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Abstract. Superparabolic functions are defined as lower semi-
continuous functions obeying the comparison principle. We dis-
cuss their Sobolev space properties and give sharp integrability
exponents.

1. Introduction

The solutions of the partial differential equation

div(|∇u|p−2∇u) =
∂u

∂t
, 1 < p <∞, (1.1)

form a similar basis for a nonlinear parabolic potential theory as the
solutions of the heat equation do in the classical theory. Especially,
the celebrated Perron method can be applied even in the nonlinear
situation p 6= 2; see [9]. The equation is often called the p-parabolic
equation, but is also known as the evolutionary p-Laplace equation and
the non-Newtonian filtration equation in the literature. For the regu-
larity theory we refer to [6]. See also Chapter 2 of [25].

In the parabolic potential theory, the so-called p-superparabolic func-
tions are essential. They are defined as lower semicontinuous functions
obeying the comparison principle with respect to the solutions of (1.1).
The p-superparabolic functions are of actual interest also because they
are viscosity supersolutions of (1.1), see [8]. Thus there is an alternative
definition in the theory of viscosity solutions and our results automat-
ically hold for the viscosity supersolutions. We should pay attention
to the fact that, in their definition, the p-superparabolic functions are
not required to have any derivatives, and, consequently, it is not evid-
ent how to directly relate them to the p-parabolic equation. Since the
weak supersolutions of (1.1) have Sobolev derivatives, they constitute
a more tractable class of functions. The reader should carefully dis-
tinguish between p-superparabolic functions and supersolutions. The
objective of this expository article is to discuss Sobolev space proper-
ties of p-superparabolic functions. Indeed, we show that a p-parabolic
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function has spatial Sobolev derivatives with sharp local integrability
bounds. We refer to the original articles [16] and [17] for the details.
See also [5], [4], [10] and [23].

As an application, we study the Riesz measure associated with a p-
parabolic function.

Our argument is based on a general principle and it applies to other
equations as well. For the porous medium equation

∆(um) =
∂u

∂t

in the case m ≥ 1, we refer to [15]. See [24] or Chapter 1 of [25] for
the general theory of the porous medium equation. We have tried to
keep our exposition as short as possible, omitting such generalizations.
We have also deliberately decided to exclude the case p < 2. On the
other hand, we think that some features might be interesting even for
the ordinary heat equation, to which everything reduces when p = 2.

2. Weak supersolutions

We begin with some notation. In what follows, Q will always stand for
an interval

Q = (a1, b1) × (a2, b2) × · · · × (an, bn), ai < bi, i = 1, 2, . . . , n,

in Rn and the abbreviations

QT = Q× (0, T ), Qt1,t2 = Q× (t1, t2),

where T > 0 and t1 < t2, are used for the space-time boxes in Rn+1.
The parabolic boundary of QT is

(Q× {0}) ∪ (∂Q× [0, T ]).

Observe that the interior of the top Q × {T} is not included. The
parabolic boundary of a space-time cylinder Dt1,t2 = D×(t1, t2), where
D ⊂ Rn, has a similar definition.

Let 1 < p < ∞. In order to describe the appropriate function spaces,
we recall that W 1,p(Q) denotes the Sobolev space of functions u ∈
Lp(Q) whose first distributional partial derivatives belong to Lp(Q)
with the norm

‖u‖W 1,p(Q) = ‖u‖Lp(Q) + ‖∇u‖Lp(Q).

The Sobolev space with zero boundary values, denoted by W 1,p
0 (Q),

is the completion of C∞
0 (Q) in the norm ‖u‖W 1,p(Q). We denote by
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Lp(t1, t2;W
1,p(Q)) the space of functions such that for almost every t,

t1 ≤ t ≤ t2, the function x 7→ u(x, t) belongs to W 1,p(Q) and
∫ t2

t1

∫

Q

(
|u(x, t)|p + |∇u(x, t)|p

)
dx dt <∞.

Notice that the time derivative ut is deliberately avoided. The defini-
tion of the space Lp(t1, t2;W

1,p
0 (Q)) is analogous.

Next we give the definition of the weak (super)solutions.

