally bounded below and let
M = M(2τ ′R), m = m(2τ ′R) and k0 = (M + m)/2. If µ(A(k0, R)) ≤ γµ(B(z, R))
for some 0 < γ < 1, then

lim
k→M

µ(A(k, R)) = 0.

Proof. Let ki = M − 2−(i+1)(M − m), i = 0, 1, 2, . . . Then ki ↗ M as i → ∞ and
k0 = (M + m)/2. Note that

M − ki−1 = 2−i(M − m) and ki − ki−1 = 2−(i+1)(M − m).

By inequality (5.1) we have

(ki − ki−1)µ(A(ki, R)) ≤ cµ(B(z, R))1−1/q
( ∫

A(ki−1,2τ ′R)

(u − ki−1)p dµ
)1/p

·
(
µ(A(ki−1, τ

′R)) − µ(A(ki, τ
′R))

)1/q−1/p
.

Therefore, as u − ki−1 ≤ M − ki−1 on A(ki−1, 2τ ′R), we conclude that

2−(i+1)(M − m)µ(A(ki, R)) ≤ cµ(B(z, R))1−1/q+1/p

· 2−i(M − m)
(
µ(A(ki−1, τ

′R)) − µ(A(ki, τ
′R))

)1/q−1/p
.

Note that if ν ≥ i, then µ(A(kν , R)) ≤ µ(A(ki, R)). Hence

µ(A(kν , R)) ≤ cµ(B(z, R))1−1/q+1/p

·
(
µ(A(ki−1, τ

′R)) − µ(A(ki, τ
′R))

)1/q−1/p
.

14



Now summing the above inequality over i = 1, 2, . . . , ν, and using the doubling
property, we get

(5.3)

νµ(A(kν, R))pq/(p−q)

≤ cµ(B(z, R))pq/(p−q)−1
(
µ(A(k0, τ

′R)) − µ(A(kν , τ ′R))
)

≤ cµ(B(z, R))pq/(p−q).

Therefore, limn→∞ µ(A(kn, R)) = 0 and hence the result follows by the fact that
µ(A(k, R)) is a monotonic decreasing function of k.

Now we are ready to prove De Giorgi’s theorem; see page 82 in [Gia]. Let
osc(u, B(z, r)) = M(r) − m(r) denote the oscillation of u on B(z, r).

5.4. Theorem. Suppose that both u and −u are in DGp(Ω). If 0 < r < R <
diam(X)/(3τ ′) are such that B(z, 2τ ′R) ⊂ Ω, then

osc(u, B(z, τ ′r)) ≤ 4α
( r

R

)α

osc(u, B(z, τ ′R)),

for some α with 0 < α ≤ 1 independent of the function u and the ball B(z, R). In
particular, u is locally Hölder continuous on Ω.

Proof. Let k0 = (M + m)/2, where M and m are as in Proposition 5.2. If
µ(A(k0, R)) > µ(B(z, R))/2, then

µ({x ∈ B(z, R) : − u(x) ≤ −k0}) > µ(B(z, R))/2.

Consequently we have

µ({x ∈ B(z, R) : − u(x) > −k0}) ≤ µ(B(z, R))/2,

and then we can consider −u rather than u in the following discussion. Therefore,
without loss of generality, we assume that µ(A(k0, R)) ≤ µ(B(z, R))/2. By Theo-
rem 4.9 with k0 replaced by kν = M − 2−ν−1(M − m), ν = 0, 1, 2, . . . , and by the
doubling property, we get

M(τ ′R/2) ≤ kν + c(M(2τ ′R) − kν)
(µ(A(kν, R))

µ(B(z, R))

)1/p

with c > 0 as in Theorem 4.9. By Proposition 5.2 it is possible to choose an integer
ν large enough so that

c
(µ(A(kν , R))

µ(B(z, R))

)1/p

<
1
2
.

Here, by inequality (5.3), it is possible to choose ν to be independent of the ball
B(z, R) and the function u. Note that here γ = 1/2. Hence

M(τ ′R/2) < M(2τ ′R) − (M(2τ ′R) − m(2τ ′R))2−(ν+2),
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and therefore

M(τ ′R/2) − m(τ ′R/2) ≤ M(τ ′R/2) − m(2τ ′R)

<
(
M(2τ ′R) − m(2τ ′R)

)
(1 − 2−(ν+2)).

