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Abstract. We study the action of so-called discrete maximal op-
erator on Newtonian, Hölder and BMO spaces on metric measure
spaces equipped with a doubling measure and a Poincaré inequal-
ity. The discrete maximal operator has better regularity properties
than the standard Hardy-Littlewood maximal operator and hence
it is a more flexible tool in this context.

1. Introduction

By the maximal function theorem of Hardy, Littlewood and Wiener,
the Hardy-Littlewood maximal operator is bounded on Lp(Rn) when
1 < p ≤ ∞. The action of the maximal operator on some other function
spaces is rather well understood as well. Indeed, Bennett, DeVore and
Sharpley showed in [3] that the maximal operator is bounded on BMO
(functions of bounded mean oscillation), provided it is not indentically
infinity. It is also known that the maximal operator is bounded on the
first order Sobolev spaces W 1,p(Rn) when 1 < p ≤ ∞. For this, we
refer to [17]. In particular, when p = ∞, this implies that the maximal
operator is bounded on Lipschitz continuous functions and a similar
argument shows that it is bounded on Hölder continuous functions as
well. In [8], Chiarenza and Frasca showed that the maximal operator
is bounded on Morrey spaces and they also gave a very elegant proof of
the boundedness on BMO. For other related results see, for example,
[2], [14], [23], [24] and [26].

In this work, we consider the action of the maximal function on So-
bolev spaces, called Newtonian spaces, in metric measure spaces, see
[31]. Many boundedness properties of the maximal operator follow
from the fact that the maximal operator commutes with translations.
It is clear that we do not have this property available in a metric
space. Moreover, a slightly unexpected phenomenon was observed by
Buckley in [7]. Indeed, he gave an example which shows that the
Hardy-Littlewood maximal function of a Lipschitz continuous function
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may even fail to be continuous. Under an additional assumption on
the measure, called the annular decay property, Buckley proved that
the standard maximal operator maps Lipschitz continuous functions to
Hölder continuous functions. Thus differentiablity properties are not
preserved, in general. Under a similar but stronger condition Mac-
Manus showed in [28] that the maximal operator preserves Haj lasz
type Sobolev spaces. A suitably modified version of his result holds for
Newtonian spaces as well.

These phenomena clearly indicate that the standard Hardy-Littlewood
maximal operator may not be the correct object to study in the point
of view of regularity. In this work, we consider a discrete maximal op-
erator, which seems to have better regularity properties. Its definition
is based on the approximations of the function in terms of partitions of
unity and Whitney type coverings. This kind of maximal function has
been studied in [18] in connection with pointwise behaviour of Newto-
nian functions defined in the whole space. See also [1] and [22]. The
main objective of this work is to focus on the case, when the maximal
function is defined in a subdomain. Some of our results were announced
and sketched already in [22], but here we provide detailed arguments.
For almost all practical purposes, we can replace the standard max-
imal operator with the discrete maximal operator, because they are
equivalent with two sided inequalities. We show that the discrete max-
imal operator preserves the Newtonian, Hölder and BMO spaces, if
the measure is doubling and the space supports a Poincaré inequality.
These are rather standard assumptions in analysis on metric measure
spaces. In particular, we do not assume, for example, the annular de-
cay property for the measure. Our results cover function spaces that
are relevant in connection with Sobolev embedding theorems.

Acknowledgements. The authors are supported by the Finnish Acad-
emy of Science and Letters, the Vilho, Yrjö and Kalle Väisälä Found-
ation.

2. Preliminaries

2.1. Doubling measures. Let X = (X, d, µ) be a complete metric
space endowed with a metric d and a Borel regular measure µ such
that 0 < µ(B(x, r)) <∞ for all open balls

B(x, r) = {y ∈ X : d(y, x) < r}

with r > 0.

The measure µ is said to be doubling, if there exists a constant cµ ≥ 1,
called the doubling constant of µ, such that

µ(B(x, 2r)) ≤ cµµ(B(x, r)),
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for all x ∈ X and r > 0. Note that an iteration of the doubling property
implies, that if B(x,R) is a ball in X, y ∈ B(x,R) and 0 < r ≤ R <∞,
then

µ(B(y, r))

µ(B(x,R))
≥ c
( r

R

)Q

(2.1)

for some c = c(cµ) and Q = log cµ/ log 2. The exponent Q serves as a
counterpart of dimension related to the measure.

2.2. Upper gradients. A nonnegative Borel function g on X is said
to be an upper gradient of a function u : X → [−∞,∞], if for all
rectifiable paths γ : [0, 1] → X we have

|u(γ(0)) − u(γ(1))| ≤

∫

γ

g ds, (2.2)

whenever both u(γ(0)) and u(γ(1)) are finite, and
∫

γ
g ds = ∞ oth-

erwise. The assumption that g is a Borel function is needed in the
definition of the path integral. If g is merely a µ-measurable function
and (2.2) holds for p-almost every path (i.e. it fails only for a path
family with zero p-modulus, p ≥ 1), then g is said to be a p-weak up-
per gradient of u. If we redefine a p-weak upper gradient on a set of
measure zero we obtain an upper gradient of the same function. If g is
a p-weak upper gradient of u, then there is a sequence gi, i = 1, 2, . . . ,
of upper gradients of u such that

∫

X

|gi − g|p dµ→ 0

as i → ∞. Hence every p-weak upper gradient can be approximated
by upper gradients in the Lp(X)-norm. If u has an upper gradient
that belongs to Lp(X) with p > 1, then it has a minimal p-weak upper
gradient gu in the sense that for every p-weak upper gradient g of u,
gu ≤ g almost everywhere.

