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MINIMAL, MAXIMAL AND REVERSE HOLDER INEQUALITIES

JUHA KINNUNEN

1. Introduction. Let (X,d) be a metric space and suppose that p is a Borel
measure on X. We assume that the measure of every nonempty open set is strictly
positive and that p(X) < oc. In addition we assume that u satisfies the doubling
condition

(1.1) p(2B) <ceu(B),  BCX,

for some ¢ > 1 independent of the open ball B. Here 2B denotes the ball with the
same center as B but the radius doubled. We also make a technical assumption
that 0 < diam(X) < occ. Let f: X — [0, 00] be a p—measurable function. Holder’s
inequality implies that

(f, )" < (f ra)" mex

whenever —oc < t < s < 0o and ts # 0. Here we use the notation

][deuzﬁ/]gfdu.

We call the inequality above Holder’s inequality even though in this generality it
is a special case of Jensen’s inequality. We are interested in functions which satisfy
an inequality in the reverse direction uniformly over all balls; by this we mean that
there are ¢ > 1 and —o0 <t < s < 00, ts # 0, such that

(1.2) (][Bdeu)l/s gc(][Bftd,u)l/t, BC X.

It is crucial for us that (1.2) holds for every ball B with the same constant ¢. Note
that we allow also negative powers in (1.2). Replacing f by its power, we may
suppose that the reverse Holder inequality is of the form

(1.3) ][Bftd,ugc(][deu)t, B C X,
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where ¢ > 1 or t < 0. If f is locally integrable and satisfies (1.3), we denote
fERH:. If f e RHy, t > 1, then it is well-known that f is locally integrable to a
slightly greater power than ¢. In the Euclidean case this is a result of Gehring [Ge].
On the other hand, if f € RH;, t < 0, a theorem of Muckenhoupt implies that f is
locally integrable to a power which is strictly smaller than ¢. In the limiting case
t = —oo, inequality (1.3) reads

(1.4) ][ fdp < cessinf f, BCX,
B B

and if t = oo it is

(1.5) esssup f < cf fdu, B C X.
B B

The ultimate limit is, of course, a Harnack type inequality

esssup f < cessinf f, B C X.
B B

These inequalities imply higher integrability properties as well: (1.4) implies that
f is locally integrable to a strictly greater power than one and (1.5) implies that
f is locally integrable to a negative power. If p > 1 and t = 1/(1 — p), then
(1.3) is Muckenhoupt’s A,—condition. Limiting inequality (1.4) is Muckenhoupt’s
Aj—condition [M1]. If a locally integrable function f satisfies (1.5), we denote
f € RHoo. For the class RHoo, we refer to Andersen and Young [AY]. See also
[CSN1], [CSN2], [F] and [M2].

We shall show that all the mentioned higher integrability results are variations
on the same theme: minimal and maximal function inequalities. Our proofs are
elementary but they give sharp results and lead to results which are of independent
interest. The basic method was developed in [Ki] and some of the results appeared
already there, although in a slightly less general form. A general principle is that
if we want to prove that the function is locally integrable to a negative power, we
should use the minimal function inequalities; if we want to prove that the function
is locally integrable to a positive power, we should use the maximal function in-
equalities. This resembles the fact that the minimal function contains information
of the function in the set where the function is small whereas the maximal function
obeys the function closely in the set where the function is large. Some sharp results
have been previously obtained in [AS], [BSW], [I], [Kil], [Ki2], [Kol], [Ko2], [N],
[R] and [W].

1.6. Notation. Our notation is standard. However, some comments are due. All
functions are supposed to be p—measurable and non-negative. Lebesgue spaces
LP(X) consist of equivalence classes of functions modulo sets of measure zero for

which
(/ fP du)l/p < 0.
X

For short, the distribution sets {z € X: f(z) > A} are denoted by {f > A}.
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2. Maximal functions. The Hardy-Littlewood maximal function Mf: X —
[0, 0c] of a locally integrable function f is defined by

(2.1) M (a) = sup ][ i,

where the supremum is taken over all open balls B containing x. This definition
gives the non-centered maximal function but is also possible to define the centered
maximal function by taking the supremum over all balls centered at x. Since
the measure is doubling, we see that the non-centered and the centered maximal
functions are comparable and it does not matter which one we choose, but we
state our theorems for the non-centered maximal function only. The term maximal
function is due to the fact that Lebesgue’s differentiation theorem gives f < M f
p-almost everywhere. Because {Mf > A}, A > 0, is open, the maximal function
is lower semicontinuous and hence p-measurable. Our technique is based on the
estimation of the measures of distribution sets. We begin with the standard weak
type estimates, see [S]. We recall the proofs here for reference, because we use a
similar argument in a slightly different context later.

