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Abstract. We show that an initial and boundary value problem
related to the parabolic p-Laplace equation is stable with respect to
p if the complement of the cylindrical domain satisfies a uniform
capacity density condition. This condition is essentially optimal
for our stability results.

1. Introduction

We consider stability of weak solutions to

div(|∇u|p−2 ∇u) =
∂u

∂t
(1.1)

in a cylindrical domain. The main question is that do the weak solu-
tions of (1.1) with fixed initial and boundary values converge in any
reasonable sense to the solution of the limit problem as p varies. Apart
from mathematical interest, the stability questions is motivated by er-
ror analysis in applications: It is desirable that solutions remain stable
under small perturbations of the measured parameter p.

Equation (1.1) is known as the p-parabolic equation or parabolic p-
Laplace equation. Sometimes it is also called the non-Newtonian fil-

tration equation which refers to the fact that the equation models the
flow of non-Newtonian fluids. For the regularity theory we refer to
DiBenedetto’s monograph [4]. See also Chapter 2 of [22]. The equa-
tion is singular if 1 < p < 2 and degenerate if p ≥ 2. We shall focus on
the degenerate case.

The stability turns out to be a rather delicate problem. The main
obstruction is that the underlying parabolic Sobolev space changes as
p varies and hence the associated energy is not necessarily finite. We
give an example of this phenomenon when the lateral boundary of the
cylinder is a Cantor type set. In this case, it may also happen that
the solutions converge to a solution of a wrong limit problem. These
phenomena are already present in the stationary case, see Kilpeläinen-
Koskela [8] and Lindqvist [14], but the time dependence offers new
challenges.

Our main result shows that solutions with varying exponent con-
verge to the solution of the limit problem in the parabolic Sobolev
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space provided that the lateral boundary of the cylinder is sufficiently
regular. A capacity density condition for the complement turns out to
be a natural requirement in this context, but the problem is nontrivial
already for domains with smooth boundaries. A global higher integra-
bility result, stating that a weak solution belongs to a higher parabolic
Sobolev space in the whole cylinder, plays a decisive role in the proof.
For this result, we refer to [10], [18], and [19].

Similar stability questions have been studied in the stationary case by
Lindqvist in [13] and [14]. See also Li-Martio [12], and Zhikov [23, 24].

Acknowledgements. The authors would like to thank Teemu Luk-
kari for useful discussions.

2. Preliminaries

Let Ω be a bounded open set in Rn with n ≥ 2 and let p ≥ 2.
The definitions are relevant also for 1 < p < ∞ and unbounded Ω,
but we will work under these more restrictive assumptions throughout
the paper. As usual, W 1,p(Ω) denotes the Sobolev space of functions
in Lp(Ω), whose distributional gradient belongs to Lp(Ω). The space
W 1,p(Ω) is equipped with the norm

||u||W 1,p(Ω) = ||u||Lp(Ω) + ||∇u||Lp(Ω) .

The Sobolev space with zero boundary values, denoted by W 1,p
0 (Ω), is

a completion of C∞
0 (Ω) with respect to the norm of W 1,p(Ω).

For T > 0, let

ΩT = Ω × (0, T )

be a space-time cylinder. We denote the points of the cylinder by z =
(x, t) and, for short, we write dz = dx dt. The parabolic Sobolev space
Lp(0, T ; W 1,p(Ω)) consists of measurable functions u : ΩT → [−∞,∞]
such that for almost every t ∈ (0, T ), the function x 7→ u(x, t) belongs
to W 1,p(Ω) and

∫

ΩT

(|u|p + |∇u|p) dz < ∞. (2.1)

Analogously, the space Lp(0, T ; W 1,p
0 (Ω)) is a collection of measurable

functions such that for almost every t ∈ (0, T ), the function x 7→ u(x, t)
belongs to W 1,p

0 (Ω) and (2.1) holds.
Solutions of the p-parabolic equation (1.1) are understood in a weak

sense in the parabolic Sobolev space. We recall the definition here.

Definition 2.2. A function u ∈ Lp(0, T ; W 1,p(Ω)) is a weak solution
to the p-parabolic equation, if

∫

ΩT

(

|∇u|p−2 ∇u · ∇φ − u
∂φ

∂t

)

dz = 0 (2.3)

for every φ ∈ C∞
0 (ΩT ).
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In the definition above, it is enough to assume that the function
belongs locally to the parabolic Sobolev space, but we are mainly in-
terested in global aspects of the theory in this paper. By parabolic
regularity theory, a weak solution belongs for example to C0,α

loc (ΩT ) for
some α ∈ (0, 1), see DiBenedetto [4].