2.3. Newtonian spaces. We define the first order Sobolev spaces on
the metric space X using the p-weak upper gradients. These spaces
are called Newtonian spaces. For u ∈ Lp(X), let

‖u‖N1,p(X) =
(

∫

X

|u|p dµ+ inf
g

∫

X

gp dµ
)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The
Newtonian space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(X) = 0. The same definition
applies to subsets of X as well. The notion of a p-weak upper gradient
is used to prove that N1,p(X) is a Banach space. For the properties of
Newtonian spaces we refer to [31], [32] and [5].
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2.4. Capacity. The p-capacity of a set E ⊂ X is the number

capp(E) = inf ‖u‖pN1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u = 1 on E.
We say that a property regarding points in X holds p-quasieverywhere
(p-q.e.) if the set of points for which the property does not hold has
capacity zero. If u ∈ N1,p(X), then u ∼ v if and only if u = v p-q.e.
Moreover, if u, v ∈ N1,p(X) and u = v µ-a.e., then u ∼ v. Hence, the
capacity is the correct gauge for distinguishing between two Newtonian
functions.

To be able to compare the boundary values of Sobolev functions we
need a Sobolev space with zero boundary values. Let E be a measurable
subset of X. The Sobolev space with zero boundary values is the space

N1,p
0 (E) = {u|E : u ∈ N1,p(X) and u = 0 p-q.e. in X \ E}.

The space N1,p
0 (E) equipped with the norm inherited from N1,p(X) is

a Banach space.

2.5. Poincaré inequality. We say that X supports a weak (1, p)-
Poincaré inequality if there exist constants c > 0 and τ ≥ 1 such that
for all balls B(x, r) ⊂ X, for all locally integrable functions u on X
and for all p-weak upper gradients g of u,

∫

B(x,r)

|u− uB(x,r)| dµ ≤ cr
(

∫

B(x,τr)

gp dµ
)1/p

, (2.3)

where we denote

uB(x,r) =

∫

B(x,r)

u dµ =
1

µ(B(x, r))

∫

B(x,r)

u dµ.

Note that since p-weak upper gradients can be approximated by up-
per gradients in the Lp(X)-norm, it would be enough to require the
Poincaré inequality for upper gradients only.

By the Hölder inequality it is easy to see that if X supports a weak
(1, p)-Poincaré inequality, then it supports a weak (1, q)-Poincaré in-
equality for every q > p. If X is complete and µ doubling, then it
is shown in [15] that a weak (1, p)-Poincaré inequality implies a weak
(1, q)-Poincaré inequality for some q < p. Hence (1, p)-Poincaré in-
equality is a self improving condition.

2.6. General assumptions. Throughout the work, we assume that
X is complete, µ is doubling and X supports a weak (1, p)-Poincaré
inequality. This implies, for example, that Lipschitz functions are dense
in N1,p(X) and that the Sobolev embedding theorem holds, see [5].
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3. The global maximal function

This section is devoted to the definition and basic properties of the
discrete maximal function defined on the whole space. The definition
is based on the following four ingredients.

3.1. Covering of the space. Let r > 0. Since the measure is doubling
there are balls B(xi, r), i = 1, 2, . . . , such that

X =
∞
⋃

i=1

B(xi, r)

and
∞
∑

i=1

χB(xi,6r) ≤ N <∞.

This means that the dilated balls B(xi, 6r), i = 1, 2, . . . , are of bounded
overlap. The constant N depends only on the doubling constant and,
in particular, it is independent of r.

3.2. Partition of unity. We construct a partition of unity subordin-
ate to the covering B(xi, r), i = 1, 2, . . . , of X. Indeed, there is a
family of functions ψi, i = 1, 2, . . . , such that 0 ≤ ψi ≤ 1, ψi = 0 in
X \ B(xi, 6r), ψi ≥ ν in B(xi, 3r), ψi is Lipschitz with constant L/ri
with ν and L depending only on the covering, and

∞
∑

i=1

ψi(x) = 1

for every x ∈ X. The partition of unity can be constructed by first
choosing auxiliary cutoff functions ϕi so that 0 ≤ ϕi ≤ 1, ϕi = 0 on
X \ B(xi, 6r), ϕi = 1 in B(xi, 3r) and each ϕi is Lipschitz continuous
with constant 1/r. For example, we can take

ϕi(x) =















1, x ∈ B(xi, 3r),

2 −
d(x, xi)

3r
, x ∈ B(xi, 6r) \B(xi, 3r),

0, x ∈ X \B(xi, 6r).

Then we define the functions ψi, i = 1, 2, . . . , in the partition of unity
by

ψi(x) =
ϕi(x)

∑∞
j=1 ϕj(x)

.