Fix A > 0. Then for every z € {Mf > A} there is a ball B, containing x such

that
][ fdu> A
B,

Using Vitali’s covering theorem [CW, Theorem 2.1] we get countably many pairwise
disjoint balls B;, t+ =1,2,..., and o > 1, so that

oo

{Mf>xc|JoB:

=1

Using the doubling property we find

pAMF > A}) < ZM(UBi) < CZM(Bz')

C > C
< ¢ fap<S [ pan aso
)‘;/Bi A J{Mfsay

where ¢ depends only on the doubling constant. This is the standard weak type
(1,1)-inequality, but there is also an estimate in the reverse direction. To this
end, we fix A > essinfx Mf, then {Mf < A} has positive measure. For every
z € {Mf > A} we take the ball B(x,r,), where r, is the distance from z to the
set {Mf < A}. By Vitali’s covering theorem, we get a countable subcollection of
pairwise disjoint balls B; = B(z;,rs,), 1 =1,2,..., so that

(2.2)

oo

{Mf>Arc|JoB:

=1
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The balls 0B;, i = 1,2, ..., intersect the set {Mf < A} and therefore we have

][ fdp <A, 1=1,2,...
O'Bi

By summing up we get

[T S T

<CAZM ) ScAu({Mf>A}),  A>essinf M.

(2.3)

It follows from this that (2.3) is true for every A > essinfx M f. If A < essinf x Mf,
then p({Mf > A}) = u(X) and inequality (2.3) is true whenever

1
(2.4) A > E][X fdpu,

where ¢ is the same constant as in (2.3).

3. Minimal functions. The minimal function is defined in a similar way as
the maximal function, but instead of a supremum we take an infimum in definition
(2.1). Tt is clear that the same method used in proving the weak type and the reverse
weak type inequalities for the maximal function applies to the minimal function as
well. However, there are some drawbacks due to the fact that the centered and the
non-centered minimal functions are not comparable.

Let f: X — [0,00] be a locally integrable function. The minimal function
mf: X — [0,00] of f is defined by

(3.1) mf () = igff .

where the infimum is taken over all open balls containing x. Again, there is a
centered version of the definition, where the infimum is taken over all balls centered
at . Because these minimal functions are not comparable, in this case it really
matters which one we choose. The minimal functions in the one-dimensional case
have been recently studied in [CSN2]. Lebesgue’s differentiation theorem implies
that mf < f p-almost everywhere. The set {mf < A}, A > 0, is open and hence
the minimal function is upper semicontinuous. Observe, that if u(X) = oo and f is
integrable to a power greater than one, then mf = 0. We shall make an additional
assumption that the measure given by f du is doubling, which means that there is
¢ > 1 so that

(3.2) Ldeugc/deu, B C X.
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If feRH_¢, t >0, then (3.2) holds because

LE c( e du)_l/t

—1t
<c][ - d,u <c][ fdu, B C X.

Here we also used the fact that measure p is doubling. The last constant ¢ depends
only on the constants in (1.3) and (1.1). Fix A > 0. Then for every =z € {mf < A}
there is a ball B, such that
][ fdu <A
B,

Using Vitali’s covering theorem we get countably many pairwise disjoint balls B;,
1=1,2,..., so that

{mf <A} C [OJUBZ-.

=1

By (3.2) we have

/{mfo}fdﬂgio:/UB_fd“SCf:/Bifdu

<c)\z,u ) < cAp({mf < A}), A > 0.

(3.3)

This corresponds to the weak type (1,1)-inequality for the minimal operator under
additional assumption (3.2). For the centered minimal operator in R™ estimate
(3.3) can be proved using Besicovitch’s covering theorem without assumption (3.2),
but it turns out that the non-centered minimal function is the right tool in studying
higher integrability properties.

As the reader may guess, there is also a reverse weak type inequality for the
minimal function. To see this, fix A with 0 < A < esssupy mf. Then the set
{mf > A} has positive y-measure. For every = € {mf < A} take the ball B(z,r;),
where r, is the distance of 2 from the set {mf > A}. By Vitali’s covering theorem,
there are countably many pairwise disjoint balls B;, 2 = 1,2,..., so that

{mf <A} C UO’B,L'.

=1

The balls 0B;, i = 1,2, ..., intersect the set {mf > A} and therefore

][ fdp> A, 1=1,2,...
oB;
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Summing up we get

p{mf <A}) <

> u(
(3.4) =t
3

oB;) < CZ 1(B;)

< / fdugf/ fdpu, 0 < A < esssupmf.
B; A Jgmp<ny

X

Again, it is easy to see that inequality (3.4) holds whenever 0 < A < esssup y mf.
The constant in (3.4) equals the doubling constant in (1.1). If esssupy mf < A <
oo, then p({mf < A\}) = u(X) and (3.4) holds whenever

(3.5) A< c][X fdu.

