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Abstract. This work studies boundedness properties of the frac-
tional maximal operator on metric measure spaces under standard
assumptions on the measure. The main motivation is to show that
the fractional maximal operator has similar smoothing and map-
ping properties as the Riesz potential. Instead of the usual frac-
tional maximal operator, we also consider a so-called discrete max-
imal operator which has better regularity. We study the bounded-
ness of the discrete fractional maximal operator in Sobolev, Hölder,
Morrey and Campanato spaces. We also prove a version of the
Coifman-Rochberg lemma for the fractional maximal function.

1. Introduction

The fractional maximal function is a standard tool in partial differen-
tial equations, potential theory and harmonic analysis, see [2], [3] and
[4]. It is also closely related to the definition of the Morrey spaces. This
class of functions can be used, for example, to show that weak solutions
to certain partial differential equations are locally Hölder continuous.
Hölder continuity can also be characterized through the Campanato
spaces. For some values of parameters, Morrey and Campanato spaces
coincide, see [6], [22] and [25]. However, the main difference is that
the Morrey type condition gives a bound for the growth of the inte-
gral average of a function, but the Campanato type condition gives a
similar bound for the mean oscillation. Boundedness of the classical
operators in harmonic analysis in Morrey and Campanato spaces have
been studied in [6], [9] and [27].

This work studies boundedness properties of the fractional maximal
operator in Sobolev, Hölder, Morrey and Campanato spaces on metric
measure spaces. The main motivation is to show that the fractional
maximal operator has similar smoothing and mapping properties as
the Riesz potential, see [2], [3], [12], [13], [14], [24], [25] and [26]. Note
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that the Campanato estimates for the Riesz potentials do not imme-
diately imply the corresponding oscillation estimates for the fractional
maximal function. The Morrey estimates are probably known for the
experts at least in special cases, but the main contribution of this work
is to provide results in Sobolev, Hölder and Campanato spaces. There
is also an unexpected obstruction in the metric case, as the examples
in [8] show. Indeed, it may happen that even the standard Hardy-
Littlewood maximal function of a Lipschitz continuous function may
fail to be continuous. For this reason, we consider a so-called discrete
maximal function, which is constructed in terms of coverings and parti-
tions of unities as in [1], [18] and [20]. The discrete fractional maximal
function is comparable to the standard fractional maximal function
provided the measure is doubling. Hence for all practical purposes, it
does not matter which one we choose. However, the discrete maximal
function seems to behave better as far as regularity is concerned.

The main purpose of this work is to extend the Euclidean result with
the Lebesgue measure in [19] to metric measure spaces. We show that
under relatively mild conditions on the measure, the discrete fractional
maximal function of an Lp-function belongs to a Sobolev space. An-
other example of a smoothing property is shown by the result, that
the discrete fractional maximal operator maps Sobolev, Morrey and
Campanato spaces to a slightly better similar space. As a special case,
we obtain a result which implies that the discrete fractional maximal
operator maps Hölder continuous functions to Hölder continuous func-
tions with a better exponent. The example in [8] can be modified to
show that corresponding results do not hold for the standard fractional
maximal function. Our arguments also apply in a more general con-
text of spaces of homogeneous type, see [11], [13], [14], [15], [21], [22],
and [29], but we have chosen to work in the metric space setting for
expository purposes.

We discuss Lp-estimates for the fractional maximal function also in
the case when the measure is not necessarily doubling. This is closely
related to [28], [29] and [30]. The new aspects in our work compared
to earlier results, for example in [6] and [25], are that our main focus
is on the fractional maximal function instead of the standard Hardy-
Littlewood maximal function and we also consider Sobolev and Cam-
panato spaces. In addition, we prove a version of a result of Coifman
and Rochberg in [10] for the fractional maximal function. In the classi-
cal case the result states that the Hardy-Littlewood maximal function
raised to power γ, with 0 < γ < 1, is so-called Muckenhoupt’s A1-
weight provided it is finite almost everywhere. We show that the same
result holds true for the fractional maximal function even without tak-
ing the power.
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2. The fractional maximal function

We assume that X = (X, d, µ) is a separable metric measure space
equipped with a metric d and a Borel regular outer measure µ, which
satisfies 0 < µ(U) <∞ whenever U is nonempty, open and bounded.

The measure is doubling, if there is a fixed constant cd > 0, called a
doubling constant of µ, such that

(2.1) µ(B(x, 2r)) ≤ cdµ(B(x, r))

for every ball B(x, r) = {y ∈ X : d(y, x) < r}.
The doubling condition implies that

(2.2)
µ(B(y, r))

µ(B(x,R))
≥ C

( r
R

)Q
for every 0 < r ≤ R and y ∈ B(x,R) for some C and Q > 1 that only
depend on cd. In fact, we may take Q = log2 cd.

Throughout the paper, the characteristic function of a set E ⊂ X
is denoted as χE. In general, C will denote a positive constant whose
value is not necessarily the same at each occurrence. The integral
average of a function u ∈ L1(A) over a µ-measurable set A with finite
and positive measure is denoted by

uA =

∫
A

u dµ =
1

µ(A)

∫
A

u dµ.

