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Abstract. In this article we study minimizers of functionals of
linear growth in metric measure spaces. We introduce the general-
ized problem in this setting, and prove existence and local bound-
edness of the minimizers. We give counterexamples to show that
in general, minimizers are not continuous and can have jump dis-
continuities inside the domain.

1. Introduction

This paper studies minimizers of the nonparametric area integral

F(u,Ω) =

∫

Ω

√
1 + |Du|2 dx

in metric measure spaces equipped with a doubling measure and a
Poincaré inequality. In the Euclidean case the minimizers satisfy the
corresponding minimal surface equation

n∑

j=1

Dj
Dju√

1 + |Du|2
= 0

in an open and bounded subset Ω of Rn. It is well known that an
equivalent concept can be obtained as the relaxed area integral

F(u,Ω) = inf

{
lim inf
i→∞

∫

Ω

√
1 + |Dui|2 dx

}
,

where the infimum is taken over all sequences of functions ui ∈ C1(Ω)
with ui → u in L1(Ω) as i→ ∞. Minimizers are functions of bounded
variation (BV) with prescribed boundary values, see [7], [10], [13, Chap-
ter 6], [16] and [22]. The advantage of the variational approach is
that it can be adapted to the very general context of metric measure
spaces, and it also applies to more general integrals and quasimini-
mizers with linear growth. Indeed, functions of bounded variation are
defined through relaxation in the metric setting, see [23], [1], [2] and
[4].
Boundary values of BV-functions are a delicate issue already for

domains with a smooth boundary in the Euclidean case, since the trace
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operator fails to be continuous with respect to the weak∗-topology in
BV. A standard approach is to consider extensions of boundary values
to a slightly larger reference domain. Minimizers with the extended
boundary values are the same as for the original problem, and they
turn out to be independent of the extension. The larger reference
domain is also natural in the sense that in general the total variation
measure of the minimizer charges the boundary. By using the structure
theorem for BV-functions in the Euclidean case it is possible to obtain
an integral representation of the area integral with a penalty term for
the boundary values, see [13, Chapter 6]. In the metric setting such a
formula remains an open question.
We give a definition of the minimizer of a relaxed area integral with

prescribed boundary values in metric measure spaces. The direct meth-
ods in the calculus of variations can be applied to show that a minimizer
exists for an arbitrary bounded domain with BV-boundary values. The
necessary compactness result can be found in [23], and the lower semi-
continuity property of the area integral is shown in this work.
In the Euclidean case with the Lebesgue measure, minimizers can

be shown to be smooth. However, it is somewhat unexpected that
the regularity fails even for continuously differentiable weights in the
Euclidean case. We give an explicit example of a minimizer that is
discontinuous at an interior point of the domain. Similar examples
for a slightly different functionals are presented in [14, Example 3.1]
and [7, p. 132]. This phenomenon occurs only in the case when the
variational integral has linear growth. For variational integrals with
superlinear growth, the minimizers are locally Hölder continuous by
[21]. In particular, these examples show that there does not seem to
be hope to extend the regularity theory of minimizers to the metric
setting.
Our main result shows that the minimizers are locally bounded, and

the previously mentioned examples show that this result is essentially
the best possible that can be obtained in this generality. We prove
the main result by purely variational techniques without referring to
the minimal surface equation. Indeed, the minimizers satisfy a De
Giorgi type energy estimate, and the local boundedness follows from
an iteration scheme. This point of view may be interesting already in
the Euclidean case, because it also applies to quasiminimizers.

2. Preliminaries

In this paper, (X, d, µ) is a complete metric measure space with a
Borel regular outer measure µ, and diam(X) = ∞. The measure is
assumed to be nontrivial in the sense that 0 < µ(B(x, r)) < ∞ for
every ball with center x ∈ X and radius r > 0. It is also assumed to
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be doubling, meaning that there exists a constant CD > 0 such that

µ(B(x, 2r)) ≤ CDµ(B(x, r))

for all x ∈ X and r > 0. This implies that

µ(B(y,R))

µ(B(x, r))
≤ C

(
R

r

)Q

for every r ≤ R and x ∈ B(y,R), and some Q > 1 and C ≥ 1
that only depend on CD. Later on the symbol Q will always refer to
this exponent, which in a certain manner represents the dimension of
the space X. We recall that a complete metric space endowed with
a doubling measure is proper, that is, closed and bounded sets are
compact.
A nonnegative Borel measurable function g onX is an upper gradient

of an extended real valued function u on X if for all paths γ in X, we
have

(2.1) |u(x)− u(y)| ≤
∫

γ

g ds

whenever both u(x) and u(y) are finite, and
∫
γ
g ds = ∞ otherwise.