Observe that we did not use hypothesis (3.2) in proving (3.4).

4. Basic equalities. In this section we prove a couple of elementary but useful
equalities which are simple consequences of Fubini’s theorem.

4.1. Lemma. Let v be a measure on X. If f: X — [0,00] is a v-measurable
function, 0 < r < oo and 0 < a < oo, then

(4.2) /{f> v r/oo NU({f > M) dA+ o' v({f > a)).

Proof. By Fubini’s theorem we get
/ N lw({f > A dr = / / A oy dv dA
a a X

o0 f
:// A foay dA dy = /X“—ldAdy.
X Ja {f>a}Ja

Since r > 0, we can integrate to obtain

s 1
/ / X"—ldAdu:—/ (ff —a")dv
{f>a}Ja " J{f>a}

- %(/{f>a} frdv=atv({f > 0‘}))’

which is the desired equality. O

(4.3)

There is also a formula corresponding to (4.2) for the negative exponents.
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4.4. Lemma. Let v be a measure on X. If f: X — [0,00] is a v-measurable
function, 0 < r < oo and 0 < a < 00, then

(4.5) / frdv = r/ AL < A dA+a "v({f < a}).
{f<a} 0
Proof. Using Lemma 4.1 for 1/f we get

/ fTdv = r/oo Nlw({f <1/AD)dh+ " v({f < 1/a}).
{f<1/a} @

Replacing « by 1/« and changing variables we obtain

/ F"dy = r/m NI f < 1A dA+ o~ v({f < a))
{<a) o

= r/oa AL < AN dA+ a7 "v({f < a}).
(]

5. Muckenhoupt’s condition A;. In this section we show that functions sat-
isfying Muckenhoupt’s condition .4; are locally integrable to a power greater than
one. This section is essentially from [Ki], but we present it here to show the the
analogy between classes A; and RH. It is easy to see that A;-condition

(5.1) ][ fdu < cessinf f, B C X,
B B

is equivalent to
(5.2) Mf<cf
and hence by (2.3) we get

(5.3) / Mfdp < cAu({Mf > A}), essinf Mf < A < o0.
{MF>2} X

The constant in (5.3) depends on the A;-constant in (5.1) and the doubling con-
stant in (1.1). Observe that the constants in (5.1) and (5.2) are the same. This
indicates that the non-centered maximal function is the right tool in studying the
Ai-condition. The crucial difference between the centered and the non-centered
maximal functions in the Euclidean case when p equals the Lebesgue measure is
that for the non-centered maximal function M f = f is equivalent to the fact that
f is constant, but in the centered case it is equivalent to the fact that f is super-
harmonic, see [KiM].
Any p-measurable function f: X — [0, oo] satisfies Chebyshev’s inequality

(5.4) u({f>A}>s1/ fdp,  0<A< oo
A J{f>ay

If we replace the maximal function in (5.3) by any pu-measurable function f: X —
[0, 00] we see that (5.3) is a reverse Chebyshev’s inequality.
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5.5. Theorem. If there are a« > 0 and ¢ > 1 such that
(5.6) / fdp < cap({f > A}), a <A< oo,
{f>x}

then for everyr, 1 <r < c/(c—1), we have
c
(5.7) | fdns —fatu(s > a),
(f>a} c—r(c—1)

5.8. Example. The upper bound for exponent r and the constant in (5.7) are
optimal. To see this, fix ¢ > 1, take X = (0,1)", let p be the Lebesgue measure
and define

fiX =000, f(z)=a)/"""

A direct calculation shows that f satisfies (5.6) with constant ¢ for every A > 1.
However, the function f is not integrable to any power r > ¢/(¢—1). This example
also shows that the constant in (5.7) is sharp.

Proof of Theorem 5.5. Let 8 > o and denote fg = min(f, ). Then

[ fdn<oufs> o), a<i<e
{fs>A}

and we apply (4.2) with dv = fdu and r replaced by r — 1 and get

| maws | g
{f>a} {f>a}

1) [ dpdX + o™ d
<cr=1) [ N ul{fa > A A+ ea’u({f > ).

Next we estimate the first integral on the right side using (4.2) and find

[ttt > = ([ gpdu- ot > ah),

r

Hence we obtain
r—1

C
frau<e= [ ppans Satudf > a).
/{f>a} rJ{f>a} r

Choosing 7 > 1 such that ¢(r — 1)/r < 1 and using the fact that all terms in the
previous inequality are finite, we conclude that

T C ,
/{f>a} Tpdn s =@ riS > ad).