It is not difficult to see that the defined functions satisfy the required
properties.
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3.3. Discrete convolution. Let f ∈ L1
loc(X). Now we are ready to

define the approximation of f at the scale of 3r by setting

fr(x) =
∞
∑

i=1

ψi(x)fB(xi,3r)

for every x ∈ X. The function fr is called the discrete convolution of
f . The partition of unity and the discrete convolution are standard
tools in harmonic analysis on homogeneous spaces, see for example [9]
and [27].

3.4. The global maximal function. Let rj, j = 1, 2, . . . , be an enu-
meration of the positive rationals. For every radius rj we choose balls
B(xi, rj), i = 1, 2, . . . , of X as above. Observe that for each radius
there are many possible choices for the covering but we simply take
one of those. We define the discrete maximal function in X by

M∗f(x) = sup
j

|f |rj (x)

for every x ∈ X. Observe that the defined maximal operator depends
on the chosen coverings. However, this is not a serious matter, since
we obtain estimates which are independent of the chosen coverings.
Indeed, by Lemma 3.1 in [18] there is a constant c = c(cµ) such that

c−1Mf(x) ≤M∗f(x) ≤ cMf(x) (3.1)

for every x ∈ X. Here Mf is the standard centered Hardy-Littlewood
maximal function

Mf(x) = sup

∫

B(x,r)

|f | dµ,

where the supremum is taken over all positive radii r.

4. Local maximal function

The definition of the local maximal function in a subdomain of X
is rather similar to that of the global maximal function. The main
difference is in the covering argument.

4.1. Whitney type covering. To define a discrete maximal function
in an open subset of X we apply the following Whitney type covering
lemma. A similar covering result has been used in [9] and [27].

Lemma 4.1. Let Ω be an open subset of X and we assume that the

complement of Ω is non-empty. Let t ∈ (0, 1) be a scaling parameter.

Then there are balls B(xi, ri), i = 1, 2, . . . , such that

Ω =
∞
⋃

i=1

B(xi, ri)
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and
∞
∑

i=1

χB(xi,6ri) ≤ N <∞

in Ω, where N depends only on the doubling constant. Moreover, for

every point x ∈ B(xi, 6ri) we have

κ1ri ≤ t dist(x,X \ Ω) ≤ κ2ri.

The constants κ1 and κ2 are independent of the scale t.

Proof. Fix s > 1, for example s = 2 will do. For every x ∈ Ω let

ρx =
t(s− 1)

30(s+ 1)
dist(x,X \ Ω).

It is clear that the union of the balls B(x, ρx) with x ∈ Ω, covers the
set Ω. By a covering theorem we get countably many pairwise disjoint
balls B(xi, ρi), i = 1, 2, . . . , for which the dilated balls B(xi, 5ρi) form
a covering of Ω.

Let ri = 5ρi. For any ball B(xi, ri) in the covering and any x ∈
B(xi, 6ri) we have

12

s− 1
ri ≤ t dist(x,X \ Ω) ≤

12s

s− 1
ri.

This gives us the constants κ1 and κ2.

To prove the boundedness of the overlap, let x ∈ Ω. For any ball
B(xi, ri) for which x ∈ B(xi, 6ri) we have

ri ≥
(s− 1)t dist(x,X \ Ω)

12s

and

B(xi, ri) ⊂ B(x, (s− 1)t dist(x,X \ Ω)).

Since the balls B(xi, ρi) are pairwise disjoint and contained in a ball
of comparable size (at most 60s times the radius of any of them) we
conclude that the number of the balls is bounded by a constant only
depending on s and on the doubling constant.

4.2. The local maximal function. Let Ω be an open subset of X
with X \ Ω 6= ∅ and assume that f ∈ L1

loc(Ω). Let 0 < t < 1 be
a rational number and consider a Whitney type decomposition of Ω.
We construct a partition of unity and the discrete convolution related
to the Whitney balls exactly in the same way as in the global case.
Let tj, j = 1, 2, . . . , be an enumeration of the positive rationals of the
interval (0, 1). For every scale tj we choose a Whitney type covering
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as in Lemma 4.1 and construct a discrete convolution |f |tj . We define
the local discrete maximal function in Ω by

M∗
Ωf(x) = sup

j
|f |tj (x)

for every x ∈ X. Again the defined maximal operator depends on the
chosen coverings.

4.3. Basic properties. As a supremum of continuous functions, the
discrete maximal function is lower semicontinuous and hence measur-
able. It is also clear from the definition that the discrete maximal
operator is homogeneous in the sense that if α ∈ R, then

M∗
Ω(αf)(x) = |α|M∗

Ωf(x)

for every x ∈ Ω. Moreover, the discrete maximal operator is sublinear,
which means that

M∗
Ω(f + g)(x) ≤M∗

Ωf(x) +M∗
Ωg(x)

for every x ∈ Ω.

Let σ ≥ 1. The restricted Hardy-Littlewood maximal function Mσ,Ωf
is defined as

Mσ,Ωf(x) = sup

∫

B(x,r)

|f | dµ

where the supremum is taken over all radii r for which

0 < σr < dist(x,X \ Ω).

The word restricted refers to the fact that we restrict the radii of the
admissible balls. If σ = 1, we denote Mσ,Ωf = MΩf . Moreover, if
Ω = X, then MΩf = Mf .