Observe that we do not assume the differentiability of a weak solution
in the time direction. A recent observation of Lindqvist in [15] shows
that a weak solution also has a weak time derivative, but we do not
need this fact here. Instead, we use the traditional convolution

fσ(x, t) =

∫

R

f(x, t − s)ζσ(s) ds,

where ζσ(s) is a standard mollifier in time, whose support is contained
in (−σ, σ). By inserting φσ into (2.3), changing variables, and applying
Fubini’s theorem, we obtain

∫

ΩT

(

(|∇u|p−2 ∇u)σ · ∇φ − uσ
∂φ

∂t

)

dz = 0 (2.4)

for σ small enough. This form of the equation will be useful for us
later. The advantage is that the time derivative of uσ exists and thus
we may integrate by parts.

2.1. A capacity density condition. The p-capacity of a closed set
E ⊂ Br(x) with respect to Br(x) is defined to be

capp(E,Br(x)) = inf
u

∫

Br(x)

|∇u|p dy,

where the infimum is taken over all the functions u ∈ C∞
0 (Br(x)) for

which u ≥ 1 in E. If p > n, even a singleton has positive p-capacity.
When p ≤ n, there is are well known connections to the Hausdorff
measure: The Hausdorff dimension of a set of zero p-capacity does not
exceed n− p. On the other hand, if the (n− p)-dimensional Hausdorff
measure of E is finite, then E is of p-capacity zero. For more details,
see [1], [5], and [7]. We shall return to this topic in Section 5.

The following uniform capacity density condition will be important
for us. We need this condition for the existence of a solution to the
initial and boundary value problem, for a higher integrability property
of the gradient and to show that the limit solution takes the correct
boundary values. In Section 5, we show that this condition is essentially
optimal for our stability result.

Definition 2.5. The set Rn \ Ω is uniformly p-thick, if there exist
constants µ > 0 and r0 > 0 such that

capp((R
n \ Ω) ∩ Br(x), B2r(x)) ≥ µ capp(Br(x), B2r(x)),

for all x ∈ Rn \ Ω and 0 < r < r0.



4 JUHA KINNUNEN AND MIKKO PARVIAINEN

Every nonempty Rn \ Ω is uniformly p-thick for p > n, and hence
the uniform capacity density condition is nontrivial only when p ≤ n.

If we replace the capacity with the Lebesgue measure in the definition
above, we obtain a stronger measure density condition. Indeed, if the
set Rn \Ω satisfies the measure density condition, then it is uniformly
p-thick for all p. We note that the measure density condition is general
enough for many practical purposes.

It is not difficult to see, that if Rn \Ω is uniformly p-thick, then it is
uniformly q-thick for every q > p as well. The capacity density condi-
tion has a deep self-improving property, which is essential in stability
questions. This result was shown by Lewis in [11], see also Ancona [2]
and Section 8 of Mikkonen [17].

Theorem 2.6. If Rn \ Ω is uniformly p-thick, then there exists q =
q(n, p, µ) with q < p for which Rn \ Ω is uniformly q-thick.

There is a subtle point related to the boundary values. As examples
in Lindqvist [14] show, it may happen that u ∈ W 1,p(Ω) with p ≤ n
and u ∈ W 1,p−ε

0 (Ω) for every ε > 0, but u does not belong to W 1,p
0 (Ω).

We return to this in Section 5.2. For the next result, see the remark
after Corollary 3.5 in Hedberg-Kilpeläinen [6].

Theorem 2.7. If Rn \ Ω is uniformly p-thick, then there exists ε > 0
so that W 1,p−ε

0 (Ω) ∩ W 1,p(Ω) = W 1,p
0 (Ω).

Rather delicate Theorems 2.6 and 2.7 hold true with relatively easy
proofs for smooth domains. We want to point out that our stability
results are nontrivial already in this case.