Let 0 ≤ α ≤ Q. The fractional maximal function of u ∈ L1
loc(X) is

(2.3) Mα u(x) = sup
r>0

rα
∫
B(x,r)

|u| dµ.

For α = 0, we have the usual Hardy-Littlewood maximal function

Mu(x) = sup
r>0

∫
B(x,r)

|u| dµ.

By the Hardy-Littlewood maximal function theorem for doubling mea-
sures (see [11]), we see that the Hardy-Littlewood maximal operator
is bounded on Lp(X) when 1 < p ≤ ∞ and maps L1(X) to the weak
L1(X). In our definition, we consider balls that are centered at x, but
we obtain a noncentered maximal function by taking the supremum
over all balls containing x. For doubling measures, these maximal
functions are comparable and it does not matter which one we choose.

Another way to define the fractional maximal function is

(2.4) M̃αu(x) = sup
r>0

µ(B(x, r))α
∫
B(x,r)

|u| dµ,

where 0 ≤ α ≤ 1. If the measure is Ahlfors Q-regular, that is,

C−1rQ ≤ µ(B(x, r)) ≤ CrQ
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for every x ∈ X and r > 0, then Mα u and M̃α/Qu are comparable in
the sense that there exists a constant C ≥ 1, depending only on the
doubling constant, so that

C−1Mα u ≤ M̃α/Qu ≤ CMα u.

In case only the lower bound holds in the Alhfors regularity condi-
tion, then we say that the measure satisfies the measure lower bound
condition.

3. Lebesgue spaces

In this section, we study the action of fractional maximal operators
on Lp-spaces. We do not assume that µ is doubling. In this generality,
the Hardy-Littlewood maximal function theorem does not hold for the
standard maximal operator. Therefore, we consider a modified version
of the fractional maximal operator as in [28] and [30]. For κ ≥ 1, define

(3.1) Mκ
α u(x) = sup

r>0

rα

µ(B(x, κr))

∫
B(x,r)

|u| dµ

and

(3.2) M̃
κ

αu(x) = sup
r>0

µ(B(x, κr))α−1
∫
B(x,r)

|u| dµ.

When α = 0, we denote Mκ = Mκ
α = M̃

κ

α. Sawano [28] proved that
the estimates

(3.3) µ({x ∈ X :Mκ u(x) > λ}) ≤ λ−1‖u‖L1(X)

for every λ > 0 and

(3.4) ‖Mκ u‖Lp(X) ≤ C‖u‖Lp(X),

1 < p ≤ ∞, hold if κ ≥ 2. He also showed that they are not true, in
general, if 1 ≤ κ < 2.

Using these estimates and some simple pointwise inequalities, we ob-
tain Sobolev type theorems for modified fractional maximal operators
(3.1) and (3.2).

Theorem 3.1. Let 0 ≤ α < 1. Then

(3.5) µ({x ∈ X : M̃
2

αu(x) > λ}) ≤
(
λ−1‖u‖L1(X)

)1/(1−α)
for every λ > 0 and u ∈ L1(X).

Proof. Fix x ∈ X. Then for every ball B(x, r), we have

µ(B(x, 2r))α−1
∫
B(x,r)

|u| dµ

=

(
1

µ(B(x, 2r))

∫
B(x,r)

|u| dµ
)1−α(∫

B(x,r)

|u| dµ
)α

≤
(
M2 u(x)

)1−α ‖u‖αL1(X),
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which implies that

M̃
2

αu(x) ≤
(
M2 u(x)

)1−α ‖u‖αL1(X).

Using this and (3.3), we obtain (3.5). �

The proof of the following bound for the modified fractional maximal
function is similar to [16].

Theorem 3.2. Let p > 1 and αp ≤ 1. Then

‖M̃
2

αu‖Lp/(1−αp)(X) ≤ C‖u‖Lp(X)

for every u ∈ Lp(X).

Proof. Let x ∈ X. Using Hölder’s inequality, we have

µ(B(x, 2r))α−1
∫
B(x,r)

|u| dµ

= µ(B(x, 2r))α−1
(∫

B(x,r)

|u| dµ
)αp(∫

B(x,r)

|u| dµ
)1−αp

≤ µ(B(x, 2r))α−1µ(B(x, r))(1−1/p)αp‖u‖αpLp(X)

(∫
B(x,r)

|u| dµ
)1−αp

≤ ‖u‖αpLp(X)

(
µ(B(x, 2r))−1

∫
B(x,r)

|u| dµ
)1−αp

≤ ‖u‖αpLp(X)

(
M2 u(x)

)1−αp
,

for every ball B(x, r), which implies that

M̃
2

αu(x) ≤ ‖u‖αpLp(X)

(
M2 u(x)

)1−αp
.

Using this and (3.4), we obtain

‖M̃
2

αu‖Lp/(1−αp)(X) ≤ ‖u‖
αp
Lp(X)

∥∥∥(M2 u
)1−αp∥∥∥

Lp/(1−αp)(X)

= ‖u‖αpLp(X)

∥∥M2 u
∥∥1−αp
Lp(X)

≤ C‖u‖Lp(X).