Here x and y are the end points of γ. If g is a nonnegative measurable
function on X and (2.1) holds for almost every path with respect to
the 1-modulus, then g is a 1-weak upper gradient of u. By saying that
(2.1) holds for 1-almost every path we mean that it fails only for a path
family with zero 1-modulus. A family Γ of paths is of zero 1-modulus if
there is a nonnegative Borel measurable function ρ ∈ L1(X) such that
for all paths γ ∈ Γ, the path integral

∫
γ
ρ ds is infinite.

The collection of all upper gradients, together, play the role of the
modulus of the weak gradient of a Sobolev function in the metric set-
ting. We consider the following norm

‖u‖N1,1(X) = ‖u‖L1(X) + inf
g
‖g‖L1(X),

with the infimum taken over all upper gradients g of u. The Newton-
Sobolev space considered is the space

N1,1(X) = {u : ‖u‖N1,1(X) <∞}/∼,

where the equivalence relation ∼ is given by u ∼ v if and only if

‖u− v‖N1,1(X) = 0,

see [24]. For more on Newtonian spaces, we refer to [6].
Next we recall the definition and basic properties of functions of

bounded variation on metric spaces, see [23].
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Definition 2.2. For u ∈ L1
loc(X), we define the total variation as

‖Du‖(X)

= inf
{
lim inf
i→∞

∫

X

gui
dµ : ui ∈ Liploc(X), ui → u in L1

loc(X)
}
,

where gui
is a 1-weak upper gradient of ui and Liploc(X) denotes the

class of functions that are Lipschitz continuous on compact subsets of
X. We say that a function u ∈ L1(X) is of bounded variation, and
denote u ∈ BV(X), if ‖Du‖(X) <∞.

By replacing X with an open set U ⊂ X in the definition of the
total variation, we can define ‖Du‖(U). For an arbitrary set A ⊂ X,
we define

‖Du‖(A) = inf
{
‖Du‖(U) : U ⊃ A, U ⊂ X is open

}
.

If u ∈ BV(X), ‖Du‖(·) is a finite Borel outer measure by [23, Theorem
3.4].
We say that X supports a (1, 1)-Poincaré inequality if there exist

constants CP > 0 and τ ≥ 1 such that for all balls B(x, r), all locally
integrable functions u, and all 1-weak upper gradients g of u, we have

−
∫

B(x,r)

|u− uB(x,r)| dµ ≤ CP r−
∫

B(x,τr)

g dµ,

where

uB(x,r) = −
∫

B(x,r)

u dµ =
1

µ(B(x, r))

∫

B(x,r)

u dµ.

If the space supports a (1, 1)-Poincaré inequality, by an approximation
argument we get for every u ∈ L1

loc(X)

−
∫

B(x,r)

|u− uB(x,r)| dµ ≤ CP r
‖Du‖(B(x, τr))

µ(B(x, τr))
,

where the constant CP and the dilation factor τ are the same as in
the (1, 1)-Poincaré inequality. We assume, without further notice, that

the measure µ is doubling and that the space supports a (1, 1)-Poincaré
inequality. For brevity, the (1, 1)-Poincaré inequality will be called the

Poincaré inequality later on.

The Poincaré inequality implies the Sobolev-Poincaré inequality
(
−
∫

B(x,r)

|u− uB(x,r)|Q/(Q−1) dµ

)(Q−1)/Q

≤ Cr−
∫

B(x,2τr)

g dµ

for every u ∈ L1
loc(X) and every 1-weak upper gradient g of u [6,

Theorem 4.21]. Here the constant C > 0 depends only on the doubling
constant and the constants in the Poincaré inequality. We will use the
following version of the Sobolev inequality for BV-functions.
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Lemma 2.3. There exists C > 0, depending only on the doubling con-

stant and the constants in the Poincaré inequality, such that if B(x, r)
is a ball in X with 0 < r < diam(X) and u ∈ L1

loc(X) with a compact

support in B(x, r), then
(
−
∫

B(x,r)

|u|Q/(Q−1) dµ

)(Q−1)/Q

≤ C r

µ(B(x, r))
‖Du‖(B(x, r)).

Proof. This result follows from the Sobolev inequality, see [6, Theorem
5.51], by an approximation argument. �

We also specify what we mean by boundary values of BV-functions.

Definition 2.4. Let Ω and Ω∗ be open subsets of X such that Ω ⋐ Ω∗,
and assume that f ∈ BV(Ω∗). We define the space BVf (Ω) as the
space of functions u ∈ BV(Ω∗) such that u = f µ-almost everywhere
in Ω∗ \ Ω.
In particular, when f = 0, we get the BV space with zero boundary

values BV0(Ω). It is obvious that u ∈ BVf (Ω) if and only if u − f ∈
BV0(Ω).

3. Area functional in metric spaces

In this section we consider the existence of a BV-minimizer of a non-
parametric area integral subject to given boundary values. Instead of
the classical definition, which is not suited to the metric space setting,
we introduce a definition based on a relaxation of the area functional,
which also takes into account the boundary values in an appropriate
way. First we briefly recall the classical Euclidean definition with the
Lebesgue measure.