2.2. Initial and boundary values. Recall, that throughout the pa-
per we assume that p ≥ 2 and that Ω is a bounded open set in Rn. We
use a Lebesgue-type initial condition and a Sobolev-type boundary con-
dition on the lateral boundary. For expository purposes, we shall only
consider initial and boundary values given by a function ϕ ∈ C1(ΩT ).
The smoothness assumption on ϕ can be relaxed, but we leave such
extensions to the interested reader.

We say that u ∈ Lp(0, T ; W 1,p(Ω)) is a weak solution to the p-
parabolic equation with the initial and boundary values ϕ, if u satisfies
(2.3),

u(·, t) − ϕ(·, t) ∈ W 1,p
0 (Ω) for almost every t ∈ (0, T )

and,

1

h

∫ h

0

∫

Ω

|u − ϕ|2 dx dt → 0 as h → 0.

(2.8)

For the following existence result, we refer to Theorem 6.5 in Kilpeläinen-
Lindqvist [9]. See also Showalter [20].
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Theorem 2.9. Let Ω is a bounded open set in Rn such that Rn \ Ω
is uniformly p-thick. If ϕ ∈ C1(ΩT ) is the initial and boundary value

function, then there exists a unique solution to the p-parabolic equation

with the initial and boundary values ϕ in the sense of (2.8).

Moreover, by parabolic regularity theory, u ∈ C0,α
loc (ΩT ). Thus the

solution assumes the initial and boundary values also in the pointwise
sense.

2.3. A global higher integrability result. Next we state the global
higher integrability result for the gradients from [18]. The correspond-
ing local result has been previously studied in [10]. These results show
that weak solutions belong to a higher Sobolev space than implied by
the existence result. This is an important ingredient in the proof of the
stability result.

Theorem 2.10. Let p ≥ 2 and suppose that Ω is a bounded open set in

Rn such that Rn\Ω is uniformly p-thick. In addition, assume that ϕ is

an initial and boundary value function as in (2.8). Let u be a solution

to the p-parabolic equation with the initial and boundary values ϕ in ΩT .

Then there exists ε = ε(n, p, r0, µ) such that u ∈ Lp+ε(0, T ; W 1,p+ε(Ω)).

This higher integrability result comes with estimates in [10] and [18].
In general, the estimates depend, for example, on the initial and bound-
ary values and constants in the uniform capacity density condition. A
careful analysis of the constants in the argument shows that if p varies
in a compact subinterval of [2,∞), then there exists a uniform positive
lower bound for ε > 0, which will later be essential.

2.4. The stability problem. Let pi ≥ 2, i = 1, 2, . . . , and assume
that pi → p as i → ∞. Suppose that Ω is a bounded open set in Rn

such that Rn \ Ω is p-thick and let T > 0. By Theorem 2.6, the set
Rn \Ω is pi-thick for i large enough and by Theorem 2.9 there exists a
unique solution

ui ∈ Lpi(0, T ; W 1,pi(Ω))

to the pi-parabolic equation in ΩT with the initial and boundary val-
ues ϕ ∈ C1(ΩT ), that is, ui satisfies (2.8) with W 1,p

0 (Ω) replaced by
W 1,pi

0 (Ω).
Note carefully, that the parabolic Sobolev spaces vary but the set

ΩT as well as the initial and boundary function ϕ are fixed. We are
concerned with the question whether the solutions ui converge in any
reasonable sense to the solution of the limit problem with the exponent
p. The uniform estimate given by Theorem 2.10 will be crucial for us
since it gives us a uniform function space Lp+ε(0, T ; W 1,p+ε(Ω)) for
some small ε > 0, which applies to all large enough i.
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3. Convergence results

We begin with proving a Caccioppoli type estimate. It will be essen-
tial that the constants in the estimates are independent of i, because
we need uniform bounds to obtain a convergence. Observe that the
time derivative of ϕ appears in the estimate.

Lemma 3.1. Let pi, ui, ΩT , and ϕ be as in Section 2.4. Then there

exists a constant c > 0, independent of i, such that
∫

ΩT

|∇ui|
pi dz ≤ c

∫

ΩT

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

pi/(pi−1)

dz + c

∫

ΩT

|∇ϕ|pi dz

+ ε

∫

ΩT

|ui − ϕ|pi dz,

where ε > 0 and c = c(ε, pi). Moreover,

sup
i

c(ε, pi) < ∞

for each 0 < ε < 1.