�

If the measure lower bound condition holds, then

Mκ
α u ≤ CM̃

κ

α/Qu,

where the constant C depends on α, κ and on the constant of the lower
bound condition. Thus, Theorems 3.1 and 3.2 imply the following
results.
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Theorem 3.3. Assume that the measure lower bound condition holds.
Let 0 < α < Q. Then there is a constant C > 0, depending only on the
constant in the measure lower bound and α, such that

µ({M2
α u > λ}) ≤ C

(
λ−1‖u‖L1(X)

)Q/(Q−α)
,

for every λ > 0 and u ∈ L1(X).

Theorem 3.4. Assume that the measure lower bound condition holds.
Let p > 1 and assume that 0 < α ≤ Q/p. Then there is a constant
C > 0, depending only on the constant of the measure lower bound
condition, p and α, such that

‖M2
α u‖Lp∗ (X) ≤ C‖u‖Lp(X),

for every u ∈ Lp(X) with p∗ = Qp/(Q− αp).

Observe, that if the measure is doubling, then the results in this
section hold for the standard maximal functions with κ = 1.

4. Morrey spaces

In this section, we study the behaviour of the fractional maximal
operator on Morrey spaces. Let 1 ≤ p < ∞ and β ∈ R. A function
u ∈ L1

loc(X) belongs to the Morrey space Mp,β,κ(X), if

‖u‖Mp,β,κ(X) = sup r−β
( 1

µ(B(x, κr))

∫
B(x,r)

|u|p dµ
)1/p

<∞,

where the supremum is taken over all x ∈ X and r > 0, see [24].
Observe, that for β ≤ 0, this is equivalent to the requirement

Mκ
−βp(|u|p) ∈ L∞(X).

A result of Chiarenza and Frasca [9] says that the Hardy-Littlewood
maximal operator is bounded on Mp,β,1(Rn), when p > 1. This was
extended to nondoubling metric space setting in [24], where it was
shown that

(4.1) ‖M2 u‖Mp,β,4(X) ≤ C‖u‖Mp,β,2(X),

for p > 1.
Our next result is a Sobolev type inequality for the modified frac-

tional maximal operator acting on Morrey spaces. This could be de-
duced from the corresponding result for the Riesz potential, see [24],
but we provide a simple direct proof.

Theorem 4.1. Let α > 0 and α + β < 0. Let u ∈ Mp,β,2(X) with
1 < p <∞. Then there is a constant C > 0, depending only p, α and
β, such that

‖M2
α u‖Mp/(1+α/β),α+β,4(X) ≤ C‖u‖Mp,β,2(X).
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Proof. Let α > 0. Let x ∈ X and r > 0. Using Hölder’s inequality, we
have

rα

µ(B(x, 2r))

∫
B(x,r)

|u| dµ

=
( 1

µ(B(x, 2r))

∫
B(x,r)

|u| dµ
)1+α/β( r−β

µ(B(x, 2r))

∫
B(x,r)

|u| dµ
)−α/β

≤
(
M2 u(x)

)1+α/β‖u‖−α/βMp,β,2(X)
.

Because the right-hand side above does not depend on r, we obtain

M2
α u(x) ≤

(
M2 u(x)

)1+α/β‖u‖−α/βMp,β,2(X)
.

Using this and (4.1), we obtain

r−(α+β)
( 1

µ(B(x, 4r))

∫
B(x,r)

(
M2

α u
)p/(1+α/β)

dµ
)(1+α/β)/p

≤
(
r−β
( 1

µ(B(x, 4r))

∫
B(x,r)

(M2 u)pdµ
)1/p)1+α/β

‖u‖−α/βMp,β,2(X)

≤ ‖M2 u‖1+α/βMp,β,4(X)
‖u‖−α/βMp,β,2(X)

≤ C‖u‖Mp,β,2(X).

�

Remark 4.2. If we define the Morrey space with the norm

‖u‖
M̃

p,β,κ
(X)

= supµ(B(x, κr))−β
( 1

µ(B(x, κr))

∫
B(x,r)

|u|p dµ
)1/p

,

where the supremum is taken over all x ∈ X and r > 0, then the same
proof as above gives

‖M̃
2

αu‖M̃p/(1+α/β),α+β,4
(X)
≤ C‖u‖

M̃
p,β,2

(X)
.

5. The discrete fractional maximal function

From now on, we assume that the measure is doubling. We begin
the construction of the discrete maximal function with a covering of
the space. Let r > 0. Since the measure is doubling, there are balls
B(xi, r), i = 1, 2, . . . , such that

X =
∞⋃
i=1

B(xi, r) and
∞∑
i=1

χB(xi,6r) ≤ N <∞.

This means that the dilated balls B(xi, 6r), i = 1, 2, . . . , are of bounded
overlap. The constant N depends only on the doubling constant and,
in particular, it is independent of r.