Definition 2.1. Let Ω be an open set in Rn+1 and suppose that u ∈
Lp(t1, t2;W

1,p(Q)) whenever Qt1,t2 ⊂ Ω. Then u is called a solution of
(1.1) if ∫ t2

t1

∫

Q

(
|∇u|p−2∇u · ∇ϕ− u

∂ϕ

∂t

)
dx dt = 0 (2.2)

whenever Qt1 ,t2 ⊂ Ω and ϕ ∈ C∞
0 (Qt1,t2). If, in addition, u is continu-

ous, then u is called p-parabolic. Further, we say that u is a super-
solution of (1.1) if the integral (2.2) is non-negative for all ϕ ∈ C∞

0 (Ω)
with ϕ ≥ 0. If this integral is non-positive instead, we say that u is a
subsolution.

By parabolic regularity theory, the solutions are locally Hölder con-
tinuous after a possible redefinition on a set of measure zero, see [6]
or [25]. In general, the time derivative ut does not exist in Sobolev’s
sense. This is a principal, well-recognized difficulty with the definition.
Namely, in proving estimates, we usually need a test function ϕ that
depends on the solution itself, for example ϕ = uζ where ζ is a smooth
cutoff function. Then we cannot avoid that the forbidden quantity ut
shows up in the calculation of ϕt. In most cases, we can easily over-
come this default by using an equivalent definition in terms of Steklov
averages, as on pages 18 and 25 of [6] or in Chapter 2 of [25]. Alternat-
ively, we can proceed using convolutions with smooth mollifiers as on
pages 199–121 of [1].

3. Superparabolic functions

The supersolutions of the p-parabolic equation do not form a good
closed class of functions. For example, consider the Barenblatt solution
Bp : Rn+1 → [0,∞),

Bp(x, t) =




t−n/λ

(
c− p− 2

p
λ1/(1−p)

(
|x|
t1/λ

)p/(p−1))(p−1)/(p−2)

+

, t > 0,

0, t ≤ 0,
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where λ = n(p− 2) + p, p > 2, and the constant c is usually chosen so
that ∫

Rn

Bp(x, t) dx = 1

for every t > 0. In the case p = 2 we have the heat kernel

W(x, t) =





1

(4πt)n/2
e−|x|2/4t, t > 0,

0, t ≤ 0.

The Barenblatt solution is a weak solution of (1.1) in the upper half
space

{(x, t) ∈ Rn+1 : x ∈ Rn, t > 0}
and it formally satisfies the weak form of the equation

∂Bp
∂t

− div(|∇Bp|p−2∇Bp) = δ

in Rn+1, where the right-hand side is Dirac’s delta at the origin. In
contrast with the heat kernel, which is strictly positive, the Barenblatt
solution has a bounded support at a given instance t > 0. Hence the
disturbancies propagate with finite speed when p > 2. The Barenblatt
solution describes the propagation of the heat after the explosion of a
hydrogen bomb in the atmosphere. This function was discovered in [3].

The Barenblatt solution is not a supersolution in an open set that
contains the origin. It is the a priori integrability of ∇Bp that fails.
Indeed, ∫ 1

−1

∫

Q

|∇Bp(x, t)|p dx dt = ∞,

where Q = [−1, 1]n ⊂ Rn. In contrast, the truncated functions

min(Bp(x, t), λ),

belong to the correct space and are supersolutions in Rn+1 for every
λ > 0.

In order to include the Barenblatt solution in our exposition we define
a class of supersolutions which is closed with respect to the increas-
ing convergence. Indeed, the Barenblatt solution is a p-superparabolic
function in Rn+1 according to the following definition.

Definition 3.1. A function v : Ω → (−∞,∞] is called p-superparabolic
if

(i) v is lower semicontinuous,
(ii) v is finite in a dense subset of Ω,

4



(iii) v satisfies the following comparison principle on each subdomain
Dt1 ,t2 = D×(t1, t2) withDt1 ,t2 ⊂⊂ Ω: if h is p-parabolic in Dt1,t2

and continuous in Dt1,t2 and if h ≤ v on the parabolic boundary
of Dt1,t2, then h ≤ v in Dt1,t2 .