By the above inequality,

(5.5) osc(u, B(z, τ ′R/2)) < λ osc(u, B(z, 2τ ′R)),

where λ = 1 − 2−(ν+2) < 1. To complete the proof we iterate inequality (5.5). We
choose an integer j ≥ 1 so that 4j−1 ≤ R/r < 4j . Inequality (5.5) implies that

osc(u, B(z, τ ′r)) ≤ λj−1 osc(u, B(z, τ ′4j−1r)) ≤ λj−1 osc(u, B(z, τ ′R)).

By the choice of j we conclude that

λj−1 = 4(j−1)(log λ)/ log 4 ≤ 4α
(R

r

)−α

,

where α = −(log λ)/ log 4 ≤ 1. Thus we have

osc(u, B(z, τ ′r)) ≤ 4α
( r

R

)α

osc(u, B(z, τ ′R)).

Combining Proposition 3.9 and Theorem 5.4 we conclude that every quasi-
minimizer is locally Hölder continuous. In particular, this holds for p-harmonic
functions.

6. De Giorgi class and strong maximum principle

It was shown in Theorem 7.17 of [C] and in [Sh1] that p-harmonic functions
satisfy the maximum principle on their domain of harmonicity: they achieve their
maxima and minima on the boundary of the domain. In this section we prove
that quasi-minimizers, and in particular p-harmonic functions, satisfy the strong
maximum principle: they do not achieve their maxima and minima in the interior
of the domain of harmonicity.

We denote Dz(τ, R) = {x ∈ B(z, R) : u(x) < τ} and drop the subscript z since
z ∈ Ω is fixed.

6.1. Lemma. Suppose that u ≥ 0 and −u ∈ DGp(Ω). Let 0 < R ≤ diam(X)/3
be such that B(z, R) ⊂ Ω and τ > 0. Then there is a constant γ0, 0 < γ0 < 1, such
that if µ(D(τ, R)) ≤ γ0µ(B(z, R)), then

inf
B(z,R/2)

u ≥ τ/2.

Here γ0 is independent of the ball B(z, R).

Proof. By Theorem 4.9 applied to −u, with k0 = −τ , we see that

sup
B(z,R/2)

−u ≤ −τ + c
( 1

µ(B(z, R))

∫

D(τ,R)

(−u + τ)p dµ
)1/p

.
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This implies that

inf
B(z,R/2)

u ≥τ − c
( 1

µ(B(z, R))

∫

D(τ,R)

(τ − u)p dµ
)1/p

≥τ − cτ
(µ(D(τ, R))

µ(B(z, R))

)1/p

,

where the last inequality was obtained by noting that τ − u ≤ τ . To obtain the
claim we choose γ0 = (2c)−p.

6.2. Lemma. Suppose that the hypothesis of Lemma 6.1 holds. For every γ with
0 < γ < 1 there is a constant λ > 0 such that if µ(D(τ, R)) ≤ γµ(B(z, R)), then

inf
B(z,R/2)

u ≥ λτ.

The constant λ is independent of the ball B(z, R), and depends only on γ, the
constants related to the Poincaré inequality, the doubling property, and the constant
in the De Giorgi inequality satisfied by u.

Proof. Let −k > −h with h, k > 0. We apply (5.1) with u replaced by −u, k by
−k and h by −h respectively. This gives us

(h − k)µ(D(k, R)) ≤ cµ(B(z, R))1−1/q

·
( ∫

D(h,2τ ′R)

(h − u)p dµ
)1/p(

µ(D(h, τ ′R)) − µ(D(k, τ ′R))
)1/q−1/p

.

Then we follow the proof of Proposition 5.2 with m = τ and M = 0. As in (5.3)
we conclude that

νµ(D(2−(ν+1)τ, R))pq/(p−q) ≤ cµ(B(z, R))pq/(p−q)

for ν = 1, 2, . . . Hence we can choose ν large enough so that

µ(D(2−(ν+1)τ, R)) ≤ γ0µ(B(z, R)),

where γ0 is as in Lemma 6.1. The exponent ν is independent of the ball B(z, R)
and u. Now by Lemma 6.1, with τ replaced by 2−(ν+1)τ , we get

inf
B(z,R/2)

u ≥ 2−(ν+2)τ.

6.3. Remark. Suppose that B(z, 6R) ⊂ Ω and 0 < R ≤ diam(X)/18. If there exists
δ, 0 < δ < 1, so that

µ({x ∈ B(z, R) : u(x) ≥ τ}) ≥ δµ(B(z, R)),
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then by the doubling property we have

µ({x ∈ B(z, 6R) : u(x) ≥ τ}) ≥ δ

c3
d

µ(B(z, 6R)),

where cd ≥ 1 is the doubling constant of µ. Hence by Lemma 6.2 we have

(6.4) inf
B(z,3R)

u ≥ λτ,

where λ > 0 is as in Lemma 6.2. In particular, λ is independent of the ball B(z, R).
Clearly we may assume that 0 < λ < 1.