Finally, as 8 — oo, the monotone convergence theorem gives inequality (5.7). This
proves the theorem. O
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By Chebyshev’s inequality ¢ > 1 in (5.6). If there is @ > 0 such that f satisfies
(5.6) with ¢ = 1, then esssupy f < a. To see this, we use (5.6) with A = a and get

0< [ (- du<an((s > ah) - an({f > a)) =0,
{f>a}

from which it follows that

[ g-wa=o,
{f>a}

and, consequently, f < o in X. In fact, a function satisfies (5.6) with ¢ = 1 if and
only if it is essentially bounded. However, Example 5.8 shows that for any ¢ > 1
there are unbounded functions satisfying (5.6).

The assumptions of the previous theorem imply that f is integrable in {f > «}
and, because u(X) < oo, it is integrable in X, but the conclusion is that f is
integrable in X to any power r, 1 < r < ¢/(c — 1). In particular, the degree of
integrability increases to infinity as ¢ tends to one, as the borderline case ¢ = 1
suggests. For related results, see [BSW, Lemma 2], [Ge, Lemma 1], [I] and [M1,
Lemma 4].

Suppose that f € Ay. Using (5.3) we see that M f fulfills the assumptions of
Theorem 5.5. From (5.7) we conclude that Mf € L"(X), and hence f € L"(X),
for some r > 1. Moreover, we obtain estimate

/ f’"dug/ (Mf)Tdu+/ (MF)" dp
X {Mf<La} {Mf>a}
(5-9) < o p({MF < a}) + ca” p({MF > a})

< ca"u(X), esinnf./\/lf < a<oo.

If @ < essinfx M f, then in the same way as in (2.4) we see that (5.9) is true for
every « such that

1
—][ fdp < a< oo
¢J x

In particular, choosing = 1 . fdpu, we get

][X frdp < c(][deu)T.

6. The class RH,. There is a strong analogy between classes A; and RH. In
the previous section we used the maximal function to study integrability questions
for functions belonging to A;. In this section we prove analogous results for RH -
functions using the minimal function. It is easy to see that R7H.-condition

(6.1) esssup f < c][ fdu, BCX
B B
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is equivalent to the requirement that
(6.2) f<emf

and hence using (3.4) and (3.5) we get
(6.3) p({mf < A}) < E/ mf dpu, 0 <A <esssupmf.
AJgms<ny x

We shall see that this inequality implies that f is locally integrable to a negative
power. Observe, that in the Euclidean case with the Lebesgue measure, for the non-
centered minimal function mf = f is equivalent to the fact that f is constant, but
for the centered minimal function it is equivalent to the fact that f is subharmonic.

We replace the minimal function by any p-measurable function f: X — [0, o]
for which an inequality of type (6.3) is true. Clearly for any such f we have
Chebyshev’s inequality

(6.4) / Fdu<Ap{f <A},  0<A<o,
{f<A}

and hence inequality (6.3) is a reverse Chebyshev’s inequality. Next we prove an
analog of Theorem 5.5, where instead of (5.6) we assume inequality of type (6.3).

6.5. Theorem. If there are « > 0 and ¢ > 1 so that

(6.6) u({f</\})§£/ fdu,  0<A<a,
A J{r<ny

then for every 0 < r < 1/(c— 1) we have

c
(6.7) | rrdns et aul{f <))
{f<a} 1_T(C_ 1)
6.8. Example. The upper bound for the exponent and the constant in (6.7) are
sharp. To see this, fix ¢ > 1, let X = (0,1)™ and define
f: X —=[0,00], f(z)=ai"

Then (6.6) and (6.7) become equalities and f is not integrable to power 1/(1 — ¢).
Proof of Theorem 6.5. Let 0 < 8 < o and denote fg = max(f, ). Then

C
M({fﬂ<A})§X/ fpdu, 0< A<
{fs<A}

We multiply both sides by A="~! and integrate from 0 to « to get

[ oAt <arze [ [ fyduan
0 0 {fa<r}
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By (4.5) the integral on the left side equals to

H( g an—amradis < )

and the integral on the right side is

1 / _
f ’"du—a_’"_l/ fadp).
7"+1< (1<’ {f<a} )

Combining these estimates, we get

T C
faldu<ec / fa"dp + —oz_T_l/ fs dp.
/{f<a} g r+1 /<oy’ r+1 {f<a}

Because all integrals are finite, we obtain

r c
(1—0 )/ faldu < —04_’"_1/ fadu
r+1 {f<a} B r+1 {f<a}

< qeTHdf < o)),

Finally, choosing 7 > 0 so that » < 1/(¢ — 1) and letting § — 0, we get (6.7). This
completes the proof. O

By (6.4) the constant in (6.6) satisfies ¢ > 1. If ¢ = 1, then

— dy = _ du —
0< /{fﬁa}m £)dp = ou({f < a) /{M}f =0,

and hence

/ (a— f)dp=0.
{f<a}

This implies f > « in X and therefore essinfx f > «. In this case f is integrable
to any negative power in X. Inequality (6.7) implies that f is locally integrable to
power —r for every 1 < r < 1/(c— 1) and the upper bound increases to infinity as
¢ tends one. For related results, see [N].