Then we construct a partition of unity subordinate to the covering
B(xi, r), i = 1, 2, . . . , of X. Indeed, there is a family of functions ϕi,
i = 1, 2, . . . , such that 0 ≤ ϕi ≤ 1, ϕi = 0 in X \ B(xi, 6r), ϕi ≥ ν in
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B(xi, 3r), ϕi is Lipschitz with constant L/r with ν and L depending
only on the doubling constant, and

∞∑
i=1

ϕi(x) = 1

for every x ∈ X.
The discrete convolution of u ∈ L1

loc(X) at the scale 3r is

ur(x) =
∞∑
i=1

ϕi(x)uB(xi,3r)

for every x ∈ X, and we write uαr = rαur. Observe that the kernel of
the integral operator in the definition of the discrete convolution is not
symmetric. Coverings, partitions of unity and discrete convolutions are
standard tools in harmonic analysis on metric measure spaces, see [11]
and [21].

Let rj, j = 1, 2, . . . be an enumeration of the positive rationals and
let balls B(xi, rj), i = 1, 2, . . . be a covering of X as above. The discrete
fractional maximal function of u in X is

M∗
α u(x) = sup

j
|u|αrj(x)

for every x ∈ X. For α = 0, we obtain the Hardy-Littlewood type
discrete maximal function studied in [1], [18] and [20]. Observe that
the construction depends on the choice of the coverings, but our goal
is to derive estimates that are independent of the chosen coverings.

The discrete fractional maximal function is comparable to the stan-
dard fractional maximal function. The proof is similar as for dis-
crete maximal function and Hardy-Littlewood maximal function in [18,
Lemma 3.1].

Lemma 5.1. Assume that the measure is doubling. Let u ∈ L1
loc(X).

Then there is a constant C ≥ 1, depending only on the doubling con-
stant, such that

C−1Mα u(x) ≤M∗
α u(x) ≤ CMα u(x)

for every x ∈ X.

Proof. We begin by proving the second inequality. Let x ∈ X and
rj be a positive rational number. Since ϕi = 0 on X \ B(xi, 6rj) and
B(xi, 3rj) ⊂ B(x, 9rj) for every x ∈ B(xi, 6rj), we have by the doubling
condition that

|u|αrj(x) = rαj

∞∑
i=1

ϕi(x)|u|B(xi,3rj)

≤ rαj

∞∑
i=1

ϕi(x)
µ(B(x, 9rj))

µ(B(xi, 3rj))

∫
B(x,9rj)

|u| dµ ≤ CMα u(x),
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where C depends only on the doubling constant. The required inequal-
ity follows by taking the supremum on the left side.

To prove the first inequality, we observe that for each x ∈ X there
exists i = ix such that x ∈ B(xi, rj). This implies that B(x, rj) ⊂
B(xi, 2rj) and hence

rαj

∫
B(x,rj)

|u| dµ ≤ Crαj

∫
B(xi,3rj)

|u| dµ

≤ Crαj ϕi(x)

∫
B(xi,3rj)

|u| dµ ≤ CM∗
α u(x),

where C depends only on the doubling constant. In the second inequal-
ity, we used the fact that ϕi ≥ ν on B(xi, rj). Again the claim follows
by taking the supremum on the left side. �

Since the discrete and the standard maximal functions are compa-
rable, the Sobolev and the weak type estimates hold for the discrete
fractional maximal function as well, see Theorem 3.4 and Theorem 3.3.

6. Sobolev spaces

A nonnegative Borel function g on X is said to be an upper gradient
of a function u : X → [−∞,∞], if for all rectifiable paths γ : [0, 1]→ X,
we have

(6.1) |u(γ(0))− u(γ(1))| ≤
∫
γ

g ds,

whenever both u(γ(0)) and u(γ(1)) are finite, and
∫
γ
g ds = ∞ oth-

erwise. The assumption that g is a Borel function is needed in the
definition of the path integral. If g is merely a µ-measurable function
and (6.1) holds for p-almost every path, then g is said to be a p-weak
upper gradient of u. By saying that (6.1) holds for p-almost every path
we mean that it fails only for a path family with zero p-modulus. A
family Γ of curves is of zero p-modulus if there is a non-negative Borel
measurable function ρ ∈ Lp(X) such that for all curves γ ∈ Γ, the path
integral

∫
γ
ρ ds is infinite. If we redefine a p-weak upper gradient on

a set of measure zero we obtain an upper gradient of the same func-
tion. If g is a p-weak upper gradient of u, then there is a sequence gi,
i = 1, 2, . . . , of upper gradients of u such that∫

X

|gi − g|p dµ→ 0

as i → ∞. Hence every p-weak upper gradient can be approximated
by upper gradients in the Lp(X)-norm. If u has an upper gradient
that belongs to Lp(X) with p ≥ 1, then it has a minimal p-weak upper
gradient gu in the sense that for every p-weak upper gradient g of u,
gu ≤ g almost everywhere.
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We define the first order Sobolev spaces on the metric space X using
the p-weak upper gradients. These spaces are called Newtonian spaces.
For u ∈ Lp(X), let

‖u‖N1,p(X) =
(∫

X

|u|p dµ+ inf
g

∫
X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,
where u ∼ v if and only if ‖u − v‖N1,p(X) = 0. The same definition
applies to subsets of X as well. The notion of a p-weak upper gradient
is used to prove that N1,p(X) is a Banach space. For the properties of
Newtonian spaces, we refer to [7], [31] and [32].