Next we show the local counterpart of inequality (3.1).

Lemma 4.2. Let Ω ⊂ X be open and f ∈ L1
loc(Ω). Then there exists

a constant c = c(cµ) such that

c−1Mσ,Ωf(x) ≤M∗
Ωf(x) ≤ cMΩf(x)

for every x ∈ Ω. Here σ = κ2, where κ2 is the constant in Lemma 4.1.

Proof. Fix x ∈ Ω and r > 0 with 0 < κ2r < dist(x,X \ Ω). Choose a
scale t ∈ Q ∩ (0, 1) such that

9

10
κ2r ≤ t dist(x,X \ Ω) ≤ κ2r.
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Take the Whitney type covering B(xi, ri), i = 1, 2, . . . of Ω with the
parameter t. Then x belongs to some ball B(xi, ri) of the covering and
B(x, r) ⊂ B(xi, 3ri). Thus

∫

B(x,r)

|f | dµ ≤ c

∫

B(xi,3ri)

|f | dµ ≤ cψi(x)

∫

B(xi,3ri)

|f | dµ

≤ c|f |t(x) ≤ cM∗
Ωf(x),

where we used the fact that ψi ≥ ν > 0 in B(xi, 3ri). The first in-
equality follows by taking the supremum since the right hand side is
independent of the radius r.

Then we prove the second inequality. Fix x ∈ Ω and a scale t ∈
Q ∩ (0, 1). If x ∈ B(xi, 6ri), we have

B(xi, 3ri) ⊂ B(x, 9ri) ⊂ B(xi, 24ri).

This implies that

|f |t(x) =
∞
∑

i=1

ψi(x)

∫

B(xi,3ri)

|f | dµ

≤
∞
∑

i=1

ψi(x)
µ(B(x, 9ri))

µ(B(xi, 3ri))

∫

B(x,9ri)

|f | dµ ≤ cMΩf(x).

Since the right hand side is independent of the scale t, the second
inequality follows.

By the Hardy-Littlewood maximal function theorem for doubling meas-
ures (see [9]) we see that the Hardy-Littlewood maximal operator is
bounded on Lp(X) when 1 < p ≤ ∞ and maps L1(X) into the weak
L1(X). Since the maximal operators are comparable by Lemma 4.2 we
conclude that the same results hold for the discrete maximal operator.
In particular, there is a constant c = c(p, cµ) > 0 such that

‖M∗
Ωf‖Lp(Ω) ≤ c‖MΩf‖Lp(Ω) ≤ c‖M(fχΩ)‖Lp(X)

≤ c‖fχΩ‖Lp(X) = c‖f‖Lp(Ω)

(4.3)

whenever p > 1. If p = 1 there is a constant c = c(cµ) such that the
weak type estimate

µ({x ∈ Ω : M∗
Ωf(x) > λ}) ≤ µ({x ∈ Ω : cMΩf(x) > λ})

≤ µ({x ∈ X : cM(fχΩ)(x) > λ})

≤
c

λ

∫

X

|f |χΩ dµ =
c

λ

∫

Ω

|f | dµ

(4.4)

holds for every λ > 0.

Next we show that the discrete convolution approximates the function
almost everywhere.
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Lemma 4.5. Let Ω be an open subset of X and assume that f ∈
L1

loc(Ω). Then ft → f almost everywhere in Ω as t→ 0.

Proof. Since the measure µ is doubling almost every point x ∈ Ω is
a Lebesgue point of a locally integrable function f . Let x ∈ Ω be a
Lebesgue point of f . Let t ∈ (0, 1) and let B(xi, ri), i = 1, 2, . . . be the
Whitney type balls given by Lemma 4.1. Define

r(t, x) = sup {d(x, y) : y ∈ B(xi, 3ri), x ∈ B(xi, 6ri), i = 1, 2, . . . } .

Now for any i with x ∈ B(xi, 6ri) we have B(xi, ri) ⊂ B(x, r(t, x)) and
thus

µ(B(x, r(t, x))

µ(B(xi, 3ri))
≤ c,

where c depends only on the doubling constant of µ. This gives
∫

B(xi,3ri)

|f − f(x)| dµ ≤ c

∫

B(x,r(t,x))

|f − f(x)| dµ

from which it follows that

|ft(x) − f(x)| ≤
∞
∑

i=1

ψi(x)|fB(xi,3ri) − f(x)|

≤ c

∫

B(x,r(t,x))

|f − f(x)| dµ.

Since x is a Lebesgue point,

lim
t→0

|ft(x) − f(x)| = 0,

where we also used the fact that r(t, x) tends to zero as t → 0. This
proves the pointwise convergence.

Remark 4.6. (1) Lemma 4.5 implies that

|f(x)| = lim
t→0

|f |t(x) ≤M∗
Ωf(x) (4.7)

for almost every x ∈ Ω.

(2) We observe that if f ∈ Lp(Ω) for some 1 < p < ∞, the discrete
convolution approximates f in the norm. Indeed, let f ∈ Lp(Ω) for
some p > 1. Then by Lemma 4.2 and the maximal function theorem we
have (M∗f)p ∈ L1(Ω). By definition fpt ≤ (M∗f)p and thus Lebesgue’s
dominated convergence theorem gives the claim.

