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Abstract. We discuss the action of so-called discrete maximal
operators on Sobolev, Hölder and Campanato spaces on metric
measure spaces equipped with a doubling measure and a Poincaré
inequality. The discrete maximal operators have better regularity
properties than the standard maximal operators and hence they
are more flexible tools in the metric context.

1. Introduction

By the maximal function theorem of Hardy, Littlewood and Wiener,
the Hardy-Littlewood maximal operator is bounded on Lp-spaces when
1 < p ≤ ∞. Fot p = 1, there is a corresponding weak type estimate.
The action of the maximal operator on some other function spaces is
rather well understood as well. This note discusses boundedness prop-
erties of maximal operators in Sobolev, Hölder and Campanato spaces
defined on metric measure spaces. The emphasis is on oscillation es-
timates for the maximal functions. In the Euclidean case, many of
these estimates follow from the fact that the maximal operator com-
mutes with translations or that the underlying space is linear, see [2],
[6], [10], [12] and [14]. Clearly this property is not available in the
metric context. There is also an unexpected obstruction in the metric
case, as the examples in [4] show. Indeed, it may happen that even the
standard Hardy-Littlewood maximal function of a Lipschitz continu-
ous function may fail to be continuous. For this reason, we consider
so-called discrete maximal functions, which are constructed in terms
of coverings and partitions of unities. The discrete fractional maximal
functions are comparable to the standard ones provided the measure
is doubling. Hence for all practical purposes, it does not matter which
one we choose. The main advantage is that the discrete maximal func-
tions seem to behave better as far as regularity is concerned. This note
is based on the original research articles [1], [2], [7], [11] and [15]. Most
of the proofs can be found in these references, but we discuss some new
aspects and represent some of the arguments here.
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2. Preliminaries

2.1. Doubling measures. Let X = (X, d, µ) be a complete metric
space endowed with a metric d and a Borel regular measure µ such
that 0 < µ(B(x, r)) <∞ for all open balls

B(x, r) = {y ∈ X : d(y, x) < r}
with r > 0.

The measure µ is said to be doubling, if there exists a constant cµ ≥ 1,
called the doubling constant of µ, such that

µ(B(x, 2r)) ≤ cµµ(B(x, r)),

for all x ∈ X and r > 0. Note that an iteration of the doubling property
implies, that if B(x,R) is a ball in X, y ∈ B(x,R) and 0 < r ≤ R <∞,
then

µ(B(y, r))

µ(B(x,R))
≥ c
( r
R

)Q
(2.1)

for some c = c(cµ) and Q = log cµ/ log 2. The exponent Q serves as a
counterpart of dimension related to the measure.

The measure is Ahlfors Q-regular, if

c−1rQ ≤ µ(B(x, r)) ≤ crQ

for every x ∈ X and 0 < r ≤ diam(X). In case only the lower bound
holds in the Alhfors regularity condition, then we say that the measure
satisfies the measure lower bound condition.

2.2. Upper gradients. A nonnegative Borel function g on X is said
to be an upper gradient of a function u : X → [−∞,∞], if for all
rectifiable paths γ : [0, 1]→ X we have

|u(γ(0))− u(γ(1))| ≤
∫
γ

g ds, (2.2)

whenever both u(γ(0)) and u(γ(1)) are finite, and
∫
γ
g ds = ∞ oth-

erwise. The assumption that g is a Borel function is needed in the
definition of the path integral. If g is merely a µ-measurable function
and (2.2) holds for p-almost every path with p ≥ 1, then g is said
to be a p-weak upper gradient of u. By saying that (2.2) holds for
p-almost every path we mean that it fails only for a path family with
zero p-modulus. A family Γ of curves is of zero p-modulus if there is
a non-negative Borel measurable function ρ ∈ Lp(X) such that for all
curves γ ∈ Γ, the path integral

∫
γ
ρ ds is infinite.

By redefining a p-weak upper gradient on a set of measure zero we
obtain an upper gradient of the same function. If g is a p-weak upper
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gradient of u, then there is a sequence gi, i = 1, 2, . . . , of upper gradi-
ents of u such that gi converges to g in Lp(X) as i→∞. Hence every
p-weak upper gradient can be approximated by upper gradients in the
Lp(X)-norm. If u has an upper gradient that belongs to Lp(X) with
p > 1, then it has a minimal p-weak upper gradient gu in the sense that
for every p-weak upper gradient g of u, gu ≤ g almost everywhere.

2.3. Newtonian spaces. We define the first order Sobolev spaces on
the metric space X using the p-weak upper gradients. These spaces
are called Newtonian spaces. For u ∈ Lp(X) with p ≥ 1, let

‖u‖N1,p(X) =
(∫

X

|u|p dµ+ inf
g

∫
X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if

‖u− v‖N1,p(X) = 0.

The same definition applies to subsets of X as well. The notion of a p-
weak upper gradient is used to prove that N1,p(X) is a Banach space.
For the properties of Newtonian spaces we refer to and [3], [17] and
[18].