Proof. Let T > 0 and 0 < 4h < T . We define a cutoff function χh
0,T as

χh
0,T (t) =



























0, t ≤ h,

(t − h)/h, h < t < 2h,

1, 2h < t < T − 2h,

(T − h − t)/h, T − 2h < t < T − h,

0, t ≥ T − h.

This function is piecewise linear, continuous, and compactly supported
on (0, T ).

We insert formally the test function

φ(x, t) = (ui(x, t) − ϕ(x, t))χh
0,T (t)

in (2.3) and have
∫

ΩT

ui

∂((ui − ϕ)χh
0,T )

∂t
dz

=

∫

ΩT

(

|∇ui|
pi − |∇ui|

pi−2 ∇ui · ∇ϕ
)

χh
0,T dz.

Stricly speaking, the function φ is not an admissible test function, but a
standard smoothing argument applies here, see (2.4). Next we estimate
the second term on the right hand side by Young’s inequality and get

∫

ΩT

|∇ui|
pi χh

0,T dz ≤ c

∫

ΩT

ui

∂((ui − ϕ)χh
0,T )

∂t
dz

+ c

∫

ΩT

|∇ϕ|pi χh
0,T dz.
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Notice that we also absorbed a term from the right hand side into the
left side by using Young’s ε-inequality. Since pi → p as i → ∞, we
have 2 ≤ supi pi < ∞ and a careful examination of the constants in
Young’s inequality shows that the constant in the previous estimate
can be chosen to be independent of i.

The final estimate should be free of the time derivatives of ui. There-
fore, we add and subtract ϕ, integrate by parts, and end up with

∫

ΩT

ui

∂((ui − ϕ)χh
0,T )

∂t
dz

=
1

2

∫

ΩT

(ui − ϕ)2
∂χh

0,T

∂t
dz −

∫

ΩT

∂ϕ

∂t
(ui − ϕ)χh

0,T dz

= −
1

h

∫ T−h

T−2h

∫

Ω

(ui − ϕ)2 dx dt +
1

h

∫ 2h

h

∫

Ω

(ui − ϕ)2 dx dt

−

∫

ΩT

∂ϕ

∂t
(ui − ϕ)χh

0,T dz.

The first term on the right hand side is nonpositive and the second
term tends to zero by the initial condition as h → 0. By letting h → 0,
we conclude that

∫

ΩT

|∇ui|
pi dz ≤ c

∣

∣

∣

∣

∫

ΩT

∂ϕ

∂t
(ui − ϕ) dz

∣

∣

∣

∣

+ c

∫

ΩT

|∇ϕ|pi dz

and the claim follows from Young’s ε-inequality. An examination of
the constants in Young’s inequality shows that supi c(ε, pi) < ∞ for
each 0 < ε < 1. �

The Caccioppoli type inequality in Lemma 3.1 gives us the following
uniform integrability estimate.

Corollary 3.2. Let pi, ui, ΩT and ϕ be as in Section 2.4. Then

sup
i

(
∫

ΩT

|ui|
pi dz +

∫

ΩT

|∇ui|
pi dz

)

< ∞.

Proof. We estimate the right hand side of the Caccioppoli inequality
in Lemma 3.1 with a Sobolev type inequality. To this end, for every
t ∈ (0, T ) we extend u(·, t) − ϕ(·, t) by zero to Rn \ Ω. The standard
Sobolev type inequality implies

ε

∫

ΩT

|ui − ϕ|pi dz ≤ εc diam(Ω)pi

∫

ΩT

|∇ui −∇ϕ|pi dz.
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According to Lemma 3.1, we end up with
∫

ΩT

|∇ui|
pi dz

≤ c diam(Ω)pi

(

ε

∫

ΩT

|∇ui|
pi dz + ε

∫

ΩT

|∇ϕ|pi dz

)

+ c

∫

ΩT

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

pi/(pi−1)

dz + c

∫

ΩT

|∇ϕ|pi dz.

Then we choose ε > 0 small enough and absorb the first term on the
right hand side into the left. This proves the gradient estimate.

The estimate for the solution follows from the gradient estimate by
using a Sobolev type inequality again. We have
∫

ΩT

|ui|
pi dz ≤ c

∫

ΩT

|ui − ϕ|pi dz + c

∫

ΩT

|ϕ|pi dz

≤ c diam(Ω)pi

∫

ΩT

|∇ui −∇ϕ|pi dz + c

∫

ΩT

|ϕ|pi dz,

from which the claim follows. �

The uniform bound given by Corollary 3.2 together with the global
higher integrability result in Theorem 2.10 gives us the following pre-
liminary convergence result.