Next we show that, if a maximal function is finite in one point of X, it
is finite almost everywhere. As far as we know, the first proof of this
fact in the Euclidean case is by Wik [34]. See also [3] and [13]. We state
the result only for the global Hardy-Littlewood maximal function, but
since the maximal functions are equivalent, the same result also holds
for the global discrete maximal function.
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Lemma 4.8. Assume Mf is finite at some x0 ∈ X. Then Mf is finite

almost everywhere.

Proof. Let k = 1, 2, . . . . By sublinearity of the maximal operator

Mf(x) ≤M(fχB(x0,2k))(x) +M(fχX\B(x0,2k))(x)

for every x ∈ X. Since fχB(x0,2k) is integrable, the first term on the
right hand side is finite almost everywhere by the weak type estimate
(4.4). For the second term let x ∈ B(x0, k). Take any ball B(y, r)
such that x ∈ B(y, r) and B(y, r) intersects the complement of the ball
B(x0, 2k). Since r ≥ k we have B(x0, r) ⊂ B(y, 3r). From this we
conclude that

∫

B(y,r)

|f |χX\B(x0,2k) dµ ≤ c

∫

B(x0,3r)

|f |χX\B(x0,2k) dµ

≤ cM(fχX\B(x0,2k))(x0) ≤ cMf(x0).

By taking supremum on the left hand side we have

M(fχX\B(x0,2k))(x) ≤ cMf(x0)

for every x ∈ B(x0, k). This implies that for every k = 1, 2, . . . the
maximal function is finite almost everywhere in B(x0, k). Since X is a
countable union of such balls the claim follows.

5. The discrete maximal function and Newtonian spaces

Our goal is to show that the discrete maximal operator preserves the
smoothness of the function in the sense that it is a bounded operator
in the Newtonian space. The global case has been studied in [18]
and here we concentrate on the local case. We begin by proving the
corresponding result for the discrete convolution in a fixed scale.

Lemma 5.1. Suppose that u ∈ N1,p(Ω) with p > 1 and let 0 < t < 1.
Then ut ∈ N1,p(Ω) and there is a constant c = c(cµ, p) and q < p such

that c(MΩg
q)1/q is a p-weak upper gradient of ut in Ω whenever g is a

p-weak upper gradient of u in Ω.

Proof. By (4.7) we have |ut| ≤M∗
Ωu almost everywhere and from (4.3)

we conclude that ut ∈ Lp(Ω).

Then we consider the upper gradient. We write ut(x) as

ut(x) = u(x) +
∞
∑

i=1

ψi(x)
(

uB(xi,3ri) − u(x)
)

.

Observe that at each point the sum is only over finitely many balls so
that the convergence of the series is clear. Note also that u(x) < ∞
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for almost every x ∈ Ω by (4.3). Let g ∈ Lp(Ω) be a p-weak upper
gradient of u in Ω. By the basic properties of the upper gradients, we
have that

(L

ri
|u− uB(xi,3ri)| + g

)

χB(xi,6ri)

is a p-weak upper gradient of ψi(uB(xi,3ri) − u). Here L is the Lipschitz
constant of the partition of unity. This implies that

gt = g +
∞
∑

i=1

(L

ri
|u− uB(xi,3ri)| + g

)

χB(xi,6ri)

is a p-weak upper gradient of ut. Then we prove an estimate for gt
in terms of the local maximal function. Let x ∈ B(xi, 6ri). Then
B(xi, 3ri) ⊂ B(x, 9ri) and

|u(x) − uB(xi,3ri)| ≤ |u(x) − uB(x,9ri)| + |uB(x,9ri) − uB(xi,3ri)|.

We estimate the second term on the right side by the weak (1, q)-
Poincaré inequality and the doubling condition as

|uB(x,9ri) − uB(xi,3ri)| ≤

∫

B(xi,3ri)

|u− uB(x,9ri)| dµ

≤ c

∫

B(x,9ri)

|u− uB(x,9ri)| dµ

≤ cri

(

∫

B(x,9τ ′ri)

gq dµ
)1/q

≤ cri(MΩg
q(x))1/q.

Observe that here we used the self improving property of the Poin-
caré inequality proved by Keith and Zhong in [15]. The first term on
the right side is estimated by a standard telescoping argument. Since
almost every point is a Lebesgue point of u, we have

|u(x) − uB(x,9ri)| ≤
∞
∑

j=0

|uB(x,32−jri) − uB(x,31−jri)|

≤ c
∞
∑

j=0

∫

B(x,32−jri)

|u− uB(x,32−jri)| dµ

≤ c
∞
∑

j=0

32−jri

(

∫

B(x,32−jτ ′ri)

gq dµ
)1/q

≤ cri(MΩg
q(x))1/q

for almost every x ∈ Ω. Here we used the Poincaré inequality and the
doubling condition again. Hence we have

|u(x) − uB(xi,3ri)| ≤ cri(MΩg
q(x))1/q

12



for almost every x ∈ B(xi, 6ri). From this we conclude that

gt(x) = g(x) +
∞
∑

i=1

(L

ri
|u(x) − uB(xi,3ri)| + g

)

χB(xi,6ri)

≤ c(MΩg
q(x))1/q

for almost every x ∈ Ω. This implies that c(MΩg
q)1/q is a p-weak upper

gradient of ut. By (4.3) we have
∫

Ω

(MΩg
q)p/q dµ ≤ c

∫

Ω

gp dµ

and hence (MΩg
q)1/q ∈ Lp(Ω). This completes the proof.