Example 3.1. In the Euclidean case with the Lebesgue measure and
an open Ω ⊂ R

n with a Lipschitz boundary, the classical BV-version
of the Dirichlet problem for non-parametric minimal surfaces is the
following, see [16] and [13, Chapter 6]. Given a function f ∈ L1(∂Ω),
find a function u ∈ BV(Ω) minimizing the non-parametric area integral

∫

Ω

√
1 + |Du|2 dx

with the boundary values f on ∂Ω. The area functional is defined for
BV-functions as

∫

Ω

√
1 + |Du|2 dx = sup

∫

Ω

(
ψn+1 +

n∑

i=1

u
∂ψi

∂xi

)
dx,

where the supremum is taken over all functions ψ ∈ C1
0(Ω;R

n+1) satis-
fying ‖ψ‖∞ ≤ 1. The area functional corresponds to the total variation
of the vector valued measure (Ln, Du).
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Let Ω and Ω∗ be bounded open sets such that Ω ⋐ Ω∗. It is known
that every f ∈ L1(∂Ω) can be extended to Ω∗ \Ω as Φ ∈ W 1,1(Ω∗ \Ω)
satisfying Φ = 0 on ∂Ω∗. The space BVf (Ω) is defined as the space
of functions u ∈ BV(Ω∗) such that u = Φ in Ω∗ \ Ω, where Φ is an
extension of f .
For functions u ∈ BVf (Ω) we define the extension of the area integral

as ∫

Ω

√
1 + |Du|2 dx+

∫

∂Ω

|u− f | dHn−1 +

∫

Ω∗\Ω

√
1 + |DΦ|2 dx.

It can be proved that this integral has a minimizer in BVf (Ω), and since
the last term depends only on f , we find that for every f ∈ L1(∂Ω)
there is a minimizer in BV(Ω) of the integral

∫

Ω

√
1 + |Du|2 dx+

∫

∂Ω

|u− f | dHn−1.

Observe that the minimizer is independent of Ω∗ and Φ. It can be
shown that this problem is the same as the minimization problem in
the following definition.

Definition 3.2. Let Ω and Ω∗ be bounded open subsets of X such
that Ω ⋐ Ω∗, and assume that f ∈ BV(Ω∗). For every u ∈ BVf (Ω), we
define the generalized surface area functional by

F(u,Ω) = inf

{
lim inf
i→∞

∫

Ω∗

√
1 + g2ui

dµ

}
,

where gui
is a 1-weak upper gradient of ui, and the infimum is taken over

sequences of functions ui ∈ Liploc(Ω
∗) such that ui → u in L1

loc(Ω
∗).

A function u ∈ BVf (Ω) is a minimizer of the generalized surface area
functional with the boundary values f , if

F(u,Ω) = inf F(v,Ω),

where the infimum is taken over all v ∈ BVf (Ω).

Remark 3.3. (1) It is possible to define a local concept of a minimizer by
requiring that u ∈ BVloc(Ω) is a minimizer with the boundary values u
in every Ω′ ⋐ Ω. It is clear that a minimizer u ∈ BVf (Ω) of the gener-
alized surface area functional with the boundary values f ∈ BV(Ω∗) is
also a local minimizer. We shall only consider minimizers with bound-
ary values in this work.
(2) The set Ω∗ is merely a reference set and it does not have an

important role for us. Observe that the minimizers do not depend on
Ω∗, but the value of the generalized area functional does. However, we
are interested in local regularity of the minimizers and in this respect
the value of the area functional is irrelevant. Because of these reasons
we do not include Ω∗ in the notation. We could also require that f is
compactly supported in Ω∗ by using a simple cutoff function.
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(3) The interpretation of the boundary trace of a BV-function is a
delicate issue already in the Euclidean case with the Lebesgue measure.
We have chosen an approach that generalizes the existing Euclidean
results.

Remark 3.4. We could consider more general variational integrals

F(u,Ω) = inf

{
lim inf
i→∞

∫

Ω∗

I(gui
) dµ

}
,

where I(p) is a continuous and convex function with the linear growth
condition

α|p| ≤ I(p) ≤ β(1 + |p|)

for some 0 < α ≤ β < ∞. For simplicity, we only consider the model
case I(p) =

√
1 + |p|2 here.

First we give a useful lower semicontinuity result.

Lemma 3.5. Let Ω and Ω∗ be bounded open subsets of X such that

Ω ⋐ Ω∗, and assume that f ∈ BV(Ω∗). If u, ui ∈ BVf (Ω), i = 1, 2, . . . ,
and ui → u in L1(Ω) as i→ ∞, then

F(u,Ω) ≤ lim inf
i→∞

F(ui,Ω).

Proof. For k = 1, 2, . . . , denote

Ωk = {y ∈ Ω∗ : dist(y,X \ Ω∗) > 1/k}.