2.4. Capacity. The p-capacity of a set E ⊂ X is the number

capp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.
We say that a property regarding points in X holds p-quasieverywhere,
and denote p-q.e., if the set of points for which the property does not
hold has capacity zero. If u ∈ N1,p(X), then u ∼ v if and only if u = v
p-q.e. Moreover, if u, v ∈ N1,p(X) and u = v µ-almost everywhere,
then u ∼ v. Hence, the capacity is the correct gauge for distinguishing
between two Newtonian functions.

Let E be a µ-measurable subset of X. The Sobolev space with zero
boundary values is the space

N1,p
0 (E) = {u|E : u ∈ N1,p(X) and u = 0 p-q.e. in X \ E}.

The space N1,p
0 (E) equipped with the norm inherited from N1,p(X) is

a Banach space, see [9].
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2.5. Poincaré inequality. We say that X supports a weak (1, p)-
Poincaré inequality if there exist constants c > 0 and τ ≥ 1 such that
for all balls B(x, r) ⊂ X, for all locally integrable functions u on X
and for all p-weak upper gradients g of u,∫

B(x,r)

|u− uB(x,r)| dµ ≤ cr
(∫

B(x,τr)

gp dµ
)1/p

,

where we denote

uB(x,r) =

∫
B(x,r)

u dµ =
1

µ(B(x, r))

∫
B(x,r)

u dµ.

Note that since p-weak upper gradients can be approximated by up-
per gradients in the Lp(X)-norm, it would be enough to require the
Poincaré inequality for upper gradients only.

By the Hölder inequality it is easy to see that if X supports a weak
(1, p)-Poincaré inequality, then it supports a weak (1, q)-Poincaré in-
equality for every q > p. If X is complete and µ doubling, then it is
shown in [8] that a weak (1, p)-Poincaré inequality implies a weak (1, q)-
Poincaré inequality for some q < p. Thus (1, p)-Poincaré inequality has
a deep self improving property.

2.6. General assumptions. Throughout the work, we assume that
X is complete, µ is doubling and X supports a weak (1, p)-Poincaré
inequality. This implies, for example, that Lipschitz functions are dense
in N1,p(X) and that the Sobolev embedding theorem holds, see [3].
In some of the results, we make additional assumptions that will be
specified at each occurrance.

3. The discrete maximal function

This section is devoted to the definition and basic properties of the
discrete Hardy-Littlewood type maximal function.

3.1. Covering of the space. Let r > 0. Since the measure is doubling
there are balls B(xi, r), i = 1, 2, . . . , such that

X =
∞⋃
i=1

B(xi, r)

and
∞∑
i=1

χB(xi,6r) ≤ N <∞.

This means that the dilated balls B(xi, 6r), i = 1, 2, . . . , are of bounded
overlap. The constant N depends only on the doubling constant and,
in particular, it is independent of r.
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3.2. Partition of unity. We construct a partition of unity subordi-
nate to the covering B(xi, r), i = 1, 2, . . . , of X. Indeed, there is a
family of functions ψi, i = 1, 2, . . . , such that 0 ≤ ψi ≤ 1, ψi = 0 in
X \ B(xi, 6r), ψi ≥ ν in B(xi, 3r), ψi is Lipschitz with constant L/ri
with ν > 0 and L depending only on the covering, and

∞∑
i=1

ψi(x) = 1

for every x ∈ X. The partition of unity can be constructed by first
choosing auxiliary cutoff functions ϕi so that 0 ≤ ϕi ≤ 1, ϕi = 0 on
X \ B(xi, 6r), ϕi = 1 in B(xi, 3r) and each ϕi is Lipschitz continuous
with constant 1/r. For example, we can take

ϕi(x) =


1, x ∈ B(xi, 3r),

2− d(x, xi)

3r
, x ∈ B(xi, 6r) \B(xi, 3r),

0, x ∈ X \B(xi, 6r).

Then we define the functions ψi, i = 1, 2, . . . , in the partition of unity
by

ψi(x) =
ϕi(x)∑∞
j=1 ϕj(x)

.

It is not difficult to verify that these functions satisfy the required
properties.

3.3. Discrete convolution. Let f ∈ L1
loc(X). We define an approxi-

mation of f at the scale of 3r by setting

fr(x) =
∞∑
i=1

ψi(x)fB(xi,3r)

for every x ∈ X. The function fr is called the discrete convolution of
f . The partition of unity and the discrete convolution are standard
tools in harmonic analysis on homogeneous spaces, see for example [5]
and [16].

Next we recall the basic properties of the discrete convolution. The
easy proofs are left for the interested reader.

Remark 3.1. (1) The function fr is Lipschitz continuous for every r > 0.

(2) fr → f µ-almost everywhere in X as r → 0.

(3) If f ∈ Lp(X) for some 1 ≤ p ≤ ∞, then there is a constant
c = c(cµ, p) such that

‖fr‖Lp(X) ≤ c‖f‖Lp(X).