Remark 5.2. If u ∈ N1,p(Ω) with p > 1, then by the previous lemma
ut ∈ N1,p(Ω) for every t, 0 < t < 1. By Remark 4.6 we see that ut → u
in Lp(Ω) and by Lemma 4.5 ut → u almost everywhere as t → 0.
However, one dimensional examples show that ut does not, in general,
converge to u as t → 0 in the Newtonian space N1,p(Ω). This can be
seen by considering such partitions of unity in the construction of the
maximal function that every component at all scales is constant in a
set of large measure.

Remark 5.3. During the proof of the previous theorem some of the balls
are enlarged. This implies that some Whitney coverings may induce
discrete convolutions for which the previous proof is false. To avoid this
technical problem we assume that the Whitney balls are well inside the
subdomain Ω. In detail, given p > 1 we have 1 ≤ q < p and τ ′ ≥ 1
so that X supports the weak (1, q)-Poincaré inequality. By choosing
s ≤ 4

3τ ′
+ 1 in the proof of Lemma 4.1 we can guarantee that the

enlarged balls lie inside Ω.

Now we are ready to conclude that the discrete maximal operator
preserves Newtonian spaces. We use the following simple fact in the
proof: Suppose that ui, i = 1, 2, . . . , are functions and gi, i = 1, 2, . . . ,
are p-weak upper gradients of ui, respectively. Let u = supi ui and
g = supi gi. If u is finite almost everywhere, then g is a p-weak upper
gradient of u. For the proof, we refer to [5].

Theorem 5.4. If u ∈ N1,p(Ω) with p > 1, then M∗
Ωu ∈ N1,p(Ω).

In addition, there is a constant c = c(cµ, p) and q < p such that the

function c(Mgq)1/q is a p-weak upper gradient of M∗
Ωu whenever g is a

p-weak upper gradient of u in Ω.

Proof. By (4.3) we see that M∗
Ωu ∈ Lp(Ω) and, in particular, M∗

Ωu <∞
almost everywhere in Ω. Since

M∗
Ωu(x) = sup

j
|u|tj (x)

13



and by the preceding lemma c(MΩg
q)1/q is an upper gradient of |u|tj

for every j, we conclude that it is an upper gradient of M∗
Ωu. Here

we also used the fact that every p-weak upper gradient of u will do
as a p-weak upper gradient of |u| as well. The claim follows from the
maximal function theorem and Lemma 4.2.

Remark 5.5. By Theorem 5.4 and the maximal function theorem we
can conclude that the local discrete maximal operator M∗

Ω is bounded
in N1,p(Ω) if p > 1. Indeed, there is a constant c = c(cµ, p) such that

‖M∗
Ωu‖N1,p(Ω) ≤ c‖u‖N1,p(Ω)

for every u ∈ N1,p(Ω).

The next result shows that the discrete maximal operator also preserves
the boundary values in the Newtonian sense. For the Euclidean case
we refer to [21].

Theorem 5.6. Let Ω ⊂ X be an open set and assume that u ∈ N1,p(Ω)
with p > 1. Then

|u| −M∗
Ωu ∈ N1,p

0 (Ω).

Proof. Let gu be the minimal p-weak upper gradient of u. Let 0 <
t < 1 and consider the discrete convolution |u|t. Let x ∈ Ω with
x ∈ B(xi, 6ri). Using the same telescoping argument as in the proof of
Lemma 5.1 and the properties of the Whitney balls we have

∣

∣|u|B(xi,3ri) − |u(x)|
∣

∣ ≤ cri(MΩg
q
u(x))1/q

≤ ct dist(x,X \ Ω)(MΩg
q
u(x))1/q

for almost every x ∈ B(xi, 6ri). It follows that

∣

∣|u|t(x) − |u(x)|
∣

∣ =
∣

∣

∣

∞
∑

i=1

ψi(x)
(

|u|B(xi,3ri) − |u(x)|
)

∣

∣

∣

≤
∞
∑

i=1

ψi(x)
∣

∣|u|B(xi,3ri) − |u(x)|
∣

∣

≤ ct dist(x,X \ Ω)(MΩg
q
u(x))1/q.

For every x ∈ Ω there is a sequence tj, j = 1, 2, . . . , of scales such that

M∗
Ωu(x) = lim

j→∞
|u|tj (x)

This implies that
∣

∣|u(x)| −M∗
Ωu(x)

∣

∣ = lim
j→∞

||u(x) − |u|tj (x)||

≤ c dist(x,X \ Ω)(MΩg
q
u(x))1/q,

14



where we used the fact that tj ≤ 1. Hence by the maximal function
theorem we conclude that

∫

Ω

(

∣

∣|u(x)| −M∗
Ωu(x)

∣

∣

dist(x,X \ Ω)

)p

dµ(x) ≤ c

∫

Ω

(MΩg
q
u(x))p/q dµ(x)

≤ c

∫

Ω

|gu(x)|p dµ(x).