For every i = 1, 2, . . . , we choose a sequence (vi,j), with vi,j ∈ Liploc(Ω
∗),

such that vi,j → ui in L
1
loc(Ω

∗) and

∫

Ω∗

√
1 + g2vi,j dµ→ F(ui,Ω)

as j → ∞. We choose indices j(i) such that

∫

Ωi

|ui − vi,j(i)| dµ <
1

i

and ∫

Ω∗

√
1 + g2vi,j(i) dµ < F(ui,Ω) +

1

i
.

We set ṽi = vi,j(i) and notice that for every k = 1, 2, . . . , we have

∫

Ωk

|u− ṽi| dµ ≤
∫

Ωk

|u− ui| dµ+

∫

Ωk

|ui − ṽi| dµ→ 0
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as i → ∞. Hence ṽi → u in L1
loc(Ω

∗) and, by the definition of the
generalized surface area functional, this implies that

F(u,Ω) ≤ lim inf
i→∞

∫

Ω∗

√
1 + g2ṽi dµ

≤ lim inf
i→∞

(
F(ui,Ω) +

1

i

)

= lim inf
i→∞

F(ui,Ω).

This completes the proof. �

The following result shows that a minimizer with given boundary
values exists.

Theorem 3.6. Let Ω and Ω∗ be bounded open subsets of X such that

Ω ⋐ Ω∗. Then for every f ∈ BV(Ω∗) there exists a minimizer u ∈
BVf (Ω) of the generalized surface area functional with the boundary

values f .

Proof. Denote m = inf F(v,Ω), where the infimum is taken over all
v ∈ BVf (Ω). We can pick a minimizing sequence ui ∈ BVf (Ω) such

that F(ui,Ω) → m as i→ ∞. Since a ≤
√
1 + a2, we see that

‖Dui‖(Ω∗) ≤ F(ui,Ω)

for every i = 1, 2, . . . , and consequently (‖Dui‖(Ω∗)) is a bounded
sequence of real numbers. Since ui − f ∈ BV0(Ω), we have

∫

Ω

|ui − f | dµ ≤ C diam(Ω)‖D(ui − f)‖(Ω),

where the constant C depends only on the doubling constant and the
constants in the Poincaré inequality. For a proof of this fact, we refer
to [19, Corollary 2.4]. Now we can estimate

∫

Ω∗

|ui| dµ ≤
∫

Ω∗

|f | dµ+

∫

Ω

|ui − f | dµ

≤
∫

Ω∗

|f | dµ+ C diam(Ω)‖D(ui − f)‖(Ω)

≤
∫

Ω∗

|f | dµ+ C diam(Ω)
(
‖Dui‖(Ω∗) + ‖Df‖(Ω∗)

)
.

This implies that the sequence (ui) is bounded in BV(Ω∗). Thus there
is a subsequence, still denoted (ui), such that ui → u as i → ∞ in
L1
loc(Ω

∗) for some u ∈ BVloc(Ω
∗). We refer to [23, Theorem 3.7] for this

compactness result. By passing to a subsequence, if necessary, we may
assume that ui → u pointwise µ-almost everywhere in Ω∗. We see that

|u(x)− f(x)| ≤ |u(x)− ui(x)|+ |ui(x)− f(x)| → 0

for µ-almost every x ∈ Ω∗ \ Ω as i → ∞, since the latter term on
the right-hand side is identically zero there. This implies that u = f
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µ-almost everywhere in Ω∗ \Ω, and consequently that u ∈ BV(Ω∗) and
ui → u in L1(Ω∗) as i→ ∞. Thus u ∈ BVf (Ω), and by Lemma 3.5 we
conclude that

m ≤ F(u,Ω) ≤ lim inf
i→∞

F(ui,Ω) = m,

and this proves the claim. �

4. Local boundedness of minimizers

In this section we study regularity of the minimizers of the gener-
alized surface area functional. We will later see that minimizers may
fail to be continuous, and in fact, they may have jump discontinuities
inside the domain even for very nice domains and measures. Nonethe-
less, here we apply the De Giorgi method to show that minimizers are
locally bounded. First we derive a De Giorgi type energy estimate for a
minimizer of the generalized surface area functional. For convenience,
in this chapter we assume that the 1-weak upper gradients of functions
are minimal 1-weak upper gradients, see [6, Theorem 2.5, Theorem
2.25].

Theorem 4.1. Let Ω and Ω∗ be bounded open subsets of X such that

Ω ⋐ Ω∗, and assume that f ∈ BV(Ω∗). Let u ∈ BVf (Ω) be a minimizer

of the generalized surface area functional with the boundary values f .
Assume that B(x,R) ⊂ Ω, and let 0 < r < R. Then for every k ∈ R,

we have

‖D(u− k)+‖(B(x, r)) ≤ 2

R− r

∫

B(x,R)

(u− k)+ dµ+ µ(Ak,R),

where Ak,R = B(x,R) ∩ {u > k}.
Proof. Let ui ∈ Liploc(Ω

∗) be a minimizing sequence such that ui → u
in L1

loc(Ω
∗) and that

F(u,Ω) = lim
i→∞

∫

Ω∗

√
1 + g2ui

dµ.