If f € RHo, then Theorem 6.5 implies that

—d mf)™"d mf) " d
|1 MS/{mf<a}( ) u+/{mf2a}( £ d
(6.9) <ca "p({mf < a})+a " up{mf > a})

< ca " pu(X), 0 < a<cesssupmf.
X
The same reasoning that gave (3.5) also implies that (6.9) holds for every a with
0<a< cf fdu.
X
Hence we may take a = cfX fdp and we get

][X fdp < c(fxfdu)_T-

This shows that f is integrable to power —r.
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7. Maximal functions and reverse Holder inequalities. If f € RH;, t > 1,
a similar argument that lead to (2.3) gives

o0 o0 ¢
/{Mf»}f M_; . u_c;( ot u) (o B;)

<A p(oBi) < eXY  u(Bi)
i=1 i=1

< e Atp({Mf > A}, es%(inf/\/lf <A< oo,

(7.1)

The constant ¢ in (7.1) depends only on the constant in the reverse Holder inequality
and the doubling constant. If A < essinfx M f, then uy({Mf > A}) = p(X) and

(7.1) holds whenever
1 1/t
(—][ f d,u) <A< oo
¢J x

and using the hypothesis that f satisfies the reverse Holder inequality we see that
(7.1) holds for any

f fdu <A< oo.
X

We show that (7.1) together with the weak type estimate (2.2) imply that f €
L"(X) for some r > t. We begin with proving a general Hardy type inequality.

7.2. Lemma. If there is a > 0 such that
1

(7.3 alo> <y [ fdn a<ia<os
A Jig>xny

and the integral on the right side is finite, then for 1 <t < oo and 1 < r < oo we
have

(7.4) / g dp < ( : )t/ g ' dp.
{g>a} =1 {g>a}

Proof. Let > a. Using (7.3) we see that assumption (7.3) holds with g replaced
by gs = min(g, 8). Using (4.2) we get

/{ pn = [ A tullgn > A dr+ aull > a)
g>a a

<rx [ fdpaxeatutls> o)
a {98>X}

and
oo 1
/ ,\’"—2/ fdpdh = (/ g};_lfdu—a’"‘l/ fdu)-
a {gs>2} =1\ J{g>a} {g>a}
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Hence

r T r—1 1 r
gpdp < / g5 fdp— ——a"u({g > a})
/{g>a} g r—1Jigsay "’ r—1
T

< / g5 f d.
r—1J/(g5a1””

Holder’s inequality gives

1/t (t—1)/t
r—1 r—t pt r
gs [dp < / g [ dp / gp dp ;
/{9>a} g ( {g>a} g ) ( {g>a} )

and since

/ gpdp < BT u{g > a}) < oo,
{g>a}
we get (7.4) letting 8 — oc. O

Suppose, that f is integrable to a power r > 1 in X and recall the weak type
inequality (2.2) for the maximal function. From (7.4) with ¢ = r > 1 we obtain

Jopranse () [ e

Here ¢ is the constant in (2.2). This is the Hardy-Littlewood-Wiener maximal
function theorem.

7.5. Theorem. If there are « > 0,t > 1, ¢; > 1 such that (7.3) is true and
(7.6) / fldp < e X'u({g > A\}), a <\ < oo,
{g>A}

then for every r >t for which

r—t/ 1 \!
7.7 ( ) <1,
(7.7) A\
we have
(7.8) | grdn<caulls > ap.
{g>a}

Here co = co(r,t,cq).

The next example shows that the upper bound given by (7.7) is the best possible.
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7.9. Example. Let X = (0,1)" and fix ¢; > 1. Suppose that t > 1 and r > ¢ are

such that
r—t r t
C1 ( ) =1.
T r—1

Note that by continuity, we can always pick such a number r for any given ¢; and
t. We define

f: X =R, f(a:)z:nl_l/r and g: X - R, g(m)zrilf(.r).

It is easy to see that the hypotheses of Theorem 7.5 are fulfilled. However, g is not
integrable to the power 7 in {g > «a}. This example also shows that the constant
in (7.4) is sharp.