It follows immediately from the definition that, if u and v are p-
superparabolic functions, so are their pointwise minimum min(u, v)
and u+α, α ∈ R. Observe that u+v and αu are not superparabolic in
general. This is well in accordance with the corresponding properties
of supersolutions. In addition, the class of superparabolic functions
is closed with respect to to the increasing convergence, provided the
limit function is finite in a dense subset. We also mention that it is
enough to compare in the space-time boxes Qt1 ,t2 in the definition of
the p-superparabolic function.

The reader should carefully distinguish between the supersolutions and
the p-superparabolic functions. Notice that a p-superparabolic function
is defined at every point in its domain, but supersolutions are defined
only up to a set of measure zero. The semicontinuity is an essential
assumption. On the other hand, supersolutions have Sobolev derivat-
ives with respect to the spatial variable and they satisfy a differential
inequality in a weak sense. By contrast, no differentiability is assumed
in the definition of a p-superparabolic function. The only tie to the
differential equation is through the comparison principle.

There is a relation between supersolutions and p-superparabolic func-
tions. Supersolutions satisfy the comparison principle and, roughly
speaking, the supersolutions are p-superparabolic, provided the issue
about lower semicontinuity is properly handled. This is not a seri-
ous issue, since every supersolution has a lower semicontinuous rep-
resentative. In particular, a lower semicontinuous supersolution is p-
superparabolic. On the other hand, as we shall see later the truncations
min(v, λ), λ ∈ R, of a p-superparabolic function v are supersolutions
and hence a p-superparabolic function can be approximated by an in-
creasing sequence of supersolutions.

The obstacle problem in the calculus of variations is a basic tool in the
study of the p-superparabolic functions. In order to bypass some tech-
nical difficulties related to the time derivative ut, we use the regularized
equation

∂u

∂t
= div

(
(|∇u|2 + ε2)(p−2)/2∇u

)
, (3.2)

which does not degenerate at the critical points where ∇u = 0. Here ε
is a real parameter. The solutions of (3.2) are smooth, provided ε 6= 0.
The smoothness in the case ε 6= 0 follows from a standard parabolic
regularity theory described in [18]. See also [19]. In the case ε = 0
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the equation (3.2) reduces to the true p-parabolic equation (1.1). See
Chapter 2 of [25].

Let ψ ∈ C∞(Rn+1) and consider the class Fψ of all functions w ∈
C(QT ) such that w ∈ Lp(0, T ;W 1,p(Q)), w = ψ on the parabolic
boundary of QT and w ≥ ψ in QT . The function ψ is an obstacle
and also prescribes the boundary values.

The following existence theorem is essential for us.

Lemma 3.3. There is a unique w ∈ Fψ such that
∫ T

0

∫

Q

(
(|∇w|2 + ε2)(p−2)/2∇w · ∇(φ− w) + (φ− w)

∂φ

∂t

)
dx dt

≥ 1

2

∫

Q

|φ(x, T ) − w(x, T )|2 dx

for all smooth functions φ in the class Fψ. In particular, w is a con-
tinuous supersolution of (3.2). Moreover, in the open set {w > ψ}
the function w is a solution of (3.2). In the case ε 6= 0 we have
w ∈ C∞(QT ).

Proof. The existence can be shown as in the proof of Theorem 3.2 in
[2]. The continuity of solution follows from a rather standard parabolic
regularity theory.

Let wε denote the solution of (3.2) with ε 6= 0 and let v denote the
one with ε = 0. We keep the obstacle ψ fixed and let ε → 0 in (3.2).
The question is about the convergence of the solutions of the obstacle
problems: Do the wε’s converge to v in some sense?

4. Bounded superparabolic functions

Supersolutions and p-superparabolic functions are often identified in
the literature, even though this is not strictly speaking correct, as the
Barenblatt solution shows. However, we show that there are no other
locally bounded p-superparabolic functions than supersolutions. In-
deed, locally bounded p-superparabolic functions have Sobolev deriv-
atives with respect to the spatial variable and we can substitute them
in (2.2). This is the content of the following theorem.