Let k ∈ R and let us denote Ak,R,i = B(x,R) ∩ {ui > k}. Now a
similar argument as in [11, Theorem 1, Section 5.5, p. 188] gives the
existence of a subsequence (ui) such that χAk,R,i

→ χAk,R
in L1(B(x,R))

as i→ ∞ for L1-almost every k ∈ R. In particular, this implies that

µ(Ak,R,i) → µ(Ak,R)

as i→ ∞ for L1-almost every k ∈ R.
Let k ∈ R be such that the above convergence takes place. Let

η ∈ Lip(Ω), 0 ≤ η ≤ 1 be a Lipschitz cutoff function such that η has a
compact support in B(x,R), η = 1 in B(x, r) and gη ≤ 2/(R− r). Let
ϕi = −η(ui − k)+ and ϕ = −η(u − k)+. Since u + ϕ ∈ BVf (Ω

∗), it is
an admissible test function for the minimization problem and thus

F(u,Ω) ≤ F(u+ ϕ,Ω).
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Let ε > 0. Since also ui + ϕi → u + ϕ in L1
loc(Ω

∗) as i → ∞, there
exists Nε such that for every i ≥ Nε, we have

∫

Ω∗

√
1 + g2ui

dµ < F(u,Ω) +
ε

2

and

F(u+ ϕ,Ω) <

∫

Ω∗

√
1 + (gui+ϕi

)2 dµ+
ε

2
.

By combining the three previous inequalities we obtain that
∫

Ω∗

√
1 + g2ui

dµ <

∫

Ω∗

√
1 + (gui+ϕi

)2 dµ+ ε

for i ≥ Nε. Furthermore, since ui = ui+ϕi in Ω∗ \Ak,R,i, the locality of
the minimal weak upper gradient, see [6, Corollary 2.21], implies that
gui

= gui+ϕi
µ-a.e. in Ω∗ \ Ak,R,i. Thus

∫

Ak,R,i

√
1 + g2ui

dµ <

∫

Ak,R,i

√
1 + (gui+ϕi

)2 dµ+ ε

for i ≥ Nε. We note that g(ui−k)+ = gui
in Ak,R,i (see for instance [6,

Corollary 2.20]). By combining this with [6, Lemma 2.18], which is
based on the fact that functions in N1,1(Ω) are absolutely continuous
on paths outside a family of 1-modulus zero, we conclude that the
perturbed function ui + ϕi has the minimal 1-weak upper gradient
gui+ϕi

satisfying

gui+ϕi
≤ (1− η)g(ui−k)+ + gη(ui − k)+

in Ak,R,i. By using the previous two estimates and the elementary

inequality a ≤
√
1 + a2 ≤ 1 + a for a ≥ 0, we obtain that for i ≥ Nε

∫

Ak,R,i

g(ui−k)+ dµ =

∫

Ak,R,i

gui
dµ ≤

∫

Ak,R,i

√
1 + g2ui

dµ

≤
∫

Ak,R,i

√
1 + (gui+ϕi

)2 dµ+ ε

≤
∫

Ak,R,i

(1 + gui+ϕi
) dµ+ ε

≤
∫

Ak,R,i

(1− η)g(ui−k)+ dµ

+

∫

Ak,R,i

gη(ui − k)+ dµ+ µ(Ak,R,i) + ε.

Thus
∫

Ak,R,i

ηg(ui−k)+ dµ ≤ 2

R− r

∫

Ak,R,i

(ui − k)+ dµ+ µ(Ak,R,i) + ε,
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and since η = 1 in B(x, r) and Ak,R,i ⊂ B(x,R), we obtain
∫

B(x,r)

g(ui−k)+ dµ ≤ 2

R− r

∫

B(x,R)

(ui − k)+ dµ+ µ(Ak,R,i) + ε.

Since (ui − k)+ → (u− k)+ in L1
loc(Ω

∗) as i→ ∞, the lower semiconti-
nuity of the total variation measure implies that

‖D(u− k)+‖(B(x, r)) ≤ lim inf
i→∞

∫

B(x,r)

g(ui−k)+ dµ

≤ 2

R− r

∫

B(x,R)

(u− k)+ dµ+ lim
i→∞

µ(Ak,R,i) + ε

=
2

R− r

∫

B(x,R)

(u− k)+ dµ+ µ(Ak,R) + ε.

The claim for L1-almost every k ∈ R follows from this by letting ε→ 0.
For an arbitrary k ∈ R, we take a sequence of numbers ki ց k for which
the above estimate holds. Then the lower semicontinuity of the total
variation measure implies that

‖D(u− k)+‖(B(x, r)) ≤ lim inf
i→∞

‖D(u− ki)+‖(B(x, r))

≤ lim inf
i→∞

( 2

R− r

∫

B(x,R)

(u− ki)+ dµ+ µ(Aki,R)
)

≤ 2

R− r

∫

B(x,R)

(u− k)+ dµ+ µ(Ak,R).