Proof of Theorem 7.5. Let 8 > «. The truncated function gg = min(g, ) satisfies
the assumptions of the theorem. Using (4.2) we get

[T /{ i< [ X tutlan > A ax
« 98> @

C1

= ([ apan—orutto > a))

and

/ g5 ' fdp = (r—t) / ATl / ftdudi+a" " / ftdp.
{g>a} a {g5>7} {g>a}

Therefore we have

r—t

t
(7.10) / gg_tft dp < ¢ / gpdp+ci—a"u({g > a})
{9>a} {g>a} r

and inequality (7.4) yields

r—t ro\?t t r o\t
grdp < cy / gpdp+ci—|——) " u({g > a}).
/{g>a} g T <r—1) {g>a} A r(r—l)

Since

| gpdus< putig > a)) <o,
{g>a}

we may choose r > t so that (7.7) holds and we get
| ghdn < caautly > a),
{g>a}

where co = co(r,t,c1). Letting f — oo, we see that (7.8) holds and the proof is
complete. O
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By Hélder’s inequality ¢; > 1. If (7.6) holds with ¢; = 1 and all the other
assumptions of Theorem 7.5 are satisfied, then by Holder’s inequality we have

1/t

A A d td AP

wlo>ms [ pans ([ tan) > A
<ail{g>A).  a<A<oo

and hence all the inequalities are equalities. This is possible if and only if u({g >
a}) =0or f =« in {g > a}, since an equality occurs in Holder’s inequality only
in that case. jFrom this it follows that esssup g < a.

Assumption (7.6) implies that f € L!(X) and Lemma 7.2 implies that also
g € L'(X). (From (7.8) we conclude that g € L"(X) for any power 7 > ¢ for which
(7.7) holds. In particular, if ¢; tends to one, the degree of integrability increases to
infinity corresponding to the borderline case ¢; = 1. On the other hand, if ¢; goes
to infinity, the degree of local integrability decreases to t.

If f € RHi;, t > 0, then the assumptions of Theorem 7.5 are fulfilled by cf
and M f, where c is the constant in (2.2), see inequalities (7.1) and (2.2). Using
Theorem 7.5 we see that

/frdMS/ (Mf)rd,qu/ (MF) dp
X {Mf<a} {Mf>a}
<ca'p({Mf < a}) +a"p({Mf > a})

< ca”"u(X), c][ fdp < a< oo
b'e

fdeu<cf fd;L)T

and consequently f € L"(X) for some r > t.
IffeRH_t t>0, exactly the same way as in (2.2) we get

Hence we get

t

/{Mf>/\} frns g][aBi I Cg (][UBZ- fdﬂ)_ (o B;)
= Ci (][ fd,u) _tu(Bi) <edt iM(B
i=1 v B i=1

<A u({Mf > A}, 0<A< oo

(7.11)

The constant ¢ in (7.11) depends only on the constant in the reverse Holder in-
equality and the doubling constant.

Next we show that estimate (7.11) and the reverse weak type inequality (2.3)
imply that f is locally integrable to a slightly greater power than one. We empha-
size that qualitatively this result follows from Theorem 7.5, because by Holder’s
inequality we have

foramedf rra ™ <olf ra)", nex
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for any 0 < s < 1. But in order to obtain sharp results, we need another argument.

First we prove an analog of Lemma 7.2 where assumption (7.3) is replaced by an
inequality of type (7.11).

7.12. Lemma. Suppose that —co < —t < 0 < r < oo. If there are « > 0 and
c1 > 1 such that

(7.13) / fhdp < e )7tu({g > A}), a <A< oo,
{g>A}

and the integral on the right side is finite, then

r r+1 1/t r—
(7.14) / g dp < (cl ) / g L fdu
{g>a} r {g>a}

Proof. We observe that the truncated function gg = min(g, 5), 8 > «, satisfies
(7.13). Then we proceed exactly as in the proof of Theorem 7.5 and get

r+t

T — ' t T
/ g5 T dp < e / gpdp —c1—a"u({g > a})
{g>a} {g>a} r

¢
<ot / 9p dp.

Holder’s inequality implies

/{g>a} ggtt Tt dp > (/{g>a}g};_1f du) _t(/{ g5 du)t+1

g>a}
and hence . iy .
T r T
(/ ggdu) < e (/ 95 lfdu) :
{g>a} r {g>a}
We get the claim letting 5 — oc. O

7.15. Theorem. If there are « > 0,t >0, ¢c; > 1 such that (7.13) holds and

(7.16) / fap<an(fg> A},  a<A<oo
{g>X}

then for every r > 1 for which

tor— 1yt
(7.17) ol (T ) <1,
T T

we have

(7.18) /) g du < csa”u({g > )
{g>a}
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with co = co(t,r, cq).