Moreover, the discrete convolution approximates f in the Lp(X)-norm
as r → 0 if 1 ≤ p <∞.
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3.4. The maximal function. Let rj, j = 1, 2, . . . , be an enumeration
of the positive rationals. For every radius rj we choose covering balls
B(xi, rj), i = 1, 2, . . . , of X as above. Observe that for each radius
there are many possible choices for the covering but we simply take
one of those. We define the discrete maximal function of f ∈ L1

loc(X)
by

M∗f(x) = sup
j
|f |rj(x)

for every x ∈ X. Observe that the defined maximal operator depends
on the chosen coverings. However, this is not a serious matter, since
our estimates are independent of the chosen coverings.

As a supremum of continuous functions, the discrete maximal function
is lower semicontinuous and hence measurable. It is also clear from the
definition that the discrete maximal operator is homogeneous in the
sense that if α ∈ R, then

M∗(αf)(x) = |α|M∗f(x)

for every x ∈ X. Moreover, the discrete maximal operator is sublinear,
which means that

M∗(f + g)(x) ≤M∗f(x) +M∗g(x)

for every x ∈ X. By Remark 3.1, we also have

|f(x)| = lim
t→0
|f |t(x) ≤M∗f(x)

for µ-almost every x ∈ X.

The discrete maximal function is closely related to the standard Hardy-
Littlewood maximal function. Indeed, by Lemma 3.1 in [11] there is a
constant c = c(cµ) ≥ 1 such that

c−1Mf(x) ≤M∗f(x) ≤ cMf(x) (3.2)

for every x ∈ X, where

Mf(x) = sup
r>0

∫
B(x,r)

|f | dµ.

In this definition, we consider balls that are centered at x, but we
obtain a noncentered maximal function by taking the supremum over
all balls containing x. For doubling measures, these maximal functions
are comparable and it does not matter which one we choose.

By the maximal function theorem for doubling measures (see [5]) we
see that the Hardy-Littlewood maximal operator is bounded on Lp(X)
when 1 < p ≤ ∞ and maps L1(X) into the weak L1(X). Since the
maximal operators are comparable by (3.2) we conclude that the same
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results hold for the discrete maximal operator. In particular, there is
a constant c = c(p, cµ) such that

‖M∗f‖Lp(X) ≤ c‖Mf‖Lp(X) ≤ c‖f‖Lp(X) (3.3)

whenever p > 1. If p = 1 there is a constant c = c(cµ) such that the
weak type estimate

µ({M∗f > λ}) ≤ µ({cMf > λ}) ≤ c

λ

∫
X

|f | dµ (3.4)

holds for every λ > 0.

Remark 3.5. It is also possible to define a local maximal function in
subdomains of X. The definition of the local maximal function is rather
similar to that of the global maximal function. The main difference is
that a Whitney type covering lemma is used in the construction of the
discrete convolution instead of the covering of the space with balls of
the same radii, see [1].

4. The discrete fractional maximal function

Let 0 ≤ α ≤ Q, where Q is as in (2.1). The fractional maximal function
of f ∈ L1

loc(X) is defined as

Mαf(x) = sup
r>0

rα
∫

B(x,r)

|f | dµ.

For α = 0, we have the usual Hardy-Littlewood maximal function.

Let the balls B(xi, rj), i = 1, 2, . . . , be a covering of X as above. The
discrete fractional maximal function of f ∈ L1

loc(X) is

M∗
αf(x) = sup

j
|f |αrj(x)

for every x ∈ X. For α = 0, we obtain the discrete Hardy-Littlewood
type maximal function. See [7] for more on the discrete fractional
maximal function.

The following versions of the maximal function theorem hold for the
fractional maximal function. We present the simple proofs here al-
though the results are well-known for the experts.

Theorem 4.1. Assume that the measure is doubling and that the mea-
sure lower bound condition holds. Let p > 1 and assume that 0 < α <
Q/p. Then there is a constant c, depending only on the the doubling
constant, constant in the measure lower bound, p and α, such that

‖Mαf‖Lp∗ (X) ≤ c‖f‖Lp(X),

for every f ∈ Lp(X) with p∗ = Qp/(Q− αp).
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Proof. Let u ∈ Lp(X), x ∈ X and r > 0. As 1/p∗ = 1/p − α/Q, the
measure lower bound and Hölder’s inequality imply that

rα
∫

B(x,r)

|u| dµ =
rα

µ(B(x, r))

∫
B(x,r)

|u|p/p∗|u|αp/Q dµ

≤ cµ(B(x, r))(α−Q)/Q
(∫

B(x,r)

|u|(p/p∗)·Q/(Q−α) dµ
)(Q−α)/Q

·
(∫

B(x,r)

|u|p dµ
)α/Q

≤ c
(∫

B(x,r)

|u|(p/p∗)·Q/(Q−α) dµ
)(Q−α)/Q(∫

X

|u|p dµ
)α/Q

≤ c
(
M |u|(p/p∗)·Q/(Q−α)(x)

)(Q−α)/Q(∫
X

|u|p dµ
)α/Q

.

By taking the supremum over the radii on the left-hand side, we have

Mαu(x) ≤ c
(
M |u|(p/p∗)·Q/(Q−α)(x)

)(Q−α)/Q(∫
X

|u|p dµ
)α/Q

.