We say that X supports a (weak) (1, p)-Poincaré inequality if there
exist constants c > 0 and τ ≥ 1 such that for all balls B(x, r) ⊂ X,
for all locally integrable functions u on X and for all p-weak upper
gradients g of u,

(6.2)

∫
B(x,r)

|u− uB(x,r)| dµ ≤ cr
(∫

B(x,τr)

gp dµ
)1/p

.

Note that since p-weak upper gradients can be approximated by up-
per gradients in the Lp(X)-norm, it would be enough to require the
Poincaré inequality for upper gradients only.

By Hölder’s inequality it is easy to see that if X supports a (1, p)-
Poincaré inequality, then it supports a (1, q)-Poincaré inequality for
every q > p. It is shown in [17], that if X is complete and µ doubling,
then a (1, p)-Poincaré inequality implies a (1, p′)-Poincaré inequality for
some p′ < p. Hence the (1, p)-Poincaré inequality is a self improving
condition.

The following Sobolev type theorem is a generalization of the main
result of [19] to the metric setting. It shows that the discrete fractional
maximal operator is a smoothing operator. More precisely, the dis-
crete fractional maximal function of an Lp-function has a weak upper
gradient and both u and the weak upper gradient belong to a higher
Lebesgue space than u.

We use the following simple fact in the proof: Suppose that ui, i =
1, 2, . . . , are functions and gi, i = 1, 2, . . . , are p-weak upper gradients
of ui, respectively. Let u = supi ui and g = supi gi. If u is finite almost
everywhere, then g is a p-weak upper gradient of u. For the proof, we
refer to [7].

Theorem 6.1. Assume that the measure is doubling and that the mea-
sure lower bound condition holds. Assume that u ∈ Lp(X) with 1 <
p < Q. Let

1 ≤ α < Q/p, p∗ = Qp/(Q− αp) and q = Qp/(Q− (α− 1)p).
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Then M∗
α−1 u is a weak upper gradient of M∗

α u. Moreover, there is a
constant C > 0, depending only on the doubling constant, the constant
in the measure lower bound, p and α, such that

‖M∗
α u‖Lp∗ (X) ≤ C‖u‖Lp(X) and ‖M∗

α−1 u‖Lq(X) ≤ C‖u‖Lp(X).

Proof. We begin by considering |u|αr . By Lemma 5.1, we have

|u|αr (x) = rα|u|r(x) ≤M∗
α u(x) ≤ CMα u(x)

for every x ∈ X. Then we consider the weak upper gradient of |u|αr .
Since

|u|αr (x) = rα
∞∑
i=1

ϕi(x)|u|B(xi,3r),

each ϕi is L/r-Lipschitz continuous and has a support in B(xi, 6r), the
function

gr(x) = Lrα−1
∞∑
i=1

|u|B(xi,3r)
χB(xi,6r)(x)

is a weak upper gradient of |u|αr . If x ∈ B(xi, r), then B(xi, 3r) ⊂
B(x, 9r) ⊂ B(xi, 15r) and

|u|B(xi,3r) ≤ C

∫
B(x,9r)

|u| dµ.

The bounded overlap property of the balls B(xi, 6r), i = 1, 2, . . . , im-
plies that

gr(x) ≤ Crα−1
∫
B(x,9r)

|u| dµ ≤ CMα−1 u(x) ≤ CM∗
α−1 u(x)

and consequently M∗
α−1 u is a weak upper gradient of |u|αr as well.

By Lemma 5.1 and Theorem 3.4,M∗
α u belongs to Lp

∗
(X) and hence

M∗
α u is finite almost everywhere. As

M∗
α u(x) = sup

j
|u|αrj(x),

and becauseM∗
α−1 u is an upper gradient of |u|αrj for every j = 1, 2, . . . ,

we conclude that it is an upper gradient of M∗
α u as well. The norm

bounds follow from Theorem 3.4. �

Remark 6.2. With the assumptions of Theorem 6.1,M∗
α u ∈ N

1,q
loc (X)

and

‖M∗
α u‖N1,q(A) ≤ µ(A)1/q−1/p

∗‖u‖Lp(A)
for all open sets A ⊂ X with µ(A) <∞.

Next we study the behavour of the discrete fractional maximal func-
tion in Newtonian spaces. The first result shows that if the function
u is a Sobolev function, then its discrete fractional maximal function
belongs to a Sobolev space with the Sobolev conjugate exponent.
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Theorem 6.3. Assume that the measure is doubling and that the mea-
sure lower bound condition holds and that X is a complete metric space
which supports a (1, p)-Poincaré inequality with 1 < p < ∞. Assume
that u ∈ N1,p(X) and that 0 < α < Q/p. Then M∗

α u ∈ N1,p∗(X) with
p∗ = Qp/(Q − αp). Moreover, there is a constant C > 0, depending
only on the doubling constant, the constant in the measure lower bound,
p and α, such that

‖M∗
α u‖N1,p∗ (X) ≤ C‖u‖N1,p(X).