Proof. The proof goes along the lines of the proof of Theorem 7.5 and we use the
same notation as there. Using assumption (7.16) and the case ¢; = 1 ¢t = 1 of
inequality (7.10) we get

T

r—1 r—1 r a
g5 fdp< / gpdp+ —p({g > a}).
/{g>a} P r Jigsa r

Observe, that in the proof of (7.10) we assumed that ¢ > 1, but it is also valid when
t = 1. Then (7.14) implies

, r—17 r+t\Ut , 1/ r+t\/t |
g dp < (01 ) / gp dp+ (01 ) o p({g > a}).
/{9>a} " {g>a} " "

r

Since

/ gpdp < B u({g > a}) < oo,
{g>a}

we may choose r > 1 such that (7.17) holds and we get
| gpdu<catulis> a))
{g>a}

where co = ca(t,r, c1). Letting f — oo, we see that (7.18) holds and the proof is
complete. O

Modifying the functions in Example 7.9, we see that the upper bound given by
(7.17) is the best possible. Combining (7.13), (7.16) and Hoélder’s inequality, we see
that ¢; > 1. If ¢; = 1, then g is essentially bounded.

If f € RH_4, t > 0, then ¢ f, here ¢ is the constant in (2.3), and M f fulfill
the hypotheses of Theorem 7.15. Thus (7.18) implies

[rans [ oapyans [ oy
b'¢ {Mf<a} {Mf>a}
< o' p({Mf < a}) + cau({IMS > a})

< ca"pu(X),

for any r > 1 such that (7.17) holds. By (2.4) we may take o = ¢~ f fdu and

hence we have
][ frdp < c(][ fdn)
X X

This shows that f € L"(X).
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8. Minimal functions and reverse Holder inequalities. If f € RH_;, t > 0,
then in exactly the same way as deriving (3.4) we get

oo

/{mf</\} frhns g 0B, [Tdpse) <f | fd“) uloB)

i=1 7 oBi

(8.1) <eTt i p(oB;) < e i 1(B;)

<eAtu({mf < A}), 0 < XA <esssupmf.
b'e

In fact, if esssupy f < A < oo, then p({mf < A}) = p(X) and (8.1) is true

whenever ) Ut
0<A< (—][ f‘tdu) .
¢J x
Since f € RH_;, we see that (8.1) holds if
0<A §][ fdp.
X

We begin with proving that weak type inequality (3.3) implies a strong type
inequality for the negative powers.

8.2. Lemma. Suppose that 0 < r < oo and 0 <t < oco. If there is a > 0 so that

(8.3) / fdu < u({h <A},  0<A<a,
{h<A}
then
- 41\t t—r p—t
(8.4) e dp < () BT dp,
{h<a} r {h<a}

whenever the right side of (8.4) is finite.

Proof. Let 0 < 8 < a and denote hg = max(h,3). Then hg satisfies the assump-
tions of the theorem. We multiply both sides by A~("*2) and integrate from 0 to «
to get

[ [ pauix< [T At (g < ap)an
0 {hg<A} 0

By (4.5) the left side equals to

1 / —r—1 —(r+1
" fdy— a0t )/ fdu
r+1 ( {h<a} B {h<a} )

and the right side is

%(/{h<a} hg"dp — o~ " p({h < a})).
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Combining these and using Holder’s inequality, we find
r

1
h" dp > / hz" " dp + —a—’"—lf fdp
/{h<a} P r+1 Jiheay © r+1 {h<a}

r

> —— hy" ' f dp
r+1 /{h<a} A

-1/ /
) (e

Since all integrals are finite, we get

1 t
/ hg"dp < (T il ) / R dp.
{h<a} r {h<a}

The claim follows from the monotone convergence theorem as 3 — 0. O

Lemma 8.2 shows that if f: X — [0, oc] is integrable to power —r, then

[y anse () [

This corresponds the Hardy-Littlewood—Wiener theorem for the minimal function.
8.5. Theorem. If there are « >0, ¢t > 0 and ¢1 > 1 such that (8.3) holds and

(8.6) / Ftdp < e tu({h <A}, 0<A<a
{h<}
then for every r >t for which
r—1t/r+1\?
(8.7) o ( - ) <1,

there is co = co(t,r,c1) so that
(8.8) / h="dp < caa™"u({h < a}).
{h<a}

Proof. Let 0 < < a and denote hg = max(h, §). Then hg fulfills the assumptions
of the theorem. By (4.5) we have