This completes the proof. �

The following result shows that minimizers are locally bounded.

Theorem 4.2. Let Ω and Ω∗ be bounded open subsets of X such that

Ω ⋐ Ω∗, and assume that f ∈ BV(Ω∗). Let u ∈ BVf (Ω) be a minimizer

of the generalized surface area functional with the boundary values f .
Assume that B(x,R) ⊂ Ω with R > 0, and let k0 ∈ R. Then

ess sup
B(x,R/2)

u ≤ k0 + C−
∫

B(x,R)

(u− k0)+ dµ+R,

where the constant C depends only on the doubling constant of the

measure and the constants in the Poincaré inequality.

Proof. Let d > 0 be a constant that will be fixed later, and let

ki = k0 + d(1− 2−i)

for i = 0, 1, . . . Moreover, let

r0 = R, ri =
R

2
+ 2−i−1R, r̃i =

ri + ri+1

2
,

and Aki+1,ri = B(x, ri) ∩ {u > ki+1}. Denote Bi = B(x, ri) and B̃i =

B(x, r̃i), and observe that Bi+1 ⊂ B̃i ⊂ Bi. For every index i = 0, 1, . . .,
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we define a Lipschitz cutoff function ηi with a compact support in B̃i

such that 0 ≤ ηi ≤ 1, ηi = 1 in Bi+1, and the weak upper gradient
satisfies

gηi ≤
2

r̃i − ri+1

=
2i+4

R
.

Let q = Q/(Q−1) as in Lemma 2.3, and take a sequence of nonnegative

locally Lipschitz functions (vj) such that vj → (u− ki+1)+ in L1
loc(B̃i)

and

‖D(u− ki+1)+‖(B̃i) = lim
j→∞

∫

B̃i

gvj dµ.

Observe that now ηivj → ηi(u− ki+1)+ in L1(B̃i) as j → ∞.
We use Hölder’s inequality and Lemma 2.3 to obtain
∫

Bi+1

(u− ki+1)+ dµ ≤
∫

B̃i

ηi(u− ki+1)+ dµ

≤ µ(B̃i)
1/q

(
−
∫

B̃i

|ηi(u− ki+1)+|q dµ
)1/q

µ(Aki+1,ri)
1−1/q

≤ CRµ(Aki+1,ri)
1−1/qµ(B̃i)

1/q−1 ‖D(ηi(u− ki+1)+)‖ (B̃i)

≤ CR

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q

lim inf
j→∞

∫

B̃i

gηivj dµ

≤ CR

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q (
lim sup
j→∞

∫

B̃i

gηivj dµ

+ lim sup
j→∞

∫

B̃i

gvj dµ

)
.

The last inequality follows from the Leibniz rule [6, Theorem 2.15] for
weak upper gradients. The estimate for the weak upper gradient gηi
gives

lim sup
j→∞

∫

B̃i

gηivj dµ ≤ 2i+4

R

∫

B̃i

(u− ki+1)+ dµ,

and Theorem 4.1 implies that

lim sup
j→∞

∫

B̃i

gvj dµ = ‖D(u− ki+1)+‖(B̃i)

≤ 2

ri − r̃i

∫

Bi

(u− ki+1)+ dµ+ µ(Aki+1,ri)

=
2i+4

R

∫

Bi

(u− ki+1)+ dµ+ µ(Aki+1,ri).
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Therefore∫

Bi+1

(u− ki+1)+ dµ

≤ CR

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q (
2i+5

R

∫

Bi

(u− ki+1)+ dµ+ µ(Aki+1,ri)

)

≤ C2i+5

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q (∫

Bi

(u− ki+1)+ dµ+Rµ(Aki+1,ri)

)
.

(4.3)

In order to estimate the term Rµ(Aki+1,ri), we note that ki+1 − ki =

2−(i+1)d for i = 0, 1, . . . , which implies that

u− ki > ki+1 − ki = 2−(i+1)d

in Aki+1,ri . Thus

(4.4) µ(Aki+1,ri) ≤
2i+1

d

∫

Bi

(u− ki)+ dµ.

Let

Yi =
1

d
−
∫

Bi

(u− ki)+ dµ.