Proof. Let u ∈ N1,p(X) and let g ∈ Lp(X) be a weak upper gradient
of u. By Theorem 3.4, we have

‖M∗
α u‖Lp∗ (X) ≤ C‖u‖Lp(X).

For the weak upper gradient, let x, y ∈ B(xj, r), and let

Ij = {i : B(xi, 6r) ∩B(xj, r) 6= ∅}.
By the bounded overlap of the balls B(xi, 6r), the set Ij is finite and the
cardinality does not depend on j. By the L/r-Lipschitz continuity of
functions ϕi and by the (1, p′)-Poincaré inequality, which follows from
the (1, p)-Poincaré inequality for some 1 < p′ < p, we have∣∣|u|αr (x)− |u|αr (y)

∣∣ = rα
∣∣∣ ∞∑
i=1

(
|u|B(xi,3r) − |u|B(xj ,3r)

)
(ϕi(x)− ϕi(y))

∣∣∣
≤ Crα−1 d(x, y)

∑
i∈Ij

∣∣|u|B(xi,3r) − |u|B(xj ,3r)

∣∣
≤ Crα−1 d(x, y)

∫
B(xj ,10r)

∣∣|u| − |u|B(xj ,10r)

∣∣ dµ
≤ Crα d(x, y)

(∫
B(xj ,10λr)

gp
′
dµ
)1/p′

.

Since the pointwise Lipschitz constant of a function is a weak upper
gradient, we see that

gr(x) = Crα
∞∑
j=1

(∫
B(xj ,10λr)

gp
′
dµ
)1/p′

χB(xj ,6r)(x)

is a weak upper gradient of |u|αr . Moreover, by the bounded overlap of
the balls,

gr(x) ≤ C
∞∑
j=1

(
rαp

′
∫
B(xj ,10λr)

gp
′
dµ
)1/p′

χB(xj ,6r)(x)

≤ C
(
M∗

αp′ g
p′(x)

)1/p′
.

By the same argument as in the proof of Theorem 6.1, we conclude that(
M∗

αp′ g
p′
)1/p′

is a weak upper gradient of M∗
α u. Since gp

′ ∈ Lp/p′(X)
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and p/p′ > 1, Theorem 3.4 implies that∥∥(M∗
αp′ g

p′
)1/p′∥∥

Lp∗ (X)
≤ C‖g‖Lp(X)

and the claim follows. �

7. Campanato spaces

In this section, we study the behaviour of the discrete fractional
maximal operator on Campanato spaces. Let 1 ≤ p < ∞ and β ∈ R.
A function u ∈ L1

loc(X) belongs to the Campanato space Lp,β(X), if

‖u‖Lp,β(X) = sup r−β
(∫

B(x,r)

|u− uB(x,r)|p dµ
)1/p

<∞.

Here the supremums is taken over all x ∈ X and r > 0. We denote
the standard Morrey space as Mp,β(X) = Mp,β,1(X). Observe, that
‖ · ‖Mp,β(X) is a norm in the Morrey space, but ‖ · ‖Lp,β(X) is merely a
seminorm in the Campanato space.

Morrey spaces, Campanato spaces, functions of bounded mean oscil-
lation (BMO) and functions in C0,β(X) have the following connections,
see [5], [6], [22], [23], [25] and [27].

• Mp,β(X) ⊂ Lp,β(X),
• Lp,β(X) = Mp,β(X) if −Q/p < β < 0 (here we identify func-

tions that differ only by an additive constant),
• L1,0(X) = BMO(X), and
• Lp,β(X) = C0,β(X) if 0 < β ≤ 1.

Recall that u ∈ C0,β(X) means that u is a Hölder continuous function
with exponent 0 < β ≤ 1, that is,

|u(x)− u(y)| ≤ C d(x, y)β

for all x, y ∈ X.
The following technical lemma will be useful for us.

Lemma 7.1. Assume that the measure is doubling. Assume that u ∈
Lp,β(X). Let x ∈ X, 0 < 2r < R and y ∈ B(x, 2R). If β < 0, then

(7.1) |uB(y,r) − uB(x,R)| ≤ Crβ‖u‖Lp,β(X).

If β = 0, then

(7.2) |uB(y,r) − uB(x,R)| ≤ C log
6R

r
‖u‖Lp,0(X).

The constant C depends only on the doubling constant.
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Proof. Let k be the smallest index such that 2kr ≥ 3R. Then B(x,R) ⊂
B(y, 2kr) and

|uB(y,r) − uB(x,R)|

≤
k∑
i=1

|uB(y,2ir) − uB(y,2i−1r)|+ |uB(y,2kr) − uB(x,R)|

≤
k∑
i=1

∫
B(y,2i−1r)

|u− uB(y,2ir)| dµ+

∫
B(x,R)

|u− uB(y,2kr)| dµ

≤ C
k∑
i=1

∫
B(y,2ir)

|u− uB(y,2ir)| dµ+ C

∫
B(y,2kr)

|u− uB(y,2kr)| dµ

≤ Crβ‖u‖Lp,β(X)

( ∞∑
i=1

2iβ + 2kβ
)
≤ Crβ‖u‖Lp,β(X),

where C depends only on the doubling constant and the sum converges
since β < 0. This proves (7.1).