/ WG dp = (r —t) / A~ (r=tHD) / ftdpd\ + ot™" / f~tdu
{h<a} 0 {hg<A} {h<a}

<ci(r—t) /Oa A=Y u({hg < X)) dA 4 cra”"u({h < a})

r—1t

:Cl
T

t
/ h5" dp+ e sa p({h < a}).
{h<a} r

Then Lemma 8.2 yields

r—1/r+1\* t/r+1\¢
hz" du < e¢q / hy" dp + ¢1— a "u({h < a}).
/{h<a} B r < r ) {h<a} p T'( r )

Since all integrals are finite, we conclude that there is ¢ = co(t, 7, ¢1) so that

/ hg" dp < coa™"u({h < a})
{h<a}

whenever 7 > ¢ such that (8.7) holds. The claim follows letting 5 — 0. O
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Again, the upper bound given by (8.7) is sharp. If ¢; = 1, then essinf h > « and
h is integrable to any negative power. If ¢; tends to one, then the upper bound
given by (8.7) goes to infinity as we may expect.

Suppose that f € RH_4, t > 0. Inequalities (8.1) and (3.3) ensure that cf, ¢
is the constant in (3.3), and mf satisfy the assumptions in Theorem 8.5. Hence,
using (8.8), we find that

[ £ du= /{ o ()T /{ )

<ca"p({mf < a}) + o "p({mf > a})
< ca” " pu(X).

The discussion after (8.1) shows that we may take o = ¢y f dp and a substitution

gives
][X T dp < c(][deu)_r-

Hence there is r > t so that f is integrable to power —r.
If f € RH:, t > 1, then exactly the same way as in (3.2) we have

/{mf<A} s g/as Jhin < Cg <][UB. fdl‘)t“(”Bi)

3

< (f, 1) um) < xS

< cAu({mf < A}), 0<A<oo.

(8.9)

Observe that we used the additional hypothesis (3.2) here.

8.10. Lemma. Suppose that 0 < r < oo, 1 <t < oo. If there are « > 0 and
c1 > 1 such that

(8.11) / frdu < e Xtu({h < A\}), 0<A<a,
{h<A}
then
t\ 1/t
(8.12) / W dp < (clr+ ) / W dp,
{h<a} r {h<a}

whenever the right side of (8.12) is finite.

Proof. Using the same argument as in the proof of Theorem 8.5 we obtain

—t—7r r+i —r t o,
/ hﬁt fldu < ¢y / hg" dp—ci—a™"p({h < a})
{r<a} " J{h<a} r

§01T+t/ hg’"d,u.
r {h<a}
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Holder’s inequality implies

1/t 1-1/t
h—l—?“f d,Uz S / h—t—?“ft dllz / ho' d,Uz
-A;<a} A ( {h<a} A ) ( {h<a} g )

and therefore

N1/
Wt fdp < (e / ha" dp.
/{h<a} P ( r ) {h<a} A

We get the claim making [ — oc. O

8.13. Theorem. If there are o> 0,t > 1 and ¢1 > 1 such that (8.11) is true and

(8.14) w({h < A}) < 1/ fdu  0<Ar<a,
A Jih<ny

then for every r > 0 for which

T+t T o \?
1 1
(8.15) “ T <r+1) <
we have
(8.16) / h="dp < caa™"u({h < a}).
{h<a}

Here co = co(t,r,cq).

Proof. Let 0 < 8 < a and denote hg = max(h,3). Then hg satisfies the assump-
tions of the theorem. By (4.5) we have

/ By dy = r/ ACHD u(fhy < AV A+ o~ p({h < a})
{h<a} 0

< r/ A~(r+2) / fdpd\+ o "u({h < a})
0 {hg<A}

T a "

< hy" "l fd h :
< T e < o

Then we apply (8.12) and get

r AR a "
hy"du < c1 / hg" dp+ p({h < a}).
/{h<a} B T'+1< T ) {h<a} B T

Since all terms are finite, we conclude that

/ hg" dp < coa™"p({h < a})
{h<a}

with cg = ¢o(t, 7, ¢1) if r > ¢ such that (8.15) holds. The claim follows letting 5 — 0.
(]
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If ¢4 = 1, then essinf h > « and h is integrable to any negative power. If ¢q
tends to one then the upper bound given by (8.15) increases to infinity.

Suppose that f € RH, t > 1. Using (8.9) and (3.4) we see that c¢f and mf
satisfy the hypotheses of Theorem 8.13. Hence

Tdu < “Tdu+ —d
/X Fdu < /{ Lm0 /{ T
< ca~"p({mf < a}) + a~"u({mf > a})

< ca”"p(X), 0<a§c][ fdup.
b'e

Substitution o = ¢f 5 f dp yields

][X T dp < c(fxfdu>_T-

Therefore f is integrable to power —r.
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