By integrating the estimate above and using the Hardy-Littlewood
maximal function theorem with the exponent p∗(Q − α)/Q > 1, we
arrive at(∫

X

(Mαu)p
∗
dµ
)1/p∗

≤ c
(∫

X

|u|p dµ
)1/p∗(∫

X

|u|p dµ
)α/Q

≤ c
(∫

X

|u|p dµ
)1/p

.

This proves the claim.

Remark 4.2. Let α = Q/p. Under the same assumptions as in the
previous theorem, we have

‖Mαf‖L∞(X) ≤ c‖f‖Lp(X),

where the constant c depends only on the constant in the measure lower
bound and p. By Hölder’s inequality, we have that

rα
∫

B(x,r)

|f | dµ ≤
(
rαp
∫

B(x,r)

|f |p dµ
)1/p

≤ c
(∫

B(x,r)

|f |p dµ
)1/p
≤ c‖f‖Lp(X)

for every x ∈ X and r > 0. By taking the supremum over all radii
r > 0 on the left-hand side, we obtain

Mαf(x) ≤ c‖f‖Lp(X)

for every x ∈ X and the claim follows.
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Then we recall a weak type estimate for the fractional maximal oper-
ator.

Theorem 4.3. Assume that the measure is doubling and that the mea-
sure lower bound condition holds. Let 0 < α < Q. Then there is a
constant c, depending only on the the doubling constant, the constant
in the measure lower bound and α, such that

µ({Mαf > λ}) ≤ c
(‖f‖L1(X)

λ

)Q/(Q−α)
,

for every f ∈ L1(X).

Proof. Let λ > 0 and let Eλ = {Mαu > λ}. For every x ∈ Eλ, there is
rx such that

rαx

∫
B(x,rx)

|u| dµ > λ.

By the measure lower bound, we have

rQ−αx ≤ C
µ(B(x, rx))

rαx
≤
∫
B(x,rx)

|u| dµ ≤ ‖u‖L1(X),

and consequently, the radii rx are uniformly bounded in Eλ. By the
standard covering argument, we obtain a countable subcollection such
that the balls B(xi, ri), i = 1, 2, . . . , are pairwise disjoint and

Eλ ⊂
∞⋃
i=1

B(xi, 5ri).

By the measure lower bound, we also have

λ < rαi

∫
B(xi,ri)

|u| dµ ≤ cµ(B(xi, ri))
(α−Q)/Q

∫
B(xi,ri)

|u| dµ,

from which we conclude that

µ(B(xi, ri))
(Q−α)/Q ≤ c

λ

∫
B(xi,ri)

|u| dµ

for every i = 1, 2, . . . This implies that

µ(Eλ) ≤
∞∑
i=1

µ(B(xi, 5ri)) ≤ c

∞∑
i=1

µ(B(xi, ri))

≤ c
( ∞∑
i=1

µ(B(xi, ri))
(Q−α)/Q

)Q/(Q−α)
≤ c
( ∞∑
i=1

1

λ

∫
B(xi,ri)

|u| dµ
)Q/(Q−α)

≤ c
(‖u‖L1(X)

λ

)Q/(Q−α)
.
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The discrete fractional maximal function is comparable to the standard
fractional maximal function, see [7].

Lemma 4.4. Assume that the measure is doubling. Let f ∈ L1
loc(X).

Then there is a constant c = c(cµ) ≥ 1 such that

c−1Mαf(x) ≤M∗
αf(x) ≤ cMαf(x)

for every x ∈ X.

Again this implies that the previous Lp-bounds for the fractional max-
imal operator also hold for the discrete fractional maximal operator.

5. Sobolev space estimates

Our goal is to show that the discrete maximal operator preserves the
smoothness of the function and that, under relatively mild conditions
on the measure, the discrete fractional maximal smoothens the func-
tion.

We begin with a result for the discrete convolution. For the proof, we
refer to [1], [2] and [11].

Lemma 5.1. Suppose that u ∈ N1,p(X) with p > 1 and let r > 0.
Then ur ∈ N1,p(X) and there is a constant c = c(cµ, p) and q < p such
that c(Mgq)1/q is a p-weak upper gradient of ur whenever g is a p-weak
upper gradient of u.

Remark 5.2. If u ∈ N1,p(X) with p > 1, then by the previous lemma
ur ∈ N1,p(X) for every r > 0. By Remark 3.1 we see that ur → u
in Lp(X) and pointwise µ-almost everywhere as r → 0. However, one
dimensional examples show that ur does not, in general, converge to
u as r → 0 in the Newtonian space N1,p(X). This can be seen by
considering such partitions of unity in the construction of the maximal
function that every component at all scales is constant in a set of large
measure.

Now we are ready to conclude that the discrete maximal operator pre-
serves Newtonian spaces. We use the following simple fact in the proof:
Suppose that ui are functions and gi are p-weak upper gradients of ui,
i = 1, 2, . . . , respectively. Let u = supi ui and g = supi gi. If u is finite
µ-almost everywhere, then g is a p-weak upper gradient of u. For the
proof, we refer to [3].