The proof of (7.2) is quite similar. Indeed, by the choice of k, we
have 2kr ≤ 6R and consequently

|uB(y,r) − uB(x,R)|

≤ C
k∑
i=1

∫
B(y,2ir)

|u− uB(y,2ir)| dµ+ C

∫
B(y,2kr)

|u− uB(y,2kr)| dµ

≤ Ck‖u‖Lp,0(X) ≤ C log
6R

r
‖u‖Lp,0(X).

�

The next results show that the fractional maximal function of a
Hölder continuous function is Hölder continuous with a better exponent
or a Lipschitz function. A similar result for the fractional integral
operator can be found in [13], [14]. Recall, that Lp,β(X) = C0,β(X) for
0 < β ≤ 1 .

Theorem 7.2. Assume that the measure is doubling. Let u ∈ C0,β(X)
with 0 < β ≤ 1. If α + β ≤ 1, then M∗

α u ∈ C0,α+β(X).

Proof. Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X.
Assume first that d(x, y) > r. Then

∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

(
|u(x)− u(y)|+

∞∑
i=1

ϕi(x)
∣∣|u|B(xi,3r) − |u(x)|

∣∣
+
∞∑
i=1

ϕi(y)
∣∣|u|B(xi,3r) − |u(y)|

∣∣).
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In the first sum, ϕi(x) 6= 0 only if x ∈ B(xi, 6r). For such i, by the
Hölder continuity of u, we have∣∣|u|B(xi,3r) − |u(x)|

∣∣ ≤∫
B(xi,3r)

|u(z)− u(x)| dµ ≤ Crβ.

A similar estimate holds for terms of the second sum when y ∈ B(xi, 6r).
The bounded overlap of the balls B(xi, 6r), i = 1, 2, . . . , and the Hölder
continuity of u imply that∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ Crα
(

d(x, y)β + rβ
)
≤ C d(x, y)α+β.

Assume then that d(x, y) ≤ r. Now∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

( ∞∑
i=1

|ϕi(x)− ϕi(y)|
∣∣|u|B(xi,3r) − |u(x)|

∣∣),
where ϕi(x) − ϕi(y) 6= 0 only if x ∈ B(xi, 6r) or y ∈ B(xi, 6r). If y ∈
B(xi, 6r), then the assumption d(x, y) ≤ r implies that x ∈ B(xi, 7r).
Hence for such i, as above,∣∣|u|B(xi,3r) − |u(x)|

∣∣ ≤ Crβ.

By the L/r-Lipschitz-continuity of the functions ϕi and the bounded
overlap of the balls B(xi, 6r), we have∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ Crα d(x, y)rβ−1,

where, if α + β ≤ 1,

rα d(x, y)rβ−1 ≤ d(x, y)α+β.

The claim for |u|αr follows from this.
Then we prove the claim forM∗

α u. We may assume thatM∗
α u(x) ≥

M∗
α u(y). Let ε > 0 and let rε > 0 such that

|u|αrε(x) >M∗
α u(x)− ε.

Then, by the first part of the proof,

M∗
α u(x)−M∗

α u(y) ≤ |u|αrε(x)− |u|αrε(y) + ε ≤ C d(x, y)α+β + ε,

if α + β < 1. By letting ε→ 0, we obtain

|M∗
α u(x)−M∗

α u(y)| ≤ C d(x, y)α+β.

�

According to the next result, the fractional maximal operator maps
functions in Campanato spaces to Hölder continuous functions. For a
related result concerning the fractional integral operator, see [26].

Theorem 7.3. Assume that the measure is doubling. Let α > 0, 0 ≤
α + β ≤ 1 and let u ∈ Lp,β(X). Then there is a constant C > 0,
depending only on the doubling constant p and α and β, such that

‖M∗
α u‖C0,α+β(X) ≤ C‖u‖Lp,β(X).
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Proof. Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X.
Assume first that r < d(x, y). Let B = B(x, 4 d(x, y)). Then∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ ∣∣|u|αr (x)− rα|u|B
∣∣+
∣∣rα|u|B − |u|αr (y)

∣∣
≤ rα

( ∞∑
i=1

ϕi(x)
∣∣|u|B(xi,3r) − |u|B

∣∣+
∞∑
i=1

ϕi(y)
∣∣|u|B(xi,3r) − |u|B

∣∣).
In the first sum, ϕi(x) 6= 0 only if x ∈ B(xi, 6r) and in the second sum,
only if y ∈ B(xi, 6r). If β < 0, we use the bounded overlap of the balls
B(xi, 6r), i = 1, 2, . . . and (7.1) and we have∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ Crα+β‖u‖Lp,β(X) ≤ C d(x, y)α+β‖u‖Lp,β(X).

Similarly, if β = 0, estimate (7.2) implies that∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ Crα log

C d(x, y)

r
‖u‖Lp,β(X)

= C d(x, y)α
( r

C d(x, y)

)α
log

C d(x, y)

r
‖u‖Lp,β(X)

≤ C d(x, y)α‖u‖Lp,β(X).