Theorem 4.1. Let p ≥ 2. Suppose that v is a locally bounded p-
superparabolic function in an open set Ω ⊂ Rn+1. Then the Sobolev
derivative

∇v =

(
∂v

∂x1

, . . . ,
∂v

∂xn

)
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exists and the local integrability
∫ t2

t1

∫

Q

|∇v|p dx dt <∞

holds for each Q× [t1, t2] ⊂ Ω. Moreover, we have
∫ t2

t1

∫

Q

(
|∇v|p−2∇v · ∇ϕ− v

∂ϕ

∂t

)
dx dt ≥ 0

whenever ϕ ∈ C∞
0 (Q× (t1, t2)) with ϕ ≥ 0.

Thus the variational inequality (2.2) is at our disposal for bounded
functions. For a proof, see Theorem 1.1 in [16].

In the case p = 2, the proof of Theorem 4.1 can be extracted from the
linear representation formulas. Then all superparabolic functions can
be represented in terms of the heat kernel. For p > 2 the principle of
superposition is not available. Instead we use an obstacle problem to
construct supersolutions which approximate a given p-superparabolic
function.

Theorem 4.2. Suppose that v is a p-superparabolic function in Ω and
let Qt1,t2 ⊂ Ω. Then there is a sequence of supersolutions

vk ∈ C(Qt1,t2) ∩ L
p(t1, t2;W

1,p(Q)), k = 1, 2, . . . ,

of (1.1) such that v1 ≤ v2 ≤ · · · ≤ v and vk → v pointwise in Qt1,t2

as k → ∞. If, in addition, v is locally bounded in Ω, then the Sobolev
derivative ∇v exists and ∇v ∈ Lploc(Ω).

For a proof we refer to Lemma 4.2 of [16].

This theorem could be taken as a characterization of p-superharmo-
nicity. Indeed, if we have an increasing sequence of continuous su-
persolutions and the limit function is finite in dense subset, then the
limit function is p-superparabolic. Moreover, if the limit function is
bounded, then it is a supersolution. Let us mention that ut can be
interpreted as an object, for example, in the theory of J.-L. Lions et
consortes, see [22], but using this approach does not seem to give a class
of functions which is closed under bounded increasing convergence. For
example, the function u : Rn+1 → R,

u(x, t) =

{
1, t > 0,

0, t ≤ 0,

is a supersolution and it can easily be approximated by an increasing
sequence of continuous supersolutions which only depend on the time
variable. However, the time derivative of u does not belong to the dual
of the parabolic Sobolev space.
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5. Unbounded superparabolic functions

The Barenblatt solution clearly shows that the class of p-superparabolic
functions contains more than supersolutions. The following slightly un-
expected result shows that all p-superparabolic functions have Sobolev
derivatives. For bounded p-superparabolic functions this follows from
Theorem 4.1, but our objective is to study unbounded p-superparabolic
functions and provide a sharp result for them.

Theorem 5.1. Let p ≥ 2. Suppose that v is a p-superparabolic function
in an open set Ω in Rn+1. Then v ∈ Lqloc(Ω) for every q with 0 < q <
p− 1 + p/n. Moreover, the Sobolev derivative

∇v =

(
∂v

∂x1

, . . . ,
∂v

∂xn

)

exists and the local integrability
∫ t2

t1

∫

Q

|∇v|q dx dt <∞

holds for each Q× [t1, t2] ⊂ Ω whenever 0 < q < p− 1 + 1/(n+ 1).

For a proof see Theorem 1.1 in [17].

Observe, that the integrability exponent for the gradient of a p-super-
parabolic function v is strictly smaller than p. However, since ∇v is
locally integrable to the power p− 1, we can formally insert it in (2.2).
Unfortunaly this approach is difficult to use in practise, since if we want
to use a test function which depends on v, the integrand in (2.2) may
fail to be integrable. A similar question for solutions has been studied
in [14] and [13].

The Barenblatt solution shows that these critical integrability expo-
nents for a p-superparabolic function and its gradient are optimal. A
direct calculation reveals that the Barenblatt solution does not attain
these exponents. There is a difference compared to the stationary case.
The corresponding critical exponents related to the elliptic equation

div(|∇u|p−2∇u) = 0

are larger, see [20]. The fundamental solution for the stationary case
is

v(x) =

{
c|x|(p−n)/(p−1), 1 < p < n,

−c log |x|, p = n,

in Rn, but the Barenblatt solution is far more intricate.