Note that if u is not a constant, for τ = maxB(z,R) u, then there is a number γ
with 0 < γ < 1 so that µ(D(τ, R)) ≤ γµ(B(z, R)). By Lemma 6.2 we conclude that

inf
B(z,R/2)

u ≥ λτ.

This proves that u > 0 on B(z, R/2). Thus we obtain the following strong maximum
principle for quasi-minimizers.

6.5. Corollary. Let Ω be an open subset of X and suppose that u is a non-
constant quasi-minimizer in Ω. Then u does not obtain its minimum or maximum
in Ω.

7. De Giorgi class and Harnack’s inequality

In this section we prove a weak Harnack inequality as in [DT], which together
with Theorem 4.10 implies the Harnack inequality.

7.1. Theorem. If −u ∈ DGp(Ω), u > 0, then there are σ > 0 and c > 0 such that

(7.2) inf
B(z,3R)

u ≥ c
(∫

B(z,R)

uσ dµ
)1/σ

for every ball B(z, R) such that B(z, 6R) ⊂ Ω with 0 < R ≤ diam(X)/18. The
constants σ and c are independent of the ball B(z, R).

We begin by proving the Krylov-Safonov covering theorem [KS] on a doubling
metric measure space.

7.3. Lemma. Let B(z, R) be a ball in X, and E ⊂ B(z, R) be µ-measurable. Let
0 < δ < 1, and define

Eδ =
⋃

ρ>0

{
B(y, 3ρ)∩ B(z, R) : y ∈ B(z, R), µ(E ∩ B(y, 3ρ)) > δµ(B(y, ρ))

}

Then, either Eδ = B(z, R), or else µ(Eδ) ≥ (cdδ)−1µ(E), where cd ≥ 1 is the
doubling constant of µ.

Proof. We define a maximal operator M : B(z, R) → R by setting

M(x) = sup
µ(E ∩ B(y, 3ρ))

µ(B(y, ρ))
,
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where the supremum is taken over all open balls B(y, ρ), with y ∈ B(z, R), such
that x ∈ B(y, 3ρ).

We claim that
Eδ = {x ∈ B(z, R) : M(x) > δ}

for every δ with 0 < δ < 1. To see this let x ∈ B(z, R) such that M(x) > δ. Then
there is a ball B(y, ρ), y ∈ B(z, R), such that µ(E ∩ B(y, 3ρ)) > δµ(B(y, ρ)) and
x ∈ B(y, 3ρ). This means that x ∈ Eδ. On the other hand, if x ∈ Eδ, there is ball
B(y, ρ), y ∈ B(z, R), such that µ(E ∩ B(y, 3ρ)) > δµ(B(y, ρ)) and x ∈ B(y, 3ρ).
This implies that M(x) > δ.

Suppose that B(z, R) \ Eδ 6= ∅. The set Eδ is open by definition. We cover Eδ

by balls B(x, rx), where x ∈ Eδ and rx = dist(x, B(z, R) \ Eδ)/2. By the Vitali
type covering lemma, see p. 69 in [CW], there are countably many pairwise disjoint
balls B(xi, ri), where ri = rxi

, i = 1, 2, . . . , such that

Eδ ⊂
∞⋃

i=1

B(xi, 5ri).

Then B(xi, 5ri) ∩ (B(z, R) \ Eδ) 6= ∅ for every i = 1, 2, . . . and there is a point
yi ∈ B(xi, 5ri) ∩ (B(z, R) \ Eδ). In particular, M(yi) ≤ δ, i = 1, 2, . . . Since
xi ∈ B(yi, 5ri), we conclude that

µ(E ∩ B(xi, 5ri)) ≤ δµ(B(xi,
5
3
ri)) ≤ cdδµ(B(xi, ri)),

where we also used the doubling property. If y is a density point of E, then

lim inf
ρ→0

µ(E ∩ B(y, 3ρ))
µ(B(y, ρ))

≥ lim
ρ→0

µ(E ∩ B(y, ρ))
µ(B(y, ρ))

= 1 > δ.

Since µ-almost every point of E is a density point, we observe that µ-almost every
point of E belongs to Eδ for every 0 < δ < 1. From this it follows that

µ(E) = µ(E ∩ Eδ) ≤
∞∑

i=1

µ(E ∩ B(xi, 5ri))

≤ cdδ
∞∑

i=1

µ(B(xi, ri)) ≤ cdδµ(Eδ).

The above inequality yields the desired result.