If r ≥ d(x, y), then∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

( ∞∑
i=1

|ϕi(x)− ϕi(y)
∣∣|u|B(xi,3r) − |u|B(x,10r)

∣∣)
≤ Crα+β−1 d(x, y)‖u‖Lp,β(X)

≤ C d(x, y)α+β‖u‖Lp,β(X).

The claim for M∗
α u follows as in the proof of Theorem 7.2.

If β > 0, then Lp,β(X) = C0,β(X) and the result follows from Theo-
rem 7.2. This completes the proof. �

8. The Coifman-Rochberg lemma

By the classical theorem by Coifman and Rochberg [10], (Mu)γ, the
Hardy-Littlewood maximal function of u raised to any power 0 < γ < 1,
is a Muckenhoupt A1-weight wheneverMu is finite almost everywhere.
This means that there exists a constant C such that∫

B(x,r)

(Mu)γ dµ ≤ C ess inf
B(x,r)

(Mu)γ

for every ball B(x, r) in X. See also [6] and [33] for the corresponding
result in the metric setting with a doubling measure. For the fractional
maximal function, we obtain the result even without taking the power.
In this section, we consider the uncentered fractional maximal function,
which is comparable to the centered fractional maximal function.
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Theorem 8.1. Let 0 < α < Q. Assume that u ∈ L1
loc(X) is such

that Mα u is finite almost everywhere. Then Mα u is a Muckenhoupt
A1-weight, that is,∫

B(x,r)

Mα u dµ ≤ C ess inf
B(x,r)

Mα u

for every ball B(x, r) in X. The constant C does not depend on u.

Proof. Let B(x0, r) ⊂ X be a ball. We have to show that

(8.1)

∫
B(x0,r)

Mα u dµ ≤ CMα u(x)

for almost all x ∈ B(x0, r). We divide |u| in two parts by setting
v1 = |u|χB(x0,3r) and v2 = |u|χX\B(x0,3r). Then, for each x ∈ B(x0, r),
we have

(8.2) Mα u(x) ≤Mα v1(x) +Mα v2(x).

Since we also have that

(8.3) Mα vi(x) ≤Mα u(x)

for i = 1, 2, it suffices to prove inequality (8.1) for v1 and v2.
Let x ∈ B(x0, r). Then∫

B(x0,r)

Mα v1 dµ

=
1

µ(B(x0, r))

∫ ∞
0

µ
(
{y ∈ B(x0, r) :Mα v1(x) > λ}

)
dλ

=
1

µ(B(x0, r))

(∫ a

0

+

∫ ∞
a

)
,

where a > 0 will be determined later. For the first integral, we use a
trivial estimate

1

µ(B(x0, r))

∫ a

0

µ
(
{x ∈ B(x0, r) :Mα v1(x) > λ}

)
dλ ≤ a.

For the second integral, we use Theorem 3.3 and obtain∫ ∞
a

µ
(
{x ∈ B(x0, r) :Mα v1(x) > λ}

)
dλ

≤ C

∫ ∞
a

(‖v1‖1
λ

)Q/(Q−α)
dλ

≤ C‖v1‖Q/(Q−α)1

Q− α
α

λ−α/(Q−α),

and hence ∫
B(x0,r)

Mα v1 dµ ≤ a+ C
‖v1‖Q/(Q−α)1

µ(B(x0, r))
λ−α/(Q−α).
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By choosing

a =
‖v1‖1

µ(B(x0, r))1−α/Q
,

we obtain∫
B(x0,r)

Mα v1 dµ ≤ C
‖v1‖1

µ(B(x0, r))1−α/Q

=
C

µ(B(x0, r))1−α/Q

∫
B(x0,3r)

v1 dµ ≤ CMα v1(x).

Inequality (8.1) for v2 follows immediately if we can show that

Mα v2(y) ≤ CMα v2(x)

for all y ∈ B(x0, r). Let y ∈ B(x0, r) and let B(x′, r′) be a ball such
that y ∈ B(x′, r′) and B(x′, r′)∩ (X \B(x0, 3r)) 6= ∅. Then B(x0, r) ⊂
B(x′, 3r′). Using the doubling property of µ and the fact that x ∈
B(x′, 3r′), we obtain

1

µ(B(x′, r′))1−α/Q

∫
B(x′,r′)

v2 dµ ≤ C
1

µ(B(x′, 3r′))1−α/Q

∫
B(x′,3r′)

v2 dµ

≤ CMα v2(x).

The claim follows because the right-hand side does not depend on y.
To complete the proof, we use (8.2), the estimates above and (8.3)

to obtain∫
B(x0,r)

Mα u dµ ≤ CMα v1(x) + CMα v2(x) ≤ CMα u(x).

�

Remark 8.2. Under the assumptions of the previous theorem, we also
have ∫

B(x,r)

(Mα u)γ dµ ≤ C ess inf
B(x,r)

(Mα u)γ

for 0 < γ ≤ 1 by Hölder’s inequality.
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