In the case p = 2, the proof of Theorem 5.1 can be extracted from
the linear representation formulas. Instead we approximate the given
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p-superparabolic function v by vj = min(v, j), j = 1, 2, . . . A priori es-
timates for the approximants are derived through variational inequal-
ities and these estimates are passed over to the limit.

The proof consists of three steps depending on the exponents. First,
an iteration based on a test function used by [4] and [10] in the el-
liptic case implies that v is locally integrable to any exponent q with
0 < q < p − 2. See also [5] for the parabolic case. Second, the pas-
sage over p − 2 requires an iteration taking the influence of the time
variable into account. This procedure reaches all exponents q with
0 < q < p − 1. Third, a more sophisticated arrangement of the es-
timates is needed to bound the quantity involving integrals over time
slices. Finally, Sobolev’s inequality yields the correct critical exponents
for the function and its Sobolev derivative. In other words, there are
two different iteration methods involved in the proof.

In the elliptic case, the proof can also be based on Moser’s iteration
technique, see [20]. Moser’s technique applies also in the parabolic case,
if we already know that v is locally integrable to a power q > p − 2.
However, we have not been able to settle the passage over p− 2 in the
parabolic case by using merely Moser’s approach and hence we present
an alternative proof of the passage. Moser’s approach for a doubly
nonlinear equation has been studied in [12]. In a remarkable recent
paper [7], the intrinsic parabolic Harnack inequality is studied by a
different method for equations of p-parabolic type.

6. The Riesz measure of a superparabolic function

Finally we briely study the Riesz measure associated with a p-super-
parabolic function. Classical Riesz decomposition theorem states that
every superharmonic function can be locally represented as a Newton
potential of a Radon measure up to a harmonic function. For a non-
linear elliptic result with the Wolff potential, we refer to [10]. Riesz
measures play an essential role in the boundary regularity for the Di-
richlet problem in [11] and hence it is a very interesting question to
study possible extensions to the parabolic case.

If u is a weak supersolution of (1.1) in Ω, then by a partition of unity
we see that

(Au, ϕ) =

∫∫

Ω

(
|∇u|p−2∇u · ∇ϕ− u

∂ϕ

∂t

)
dx dt ≥ 0

for every non-negative ϕ ∈ C∞
0 (Ω). From this we conclude that the

operator

Au =
∂u

∂t
− div(|∇u|p−2∇u)

9



is a nonnegative functional on C∞
0 (Ω) and by the Riesz representation

theorem, there is a unique Radon measure µ on Ω such that Au = µ.
In other words,∫∫

Ω

(
|∇u|p−2∇u · ∇ϕ− u

∂ϕ

∂t

)
dx dt =

∫∫

Ω

ϕdµ

for every ϕ ∈ C∞
0 (Ω).

Next we show that that the same holds for p-superparabolic func-
tions. Observe, that some caution is needed here, since, in general,
a p-superparabolic function does not belong to the correct Sobolev
space. However, by Theorem 5.1, we have |∇u| ∈ Lp−1

loc (Ω) and exactly
in the same way as for supersolutions we can conclude the following
theorem.

Theorem 6.1. Let v be a p-superparabolic function in Ω. Then there
is a unique Radon measure µ on Ω such that

∂v

∂t
− div(|∇v|p−2∇v) = µ, (6.2)

that is, ∫∫

Ω

(
|∇v|p−2∇v · ∇ϕ− v

∂ϕ

∂t

)
dx dt =

∫∫

Ω

ϕdµ

for every ϕ ∈ C∞
0 (Ω).

The measure µ in Theorem 6.1 is called the Riesz measure associated
with v. In view of Theorem 6.1, it is natural to ask wheter the converse
holds. More precisely, if µ is a finite Radon measure on a bounded
open set Ω, does there exist a p-superharmonic function v in Ω, which
satisfies (6.2). In the elliptic case this question has been studied in [10].
See also [5], [4], and [23].

References

[1] D.G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic
equations Arch. Rat. Mech. Anal. 25 (1967), 81–122.

[2] H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations
Math. Z. 183 (1983), 311–341.

[3] G.I. Barenblatt, On selfsimilar motions of compressible fluids in a porous me-
dium (in Russian), Prikl. Mat. Mekh. 16 (1952), 679–698.
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