The doubling property of the measure µ and the fact that R/2 ≤ ri+1 <

r̃i < ri ≤ R imply that µ(Bi+1) ≈ µ(B̃i) ≈ µ(Bi), where the constants
of comparison depend only on the doubling constant of the measure.
Thus, by combining (4.3) and (4.4) and observing that ki+1 > ki, we
arrive at

Yi+1 =
1

d
−
∫

Bi+1

(u− ki+1)+ dµ

≤ C2i+5

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q (
1

d
−
∫

Bi

(u− ki)+ dµ+
R

d

µ(Aki+1,ri)

µ(Bi)

)

≤ C2i+5

(
µ(Aki+1,ri)

µ(B̃i)

)1−1/q (
1 +

2i+1R

d

)
1

d
−
∫

Bi

(u− ki)+ dµ

≤ C2i+5

(
µ(Aki+1,ri)

µ(Bi)

)1−1/q (
1 +

2i+1R

d

)
Yi

≤ C2i+5
(
2i+1Yi

)1−1/q
(

1

2i+1
+
R

d

)
2i+1Yi

= C2i+5

(
1

2i+1
+
R

d

)(
2i+1Yi

)1+α

≤ C

(
1

2
+
R

d

)
(22+α)iY 1+α

i ,
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where α = 1− 1/q = 1/Q > 0 and the constant C depends only on the
doubling constant of the measure and the constants in the Poincaré
inequality. If we now assume that d ≥ R, then we have that

Yi+1 ≤ C(22+α)iY 1+α
i

for i = 0, 1, . . . , and the dependencies of the constant C remain the
same. We now apply [15, Lemma 7.1] to conclude that Yi → 0 as
i→ ∞ provided d ≥ R and

1

d
−
∫

B(x,R)

(u− k0)+ dµ ≤ C−1/α
(
22+α

)−1/α2

= C̃−1.

Both conditions for d are satisfied, if we choose

d = C̃−
∫

B(x,R)

(u− k0)+ dµ+R.

Since B(x,R/2) ⊂ Bi and (u − k0 − d)+ ≤ (u − ki)+ for i = 0, 1, . . .,
we have that∫

B(x,R/2)

(u− k0 − d)+ dµ ≤ lim
i→∞

∫

Bi

(u− ki)+ dµ = 0.

Thus

ess sup
B(x,R/2)

u ≤ k0 + d = k0 + C̃−
∫

B(x,R)

(u− k0)+ dµ+R.

This proves the result. �

5. Counterexamples on regularity

The classical treatment of the area functional begins with results
concerning the existence of Lipschitz continuous minimizers. An im-
portant step in the argument is the so-called reduction to the boundary
principle, which follows from the maximum principle. The reduction to
the boundary principle states that in order to estimate the Lipschitz-
constant of a minimizer, it suffices to consider its behaviour on the
boundary of the domain. More precisely, if u is a Lipschitz continuous
minimizer, then

Lip(u) = sup
x∈Ω
y∈∂Ω

|u(x)− u(y)|
|x− y| .

The same principle appears also in the study of more general function-
als, and it is known that the geometry of the domain plays an important
role in the theory, see e.g. [15].
However, in the general context of metric measure spaces, the re-

duction to the boundary principle fails even for nice domains. In fact,
in the weighted one-dimensional case it is relatively easy to construct
examples of minimization problems which give minimizers that do not
satisfy this principle. This phenomenon gives rise to an example of a
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discontinuous minimizer of the area functional. Hence the local bound-
edness result obtained in the last section is essentially optimal in this
generality. We begin with a motivating example.

Example 5.1. Let R be equipped with the usual Euclidean distance
and the weighted measure dµ = min{e, ex2} dx, and let Ω = (−1, 1).
Then the area functional takes the form

F(u,Ω) =

∫ 1

−1

√
1 + (u′(x))2 ex

2

dx.

Let us suppose that this problem has a Lipschitz continuous minimizer
u with boundary values u(−1) = 0 and u(1) = 1. The smoothness
and convexity of the integrand imply that u is smooth and satisfies the
strong form of the Euler-Lagrange equation

∂

∂x

(
u′(x)ex

2

√
1 + (u′(x))2

)
= 0

for every x ∈ (−1, 1), see e.g. [7, Theorem 4.6], [10, Theorem 4.12] and
[9]. This implies that

|u′(x)| =
(
e2x

2

C2
− 1

)−1/2

,

where the constant C satisfies 0 < |C| < 1. The largest values of |u′|
are obtained near the point x = 0, and it is then a straighforward
application of fundamental theorem of calculus to conclude that the
reduction to the boundary principle fails.

The next example shows that in general, our problem does not have
minimizers in the Sobolev class. In fact, even in the one-dimensional
case, the minimizer can be discontinuous inside the domain. This ex-
ample is in strict contrast with the unweighted case, where the mini-
mizer is a straight line segment joining the boundary values. A similar
example for a slightly different functional is presented in [14, Example
3.1]. See also [7, p. 132].

Example 5.2. Let us consider the variational problem in the metric
space R equipped with the Euclidean distance and the measure defined
by dµ = w dx, where

w(x) = min
{√

2,
√

1 + x4/3
}
.