The next result shows that the discrete maximal operator is bounded
in the Newtonian space.
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Theorem 5.3. If u ∈ N1,p(X) with p > 1, then M∗u ∈ N1,p(X). In
addition, there is a constant c = c(cµ, p) such that

‖M∗u‖N1,p(X) ≤ c‖u‖N1,p(X).

Proof. By (3.3) we see that M∗u ∈ Lp(X) and, in particular, M∗u <∞
µ-almost everywhere in X. Since

M∗u(x) = sup
j
|u|rj(x)

and by the preceding lemma c(Mgq)1/q is an upper gradient of |u|rj
for every j, we conclude that it is an upper gradient of M∗u. Here
we also used the fact that every p-weak upper gradient of u will do
as a p-weak upper gradient of |u| as well. The claim follows from the
maximal function theorem.

Remark 5.4. The discrete maximal operator defined in a subdomain
also preserves the boundary values in the Sobolev sense. In particular,
the discrete maximal operator preserves Newtonian spaces with zero
boundary values, see [2].

Next we study the behavour of the discrete fractional maximal function
in Newtonian spaces. The first result shows that the discrete fractional
maximal function of a Sobolev function belongs to a Sobolev space with
the Sobolev conjugate exponent. These results have been originally
studied in [7], but we reproduce some details here.

Theorem 5.5. Assume that the measure is doubling and that the mea-
sure lower bound condition holds. Let u ∈ N1,p(X) and 0 < α < Q/p.
Then M∗

αu ∈ N1,p∗(X) with p∗ = Qp/(Q − αp). Moreover, there is a
constant c, depending only on the doubling constant, the constant in
the measure lower bound, p and α, such that

‖M∗
αu‖N1,p∗ (X) ≤ c‖u‖N1,p(X).

Proof. Let u ∈ N1,p(X) and let g ∈ Lp(X) be a weak upper gradient
of u. By Theorem 4.1, we have

‖M∗
αu‖Lp∗ (X) ≤ c‖u‖Lp(X).

For the weak upper gradient, let x, y ∈ B(xj, r), and let

Ij = {i : B(xi, 6r) ∩B(xj, r) 6= ∅}.

By the bounded overlap of the balls B(xi, 6r), the set Ij is finite and
the cardinality does not depend on j. By the L/r-Lipschitz continuity
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of functions ψi and by the (1, q)-Poincaré inequality, which follows from
the (1, p)-Poincaré inequality for some 1 < q < p, we have∣∣|u|αr (x)− |u|αr (y)

∣∣ = rα
∣∣∣ ∞∑
i=1

(
|u|B(xi,3r) − |u|B(xj ,3r)

)
(ψi(x)− ψi(y))

∣∣∣
≤ crα−1d(x, y)

∑
i∈Ij

∣∣|u|B(xi,3r) − |u|B(xj ,3r)

∣∣
≤ crα−1d(x, y)

∫
B(xj ,10r)

∣∣|u| − |u|B(xj ,10r)

∣∣ dµ
≤ crαd(x, y)

(∫
B(xj ,10λr)

gp
′
dµ
)1/p′

.

Since the pointwise Lipschitz constant of a function is a weak upper
gradient, we see that

gr(x) = crα
∞∑
j=1

(∫
B(xj ,10λr)

gp
′
dµ
)1/p′

χB(xj ,6r)(x)

is a weak upper gradient of |u|αr . Moreover, by the bounded overlap of
the balls,

gr(x) ≤ c
∞∑
j=1

(
rαp

′
∫

B(xj ,10λr)

gp
′
dµ
)1/p′

χB(xj ,6r)(x)

≤ c
(
M∗

αp′g
p′(x)

)1/p′
.

By the same argument as in the proof of Theorem 5.3, we conclude that(
M∗

αp′g
p′
)1/p′

is a weak upper gradient of M∗
αu. Since gp

′ ∈ Lp/p
′
(X)

and p/p′ > 1, Theorem 4.1 implies that∥∥(M∗
αp′g

p′
)1/p′∥∥

Lp∗ (X)
≤ c‖g‖Lp(X)

and the claim follows.

The following theorem is a generalization of the main result of [14] to
the metric setting. It shows that the discrete fractional maximal op-
erator is a smoothing operator. More precisely, the discrete fractional
maximal function of an Lp-function has a weak upper gradient and
both u and the weak upper gradient belong to a higher Lebesgue space
than u.

Theorem 5.6. Assume that the measure is doubling and that the mea-
sure lower bound condition holds. Let u ∈ Lp(X) with 1 < p < Q
and

1 ≤ α < Q/p, p∗ = Qp/(Q− αp) and q = Qp/(Q− (α− 1)p).
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Then M∗
α−1u is a weak upper gradient of M∗

αu. Moreover, there is a
constant c, depending only on the doubling constant, the constant in
the measure lower bound, p and α, such that

‖M∗
αu‖Lp∗ (X) ≤ c‖u‖Lp(X) and ‖M∗

α−1u‖Lq(X) ≤ c‖u‖Lp(X).