Lemma 3.3. Let pi, ui, ΩT and ϕ be as in Section 2.4. There exist

ε > 0, a subsequence of (ui) and a function u ∈ Lp+ε(0, T ; W 1,p+ε(Ω))
such that

ui → u in Lp+ε(ΩT )

and

∇ui → ∇u weakly in Lp+ε(ΩT ),

as i → ∞.

Proof. First, we show that there exists ε > 0 such that ui, ∇ui ∈
Lp+ε(ΩT ) for i large enough. This follows from the remark after The-
orem 2.10 using the uniform estimate given by Corollary 3.2. Indeed,
since pi → p as i → ∞, there exists a uniform positive lower bound for
ε in Theorem 2.10 for i large enough. Hence

sup
i

∫

ΩT

|∇ui|
p+ε dz < ∞,

when i is large enough. The fact that

sup
i

∫

ΩT

|ui|
p+ε dz < ∞,

when i is large enough, follows by a Sobolev inequality in the same way
as in the end of the proof of Corollary 3.2.
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Then we consider the convergence. The discussion above implies
that subsequences of (ui) and (∇ui) are bounded in Lp+ε(ΩT ). Hence
there exist a subsequence, denoted again by (ui), and a function u ∈
Lp+ε(ΩT ) with ∇u ∈ Lp+ε(ΩT ) such that ui → u and ∇ui → ∇u
weakly in Lp+ε(ΩT ) as i → ∞.

The strong convergence of (ui) in Lp+ε(ΩT ) is a consequence of the
Rellich-Kondrachov compactness result for Sobolev spaces and Theo-
rem 5 in [21]. See also page 106 in [20]. Here we also need the estimate
∣

∣

∣

∣

∫

ΩT

∂φ

∂t
ui dz

∣

∣

∣

∣

≤ c

(
∫

ΩT

|∇ui|
pi dz

)(pi−1)/pi
(
∫

ΩT

|∇φ|p+ε dz

)1/(p+ε)

≤ c ||φ||Lp+ε(0,T ;W 1,p+ε
0

(Ω)) ,

(3.4)

where we used (2.3), Hölder’s inequality and Corollary 3.2. �

Next we pass to a stronger convergence. The main problem in the
proof is to show that, after passing to subsequence if necessary, the
gradients also converge strongly in Lp+ε(ΩT ). The general idea in the
proof is to show that the gradients form a Cauchy sequence. Thus we
avoid testing the equation with the limit itself, which is not known to
be a solution at this point. There are three steps in our argument:
First, we carefully show that the test function is admissible, and, in
particular, that it has zero boundary values in the right Sobolev space.
Second, we show that gradients converge in Lp(ΩT ) by employing the
equation together with elementary inequalities, and, third, we extend
the convergence result to Lp+ε(ΩT ) by using the global higher integra-
bility of the gradient.

The double limit procedure with respect to a sequence of solutions
and the regularization parameter is delicate. Therefore, we carefully
write down the regularizations.

Theorem 3.5. Let pi, ui, ΩT and ϕ be as in Section 2.4. Then there

exist ε > 0, a subsequence (ui) and a function u ∈ Lp+ε(0, T ; W 1,p+ε(Ω))
such that

ui → u in Lp+ε(0, T ; W 1,p+ε(Ω)),

as i → ∞.

Proof. By passing to a subsequence, if necessary, Lemma 3.3 provides
the weak convergence in Lp+ε(ΩT ) for the gradients and convergence in
Lp+ε(ΩT ) for the solutions, when ε > 0 is small enough. Therefore we
can focus our attention to the convergence of the gradients in Lp+ε(ΩT ).

To establish this, let uj and uk be two solutions in the sequence. Since
both uj and uk satisfy the mollified equation (2.4), by subtracting, we
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obtain

−

∫

ΩT

(uj − uk)σ
∂φ

∂t
dz

+

∫

ΩT

(|∇uj|
pj−2 ∇uj − |∇uk|

pk−2 ∇uk)σ · ∇φ dz = 0

(3.6)

for every φ ∈ C∞
0 (ΩT ). We would like to apply the test function

φ(x, t) = χh
0,T (t)(uj(x, t) − uk(x, t))σ,

where χh
0,T (t) is the same cutoff function as in the proof of Lemma 3.1.