Note that w is continuously differentiable in (−1, 1).
In this case, we can equivalently look for the minimizers from the

unweighted space. Indeed, since w is continuous and 1 ≤ w ≤
√
2, the

space of BV-functions obtained via the metric measure space definition
coincides with the weighted space BV(Ω∗;µ) for any open Ω∗ ⊂ R, see
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e.g. [8, Theorem 3.2.3]. Furthermore, there is a one-to-one correspon-
dence between the functions of the weighted space BV(Ω∗;µ) and the
functions of the unweighted space BV(Ω∗), see [5, Proposition 3.5].
Let Ω = (−1, 1), and let Ω∗ ⋑ Ω be an open and bounded set. Let

u ∈ BV(Ω∗) be a generalized minimizer of the problem

F(u,Ω) =

∫ 1

−1

√
1 + (u′)2w dx,

with boundary values u(−1) = −a and u(1) = a, where the constant
a > 0 will be chosen later.
As in Example 3.1, the function u minimizes the functional

F̃(u) =

∫ 1

−1

√
1 + (u′)2w dx+

∫ 1

−1

w d|(Du)s|

+ w(−1)|u(−1) + a|+ w(1)|u(1)− a|,
where the boundary values are interpreted in the sense of traces and
(Du)a = u′ dx denotes the absolutely continuous part and (Du)s the
singular part of the total variation measure Du, see the structure the-
orem and the further discussion in [13, p. 583–585].
First we conclude that u attains the correct boundary values u(−1) =

−a and u(1) = a. If this were not the case, we could consider the
function v defined as

v(x) =

{
u(x)− u(−1)− a, −1 ≤ x < 0,

u(x)− u(1) + a, 0 ≤ x ≤ 1,

and obtain that

F̃(v) =

∫

(−1,1)\{0}

√
1 + (u′)2w dx+

∫

(−1,1)\{0}

w d|(Du)s|

+ w(0)
∣∣u−(0)− u+(0)− u(−1) + u(1)− 2a

∣∣

<

∫

(−1,1)\{0}

√
1 + (u′)2w dx+

∫

(−1,1)\{0}

w d|(Du)s|

+ w(0)
∣∣u−(0)− u+(0)

∣∣+ w(−1)|u(−1) + a|+ w(1)|u(1)− a|
= F̃(u),

which contradicts the fact that u is a minimizer. Thus u attains the
correct boundary values.
On the other hand, any minimizer in W 1,1((−1, 1)) would have to

satisfy the weak form of the corresponding Euler-Lagrange equation,
see [10, Theorem 4.12] for instance. This together with the DuBois-
Reymond’s lemma, see [7, Lemma 1.8], then implies that

|u′(x)| =
(
w(x)2

C2
− 1

)−1/2
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almost everywhere for some constant C with 0 < |C| ≤ 1. Now,
choosing a > 3, we conclude that

a =
1

2
|u(1)− u(−1)| ≤ 1

2

∫ 1

−1

|u′(x)| dx

≤ 1

2

∫ 1

−1

(
w(x)2

C2
− 1

)−1/2

dx

≤ 1

2

∫ 1

−1

(
w(x)2 − 1

)−1/2
dx =

1

2

∫ 1

−1

x−2/3 dx = 3 < a,

which is a contradiction. Thus the minimizer does not belong to
Sobolev space, since we saw earlier that any minimizer will attain the
correct boundary values.
Let us conclude this example by showing that u has a jump discon-

tinuity at the point x = 0, i.e. the singular part of the measure Du
has a nontrivial point mass at x = 0. To see this, let u′ dx+ (Du)s be
the Lebesgue decomposition of the total variation measure Du. Note
that the derivative u′ exists almost everywhere. Let us consider the
function v defined by v(−1) = −a, v′ = u′ and

(Dv)s =

(∫ 1

−1

d(Du)s
)
δ0,

where δ0 is the Dirac delta at x = 0. By applying the fact that any
h ∈ BV(−1, 1) has a representative of the form h(x) = c+Dh((−1, x)),
see [3, Theorem 3.28], it is then straightforward to verify that v(1) = a.
Furthermore, we have the estimate

F̃(v) =

∫

(−1,1)\{0}

√
1 + (u′)2w dx+ w(0)

∣∣∣∣
∫ 1

−1

d(Du)s
∣∣∣∣

≤
∫

(−1,1)\{0}

√
1 + (u′)2w dx+

∫ 1

−1

d|(Du)s|.

The fact that u is a minimizer implies F̃(u) ≤ F̃(v), and since the
absolutely continuous parts of Du and Dv are the same, the previous
estimate gives that

∫ 1

−1

w d|(Du)s| ≤
∫ 1

−1

d|(Du)s|.

This is true only if supp (Du)s ⊂ {0}, since w(x) > 1 for x 6= 0. Since
we know that the minimizer is not an absolutely continuous function,
we conclude that (Du)s is not a null measure. Thus u has a jump at
point x = 0.

Remark 5.3. The question whether the one dimensional weighted area
functional has absolutely continuous minimizers with given boundary
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values has been studied in [18], where the necessary and sufficient con-
dition for the existence of such minimizers corresponds exactly to the
calculation presented in the previous example, see also [9, p. 440].
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