Proof. We begin by considering |u|αr . By Lemma 4.4, we have

|u|αr (x) = rα|u|r(x) ≤M∗
αu(x) ≤ cMαu(x)

for every x ∈ X. Then we consider the weak upper gradient of |u|αr .
Since

|u|αr (x) = rα
∞∑
i=1

ψi(x)|u|B(xi,3r),

each ψi is L/r-Lipschitz continuous and has a support in B(xi, 6r), the
function

gr(x) = Lrα−1
∞∑
i=1

|u|B(xi,3r)χB(xi,6r)(x)

is a weak upper gradient of |u|αr . If x ∈ B(xi, r), then B(xi, 3r) ⊂
B(x, 9r) ⊂ B(xi, 15r) and

|u|B(xi,3r) ≤ c

∫
B(x,9r)

|u| dµ.

The bounded overlap property of the balls B(xi, 6r), i = 1, 2, . . . , im-
plies that

gr(x) ≤ crα−1
∫

B(x,9r)

|u| dµ ≤ cMα−1u(x) ≤ cM∗
α−1u(x)

and consequently M∗
α−1u is a weak upper gradient of |u|αr as well.

By Lemma 4.4 and Theorem 4.1, M∗
αu belongs to Lp

∗
(X) and hence

M∗
αu is finite almost everywhere. As

M∗
αu(x) = sup

j
|u|αrj(x),

and because M∗
α−1u is an upper gradient of |u|αrj for every j = 1, 2, . . . ,

we conclude that it is an upper gradient of M∗
αu as well. The norm

bounds follow from Theorem 4.1.

6. Oscillation estimates

6.1. Hölder continuity. The next result shows that the discrete max-
imal function M∗f is Hölder continuous with the same exponent as f .
In particular, if f is Lipschitz continuous, then M∗f is also Lipschitz
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continuous. Recall that f ∈ C0,β(X) means that f is a Hölder contin-
uous function with exponent 0 < β ≤ 1, that is,

|f(x)− f(y)| ≤ cd(x, y)β

for all x, y ∈ X.

Theorem 6.1. Let f ∈ C0,α(X) with 0 < α ≤ 1. Then M∗f ∈
C0,β(X), provided M∗f is not identically infinity in X.

Proof. Fix a scale r > 0 and let x, y ∈ X. We begin by proving that the
discrete convolution fr is Hölder continuous. We consider two cases.
First we assume that d(x, y) > r. By the definition of the discrete
convolution we have

|fr(x)− fr(y)| ≤ |f(x)− f(y)|+
∞∑
i=1

ψi(x)|fB(xi,3r) − f(x)|

+
∞∑
i=1

ψi(y)|fB(xi,3r) − f(y)|.

The terms in the sums are non-zero only if x ∈ B(xi, 6r) or y ∈
B(xi, 6r) for some i. If x ∈ B(xi, 6r) for some i, then by Hölder
continuity of f we have

|fB(xi,3r) − f(x)| ≤ crβ.

Similarly, if y ∈ B(xi, 6r) for some i, then

|fB(xi,3r) − f(y)| ≤ crβ.

Since the balls B(xi, 6r), i = 1, 2, . . . , are of bounded overlap and f is
Hölder continuous, we arrive at

|fr(x)− fr(y)| ≤ cd(x, y)β + crβ

Since d(x, y) > r, we have

|fr(x)− fr(y)| ≤ cd(x, y)β

and we are done.

Then we assume that d(x, y) ≤ r. By the definition of the discrete
convolution we have

|fr(x)− fr(y)| ≤
∞∑
i=1

|ψi(x)− ψi(y)||fB(xi,3r) − f(x)|.

The term in the sum is non-zero only if x ∈ B(xi, 6r) or y ∈ B(xi, 6r)
for some i. If x ∈ B(xi, 6r), then

|fB(xi,3r) − f(x)| ≤ crβ

14



as above. On the other hand, if y ∈ B(xi, 6r), then x ∈ B(xi, 7r)
because d(x, y) ≤ r and we again have

|fB(xi,3r) − f(x)| ≤ crβ.

Since there are only a bounded number indices for which the term in
the sum is non-zero we arrive at

∞∑
i=1

|ψi(x)− ψi(y)||fB(xi,3r) − f(x)| ≤ cd(x, y)rβ−1 ≤ cd(x, y)β.

Here we also used Lipschitz continuity of ψi. This shows that fr is
Hölder continuous.

Let us prove now that the discrete maximal function preserves Hölder
continuity. Without loss of generality we may assume that M∗f(x) ≥
M∗f(y).

Let ε > 0. Choose rε > 0 so that

|f |rε(x) > M∗f(x)− ε.
Then

M∗f(x)−M∗f(y) ≤ |f |rε(x)− |f |rε(y) + ε ≤ cd(x, y)β + ε.

Since the left hand side is independent of ε the theorem follows by
letting ε→ 0.

Remark 6.2. The proof of the previous theorem shows that the dis-
crete maximal operator is bounded in the space of Hölder continuous
functions.

Remark 6.3. Similar arguments as above can be used to show that
the discrete maximal operator preserves continuity, provided it is not
identically infinity.