This implies that
|u(x)| −M∗

Ωu(x)

dist(x,X \ Ω)
∈ Lp(Ω)

and from Theorem 5.1 in [16] we conclude that |u| −M∗
Ωu ∈ N1,p

0 (Ω).

Remark 5.7. The previous theorem implies that, in particular, the dis-
crete maximal operator preserves Newtonian spaces with zero boundary
values: If u ∈ N1,p

0 (Ω) with p > 1, then M∗
Ωu ∈ N1,p

0 (Ω).

6. The discrete maximal function and Hölder continuity

The next result shows that the global discrete maximal function M∗f
is Hölder continuous with the same exponent as f . In particular, if f
is Lipschitz continuous, then M∗f is also Lipschitz continuous.

Theorem 6.1. Let f be a Hölder continuous function in X with the

exponent 0 < α ≤ 1, i.e. there exists a constant L1 ≥ 0 such that

|f(x) − f(y)| ≤ L1d(x, y)α

for every x, y in X. Then there is a constant L2, which depends only

on L1, such that

|M∗f(x) −M∗f(y)| ≤ L2d(x, y)α

for every x, y in X, provided M∗f is not identically infinity in X.

Proof. Fix a scale r > 0 and let x, y ∈ X. We begin by proving that the
discrete convolution fr is Hölder continuous. We consider two cases.
First we assume that d(x, y) > r. By the definition of the discrete
convolution we have

|fr(x) − fr(y)| ≤ |f(x) − f(y)| +
∞
∑

i=1

ψi(x)|fB(xi,3r) − f(x)|

+
∞
∑

i=1

ψi(y)|fB(xi,3r) − f(y)|.

15



The terms in the sums are non-zero only if x ∈ B(xi, 6r) or y ∈
B(xi, 6r) for some i. If x ∈ B(xi, 6r) for some i, then by Hölder
continuity of f we have

|fB(xi,3r) − f(x)| ≤

∫

B(xi,3r)

|f(z) − f(x)| dµ(z) ≤ crα.

Similarly, if y ∈ B(xi, 6r) for some i, then

|fB(xi,3r) − f(y)| ≤ crα.

Since the balls B(xi, 6r), i = 1, 2, . . . , are of bounded overlap and f is
Hölder continuous, we arrive at

|fr(x) − fr(y)| ≤ cd(x, y)α + crα

Since d(x, y) > r, we have

|fr(x) − fr(y)| ≤ cd(x, y)α

and we are done.

Then we assume that d(x, y) ≤ r. By the definition of the discrete
convolution we have

|fr(x) − fr(y)| ≤
∞
∑

i=1

|ψi(x) − ψi(y)||fB(xi,3r) − f(x)|.

The term in the sum is non-zero only if x ∈ B(xi, 6r) or y ∈ B(xi, 6r)
for some i. If x ∈ B(xi, 6r), then

|fB(xi,3r) − f(x)| ≤ crα

as above. On the other hand, if y ∈ B(xi, 6r), then x ∈ B(xi, 7r)
because d(x, y) ≤ r and we again have

|fB(xi,3r) − f(x)| ≤ crα.

Since there are only a bounded number indices for which the term in
the sum is non-zero we arrive at

∞
∑

i=1

|ψi(x) − ψi(y)||fB(xi,3r) − f(x)| ≤ cd(x, y)rα−1 ≤ cd(x, y)α.

Here we also used Lipschitz continuity of ψi. This shows that fr is
Hölder continuous.

Let us prove now that the global discrete maximal function preserves
Hölder continuity. Without loss of generality we may assume that
M∗f(x) ≥M∗f(y).

Let ε > 0. Choose rε > 0 so that

|f |rε(x) > M∗f(x) − ε.

Then

M∗f(x) −M∗f(y) ≤ |f |rε(x) − |f |rε(y) + ε ≤ cd(x, y)α + ε.
16



Since the left hand side is independent of ε the theorem follows by
letting ε→ 0.

Remark 6.2. The proof of the previous theorem shows that the dis-
crete maximal operator is bounded in the space of Hölder continuous
functions.

Now we modify the previous argument for the local discrete maximal
function. The main difference lies in the fact that the balls in the
Whitney type covering differ in size.

Theorem 6.3. Let f be a Hölder continuous function in Ω with the

exponent 0 < α ≤ 1, i.e. there exists a constant L1 ≥ 0 such that

|f(x) − f(y)| ≤ L1d(x, y)α

for every x, y in Ω. Then there is a constant L2, which depends only

on L1 and the constants in the Whitney type covering, such that

|M∗
Ωf(x) −M∗

Ωf(y)| ≤ L2d(x, y)α

for every x, y in Ω, provided M∗f is finite almost everywhere in Ω.