Proof of Theorem 7.1. Suppose that 0 < δ < 1 and λ, 0 < λ < 1, is the constant
in (6.4) corresponding to δ. Let t > 0 and denote

At,i =
{
x ∈ B(z, R) : u(x) ≥ tλi

}
, i = 0, 1, 2, . . .

We apply Lemma 7.3 with E = At,i−1. If there is a point x ∈ B(z, R) and ρ > 0
so that

µ(At,i−1 ∩ B(x, 3ρ)) ≥ δµ(B(x, ρ)),
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then
µ(At,i−1 ∩ B(x, 6ρ)) ≥ δ

c3
d

µ(B(x, 6ρ)),

and by Remark 6.3 we have
inf

B(x,3ρ)
u ≥ tλi.

Hence if B(x, 3ρ) is one of the balls going to make up the set Eδ in Lemma 7.3,
then B(x, 3ρ)∩ B(z, R) ⊂ At,i. This implies that Eδ ⊂ At,i. Hence by the Krylov-
Safonov covering theorem we conclude that

(7.4)
1

cdδ
µ(At,i−1) ≤ µ(Eδ) ≤ µ(At,i)

or At,i = B(z, R). Let 0 < δ < 1/cd. We choose an integer j ≥ 1 so that

(cdδ)j ≤ µ(At,0)/µ(B(z, R)) ≤ (cdδ)j−1.

Then by (7.4) we obtain

µ(At,j−1) ≥ 1
cdδ

µ(At,j−2) ≥ · · · ≥ 1
(cdδ)j−1

µ(At,0) ≥ cdδµ(B(z, R)).

By Remark 6.3 we see that
inf

B(z,3R)
u ≥ ctλj−1.

Here c is the constant in (6.4) corresponding the factor cdδ. This implies that

inf
B(z,3R)

u ≥ ctλj−1 = ct(cdδ)(j−1)(log λ)/ log(cdδ) ≥ ct
( µ(At,0)

µ(B(z, R))

)γ

,

where γ = log λ/ log(cdδ). Consequently we obtain the estimate

µ(At,0)
µ(B(z, R))

≤ ct−1/γ inf
B(z,3R)

u1/γ .

On the other hand, for σ > 0 we compute
∫

B(z,R)

uσ dµ =
σ

µ(B(z, R))

∫ ∞

0

tσ−1µ(At,0) dt

≤ σ

µ(B(z, R))

∫ ∞

ξ

tσ−1µ(At,0) dt + σ

∫ ξ

0

tσ−1 dt

≤ c

∫ ∞

ξ

tσ−1−1/γξ1/γ dt + ξσ,

where ξ = infB(z,3R) u. If σ < 1/γ, then
∫

B(z,R)

uσ dµ ≤ cξ1/γ(1/γ − σ)−1ξσ−1/γ + ξσ ≤ cξσ,

and hence

inf
B(z,3R)

u ≥ c
(∫

B(z,R)

uσ dµ
)1/σ

.

This completes the proof.
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Combining Theorem 4.10 (with Remark 4.11 (2)) and Theorem 7.1 we obtain
Harnack’s inequality.

7.5. Corollary. Suppose that u > 0, u ∈ DGp(Ω) and −u ∈ DGp(Ω). Then
there exists a constant c ≥ 1 so that

sup
B(z,R)

u ≤ c inf
B(z,R)

u

for every ball B(z, R) for which B(z, 6R) ⊂ Ω and 0 < R ≤ diam(X)/18. Here the
constant c is independent of the ball B(z, R) and function u.

In particular, by Proposition 3.9 Harnack’s inequality holds for nonnegative
quasi-minimizers and p-harmonic functions. We obtain Liouville’s theorem as a
consequence of the Harnack inequality: if X is unbounded and u is a p-harmonic
function on all of X, then either u is constant or it is unbounded.
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[GG1] M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals,

Acta Math. 148 (1982), 31–46.
[GG2] M. Giaquinta and E. Giusti, Quasi-minima, Annals l’Institut H. Poincaré: Anal. Non-
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[KKM] T. Kilpeläinen, J. Kinnunen and O. Martio, Sobolev spaces with zero boundary values on
metric spaces, Potential Anal. 12 (2000), 233–247.

[KoM] P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia

Math. 131 (1998), 1–17.
[KS] N.V. Krylov and M.V. Safonov, Certain properties of solutions of parabolic equations

with measurable coefficients (Russian), Izv. Akad. Nauk SSSR 40 (1980), 161-175.

[LU] O.A. Ladyzhenskaya and N.N. Ural’tseva, Linear and Quasilinear Elliptic Equations,
Academic Press, New York, 1968.
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