The next results shows that the fractional maximal function of a Hölder
continuous function is Hölder continuous with a better exponent or a
Lipschitz function. This also reflects the smoothing property of the
discrete fractional maximal operator.

Theorem 6.4. Let u ∈ C0,β(X) with 0 < β ≤ 1. If α + β ≤ 1, then
M∗

αu ∈ C0,α+β(X), provided M∗f is not identically infinity in X.

Proof. Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X.
Assume first that d(x, y) > r. Then∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ rα
(
|u(x)− u(y)|+

∞∑
i=1

ψi(x)
∣∣|u|B(xi,3r) − |u(x)|

∣∣
+
∞∑
i=1

ψi(y)
∣∣|u|B(xi,3r) − |u(y)|

∣∣).
15



In the first sum, ψi(x) 6= 0 only if x ∈ B(xi, 6r). For such i, by the
Hölder continuity of u, we have∣∣|u|B(xi,3r) − |u(x)|

∣∣ ≤ crβ.

A similar estimate holds for terms of second sum when y ∈ B(xi, 6r).
The bounded overlap of the balls B(xi, 6r), i = 1, 2, . . . , and the Hölder
continuity of u imply that∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ crα
(
d(x, y)β + rβ

)
≤ cd(x, y)α+β.

Assume then that d(x, y) ≤ r. Now

∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

( ∞∑
i=1

|ψi(x)− ψi(y)|
∣∣|u|B(xi,3r) − |u(x)|

∣∣),
where ψi(x) − ψi(y) 6= 0 only if x ∈ B(xi, 6r) or y ∈ B(xi, 6r). If y ∈
B(xi, 6r), then the assumption d(x, y) ≤ r implies that x ∈ B(xi, 7r).
Hence for such i, as above,∣∣|u|B(xi,3r) − |u(x)|

∣∣ ≤ crβ.

By the L/r-Lipschitz-continuity of the functions ψi and the bounded
overlap of the balls B(xi, 6r), we have∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ crαd(x, y)rβ−1,

where, if α + β ≤ 1,

rαd(x, y)rβ−1 ≤ d(x, y)α+β.

The claim for |u|αr follows from this.

Then we prove the claim for M∗
αu. We may assume that M∗

αu(x) ≥
M∗

αu(y). Let ε > 0 and let rε > 0 such that

|u|αrε(x) > M∗
αu(x)− ε.

Then, by the first part of the proof,

M∗
αu(x)−M∗

αu(y) ≤ |u|αrε(x)− |u|αrε(y) + ε ≤ cd(x, y)α+β + ε,

if α + β < 1. By letting ε→ 0, we obtain

|M∗
αu(x)−M∗

αu(y)| ≤ cd(x, y)α+β.
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6.2. Campanato spaces. In this section, we study the behaviour of
the discrete fractional maximal operator in Campanato spaces. Most of
the results are originally considered in [7], but we reproduce some of the
arguments here. Let 1 ≤ p < ∞ and β ∈ R. A function u ∈ L1

loc(X)
belongs to the Campanato space Lp,β(X), if

‖u‖Lp,β(X) = sup r−β
(∫

B(x,r)

|u− uB(x,r)|p dµ
)1/p

<∞,

where the supremum is taken over all x ∈ X and r > 0.

Let 1 ≤ p < ∞ and β ∈ R. A function u ∈ L1
loc(X) belongs to the

Morrey space Mp,β(X), if

‖u‖Mp,β,κ(X) = sup r−β
(∫

B(x,r)

|u|p dµ
)1/p

<∞,

where the supremum is taken over all x ∈ X and r > 0. Observe, that
‖ · ‖Mp,β(X) is a norm in the Morrey space, but ‖ · ‖Lp,β(X) is merely a
seminorm in the Campanato space.

Morrey spaces, Campanato spaces, functions of bounded mean oscilla-
tion (BMO) and functions in C0,β(X) have the following connections:

• Mp,β(X) ⊂ Lp,β(X),
• Lp,β(X) = Mp,β(X) if −Q/p < β < 0 (here we identify func-

tions that differ only by an additive constant),
• L1,0(X) = BMO(X), and
• Lp,β(X) = C0,β(X) if 0 < β ≤ 1.

The following technical lemma will be useful for us.

Lemma 6.5. Assume that u ∈ Lp,β(X). Let x ∈ X, 0 < 2 < R and
y ∈ B(x, 2R). If β < 0, then

|uB(y,r) − uB(x,R)| ≤ crβ‖u‖Lp,β(X). (6.6)

If β = 0, then

|uB(y,r) − uB(x,R)| ≤ c log
6R

r
‖u‖Lp,0(X). (6.7)

The constant c depends only on the doubling constant.
17



Proof. Let k be the smallest index such that 2kr ≥ 3R. Then B(x,R) ⊂
B(y, 2kr) and

|uB(y,r) − uB(x,R)|

≤
k∑
i=1

|uB(y,2ir) − uB(y,2i−1r)|+ |uB(y,2kr) − uB(x,R)|

≤
k∑
i=1

∫
B(y,2i−1r)

|u− uB(y,2ir)| dµ+

∫
B(x,R)

|u− uB(y,2kr)| dµ

≤ c
k∑
i=1

∫
B(y,2ir)

|u− uB(y,2ir)| dµ+ c

∫
B(y,2kr)

|u− uB(y,2kr)| dµ

≤ crβ‖u‖Lp,β(X)

( ∞∑
i=1

2iβ + 2kβ
)
≤ crβ‖u‖Lp,β(X),

where c depends only on the doubling constant and the sum converges
since β < 0. This proves (6.6).