Proof. Fix a scale t ∈ (0, 1) and let x, y ∈ Ω. Again we show that
the local discrete convolution ft is Hölder continous. We consider two
cases. First we assume that

t

c2
max{dist(x,X \ Ω), dist(y,X \ Ω)} < d(x, y), (6.4)

where c2 is the constant in Lemma 4.1. In the same way as in the proof
of Theorem 6.1 we obtain

|ft(x) − ft(y)| ≤ cd(x, y)α + c

∞
∑

i=1

ψi(x)rαi + c

∞
∑

i=1

ψi(y)rαi . (6.5)

By the properties of the Whitney type covering given by Lemma 4.1
and (6.4) we have

∞
∑

i=1

ψi(x)rαi ≤
( t

κ1

dist(x,X \ Ω)
)α

<
(κ2

κ1

)α

d(x, y)α.

A similar estimate holds also for the second sum in (6.5) and hence we
obtain

|ft(x) − ft(y)| ≤ cd(x, y)α.
17



Then we consider the case when (6.4) does not hold. Then

|ft(x) − ft(y)| ≤
∞
∑

i=1

|ψi(x) − ψi(y)||fB(xi,3ri) − f(x)|

≤ c

∞
∑

i=1

d(x, y)rα−1
i

≤ cd(x, y)
( t

c2
min{dist(x,X \ Ω), dist(y,X \ Ω)}

)α−1

(6.6)

Since (6.4) does not hold, we have

min{dist(x,X \ Ω), dist(y,X \ Ω)}

≥

(

1 −
1

c2

)

max{dist(x,X \ Ω), dist(y,X \ Ω)}

≥

(

1 −
1

c2

)

c2
t
d(x, y)

which allows us to conclude that

|ft(x) − ft(y)| ≤ cd(x, y)
(

1 −
1

c2

)α−1

d(x, y)α−1 ≤ cd(x, y)α.

Here we also used the fact that the number of non-zero terms in the
sum (6.6) is uniformly bounded. Following the same reasoning as in
the global case we obtain the claim.

Remark 6.7. Similar arguments as above can be used to show that
the discrete maximal operator preserves continuity, provided it is finite
almost everywhere.

7. The discrete maximal function and BMO

A function f ∈ L1
loc(X) belongs to BMO(X) if

‖f‖BMO(X) = sup
B(x,r)

∫

B(x,r)

|f − fB(x,r)| dµ <∞.

The functions of bounded mean oscillation in metric spaces have been
studied, for example, in [6], [9], [11], [33], [35] and [36]. The funda-
mental property of functions in BMO is that they satisfy the following
John-Nirenberg inequality: For any f ∈ BMO(X) and any ball B ⊂ X
there exist constants c1, c2 depending only on the doubling constant of
the measure µ such that

µ({x ∈ B : |f(x) − fB| > λ}) ≤ c1µ(B)e−c2λ/‖f‖BMO(X) (7.1)

for every λ > 0. The John-Nirenberg lemma implies that
∫

B

eε(||f |−|f |B |) dµ ≤
c1

1 − ε‖f‖BMO(X)/c2
(7.2)
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for every ball B ⊂ X and 0 < ε < c2/‖f‖BMO(X). For the proof of
the John-Nirenberg lemma in the context of metric measure spaces, we
refer to [6], [25], [29]. See also [5].

The next theorem is a generalization of a Euclidean result in [3] and
[4]. Our proof is a metric space version of the argument presented in
[8]. See also [30].

Theorem 7.3. If f ∈ BMO(X), then M∗f ∈ BMO(X) provided

M∗f is not identically infinity.

Proof. By choosing

ε =
c2

2‖f‖BMO(X)

in (7.2) we obtain
∫

B

exp(ε|f |) dµ ≤ c exp
(

ε

∫

B

|f | dµ
)

.

Since c is independent of the ball B we have

M(exp(ε|f |)) ≤ c exp(εMf).

By Lemma 4.2 we conclude that

M∗(exp(ε|f |)) ≤ c exp(εM∗f).

The reverse inequality holds as well. To see this we apply the following
elementary inequality: If a1, a2, . . . , an are non-negative numbers whose
sum is one and b1, b2, . . . , bn are positive numbers, then

ba1
1 b

a2
2 . . . ban

n ≤ a1b1 + a2b2 + · · · + anbn.

We apply the previous inequality together with Jensen’s inequality to
get

eε|f |r =
∞
∏

i=1

(

eε|f |B(xi,3ri)
)ψi

≤
∞
∑

i=1

ψie
ε|f |B(xi,ri) ≤

(

eε|f |
)

r
.

Observe that the product and sum have only a bounded number of
terms. By taking supremum on both sides we arrive at

exp(εM∗f) ≤M∗(exp(ε|f |)).

Hence, by Lemma 4.2, we have

c−1 exp(εM∗f) ≤M(exp(ε|f |)) ≤ c exp(εM∗f). (7.4)

By Lemma 4.8, M∗f is finite almost everywhere and consequently

M(exp(ε|f |)) <∞

almost everywhere. By a theorem of Coifman-Rochberg, see [9] and
[35], we conclude that

(M(exp(ε|f |)))1/2
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is a Muckenhoupt A1-weight. But then by (7.4) the function

exp
(ε

2
M∗f

)

is a Muckenhoupt A1-weight. Since the logarithm of an A1 weight is
a function of bounded mean oscillation, the maximal function M∗f
belongs to BMO(X).
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