The proof of (6.7) is quite similar. Indeed, by the choice of k, we have
2kr ≤ 6R and consequently

|uB(y,r) − uB(x,R)|

≤ c
k∑
i=1

∫
B(y,2ir)

|u− uB(y,2ir)| dµ+ c

∫
B(y,2kr)

|u− uB(y,2kr)| dµ

≤ ck‖u‖Lp,0(X) ≤ c log
6R

r
‖u‖Lp,0(X).

According to the next result, the discrete fractional maximal operator
maps functions in Campanato spaces to Hölder continuous functions.

Theorem 6.8. Let α > 0, 0 ≤ α + β ≤ 1 and let u ∈ Lp,β(X). Then
there is a constant c, depending only on the doubling constant p and α
and β, such that

‖M∗
αu‖C0,α+β(X) ≤ c‖u‖Lp,β(X).

Proof. Let r > 0. We begin by proving the claim for |u|αr . Let x, y ∈ X.
Assume first that r < d(x, y). Let B = B(x, 4d(x, y)). Then∣∣|u|αr (x)− |u|αr (y)

∣∣
≤
∣∣|u|αr (x)− rα|u|B

∣∣+
∣∣rα|u|B − |u|αr (y)

∣∣
≤ rα

( ∞∑
i=1

ψi(x)
∣∣|u|B(xi,3r) − |u|B

∣∣+
∞∑
i=1

ψi(y)
∣∣|u|B(xi,3r) − |u|B

∣∣).
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In the first sum, ψi(x) 6= 0 only if x ∈ B(xi, 6r) and in the second sum,
only if y ∈ B(xi, 6r). If β < 0, we use the bounded overlap of the balls
B(xi, 6r), i = 1, 2, . . . and (6.6) and we have∣∣|u|αr (x)− |u|αr (y)

∣∣ ≤ crα+β‖u‖Lp,β(X) ≤ cd(x, y)α+β‖u‖Lp,β(X).

Similarly, if β = 0, estimate (6.7) implies that∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ crα log

cd(x, y)

r
‖u‖Lp,β(X)

= cd(x, y)α
( r

cd(x, y)

)α
log

cd(x, y)

r
‖u‖Lp,β(X)

≤ cd(x, y)α‖u‖Lp,β(X).

If r ≥ d(x, y), then∣∣|u|αr (x)− |u|αr (y)
∣∣ ≤ rα

( ∞∑
i=1

|ψi(x)− ψi(y)
∣∣|u|B(xi,3r) − |u|B(x,10r)

∣∣)
≤ crα+β−1d(x, y)‖u‖Lp,β(X)

≤ cd(x, y)α+β‖u‖Lp,β(X).

The claim for M∗
αu follows as in the proof of Theorem 6.4.

If β > 0, then Lp,β(X) = C0,β(X) and the result follows from Theorem
6.4. This completes the proof.

We conclude with two results for the discrete maximal functions in the
space of functions of bounded mean oscillation, denoted by BMO(X).
A function f ∈ L1

loc(X) belongs to BMO(X) if

‖f‖BMO(X) = sup

∫
B(x,r)

|f − fB(x,r)| dµ <∞,

where the supremum is taken over all x ∈ X and r > 0. The proof of
the following theorem can be found in [1].

Theorem 6.9. If f ∈ BMO(X), then M∗f ∈ BMO(X) provided
M∗f is not identically infinity.

The proof of the previous result applies a theorem by Coifman and
Rochberg, which states that (Mu)γ, the Hardy-Littlewood maximal
function of u raised to any power 0 < γ < 1, is a Muckenhoupt A1-
weight whenever Mu is not identically infinity. This means that there
exists a constant c such that∫

B(x,r)

(Mu)γ dµ ≤ c ess inf
B(x,r)

(Mu)γ
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for every ball B(x, r) in X. For the fractional maximal function, we
obtain the result even without taking the power. For the proof, we
refer to [7].

Theorem 6.10. Let 0 < α < Q. Assume that u ∈ L1
loc(X) is such

that M∗
αu is not identically infinity. Then M∗

αu is a Muckenhoupt A1-
weight, that is, ∫

B(x,r)

M∗
αu dµ ≤ c ess inf

B(x,r)
Mαu

for every ball B(x, r) in X. The constant c does not depend on u.

Remark 6.11. Under the assumptions of the previous theorem, we also
have ∫

B(x,r)

(M∗
αu)γ dµ ≤ c ess inf

B(x,r)
(M∗

αu)γ

for 0 < γ ≤ 1 by Hölder’s inequality.

Remark 6.12. By standard arguments, the previous theorem also im-
plies that logM∗

αu belongs to BMO(X).
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