Step 1: It is not immediately clear that φ is an admissible test function
in (3.6). There are two problems: The first technical problem is that the
cutoff function is not smooth, but the standard smoothing argument
as in (2.4) takes care of this. The second problem about the lateral
boundary values is more serious. Indeed, we have to assure that the
test function takes the zero boundary values in the right Sobolev space.
By the boundary value condition, see Section 2.4, we have

uj(·, t) − ϕ(·, t) ∈ W
1,pj

0 (Ω) and uk(·, t) − ϕ(·, t) ∈ W 1,pk

0 (Ω)

for almost every t ∈ (0, T ). Observe, that the Sobolev spaces with zero
boundary values depend on the parameter. Let ε′ > 0. By choosing j
and k large enough, we see that

uj(·, t) − uk(·, t) ∈ W 1,p−ε′

0 (Ω)

and by Lemma 3.3 we have

uj(·, t) − uk(·, t) ∈ W 1,p+ε(Ω)

for almost every t ∈ (0, T ). According to Theorem 2.7, there exists
ε > 0 such that

uj(·, t) − uk(·, t) ∈ W 1,p+ε
0 (Ω)

for almost every t ∈ (0, T ), when j and k are large enough. Note that
we apply Theorem 2.7 twice in our argument. First we choose ε′ > 0
small enough to reach W 1,p

0 (Ω) and then ε > 0 small enough to reach
W 1,p+ε

0 (Ω). Thus we may use φ as a test function in (3.6) when j and
k are large enough.

Step 2: We estimate the first term on the left hand side of (3.6). A
substitution of the test function and an integration by parts give

−

∫

ΩT

(uj − uk)σ

∂(χh
0,T (uj − uk)σ)

∂t
dz = −

1

2

∫

ΩT

(uj − uk)
2
σ

∂χh
0,T

∂t
dz.

This estimate is free of the time derivatives of the functions uj and uk,
which is essential for us in the passage to the limit with σ. Now, letting
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σ → 0, we conclude that
∫

ΩT

(|∇uj|
pj−2 ∇uj − |∇uk|

pk−2 ∇uk) · (∇uj −∇uk)χ
h
0,T dz

≤−
1

h

∫ T−h

T−2h

∫

Ω

(uj − uk)
2 dz +

1

h

∫ 2h

h

∫

Ω

(uj − uk)
2 dz.

Observe that the first term on the right hand side is nonpositive. More-
over, the second term on the right hand side tends to zero by the initial
condition as h → 0. Thus
∫

ΩT

(|∇uj|
pj−2 ∇uj − |∇uk|

pk−2 ∇uk) · (∇uj −∇uk) dz ≤ 0. (3.7)

We divide the left hand side in three parts as
∫

ΩT

(|∇uj|
pj−2 ∇uj − |∇uk|

pk−2 ∇uk) · (∇uj −∇uk) dz

=

∫

ΩT

(|∇uj|
p−2 ∇uj − |∇uk|

p−2 ∇uk) · (∇uj −∇uk) dz

+

∫

ΩT

(|∇uj|
pj−2 − |∇uj|

p−2)∇uj · (∇uj −∇uk) dz

+

∫

ΩT

(|∇uk|
p−2 − |∇uk|

pk−2)∇uk · (∇uj −∇uk) dz

= I1 + I2 + I3.

(3.8)

First, we concentrate on I2 and I3. A straightforward calculation shows
that

| |ζ|a − |ζ|b | = |exp(a log |ζ|) − exp(b log(|ζ|)|

≤ max
s∈[a,b]

∣

∣

∣

∣

∂ exp(s log |ζ|)

∂s

∣

∣

∣

∣

|a − b|

≤ |log |ζ|| (|ζ|a + |ζ|b) |a − b| ,

where ζ ∈ Rn and a, b ≥ 0. If |ζ| ≥ 1, then

|log |ζ|| (|ζ|a + |ζ|b) ≤
1

ε
|ζ|max(a,b)+ε ,

and if |ζ| ≤ 1, then

|log |ζ|| (|ζ|a + |ζ|b) ≤
1

e

(

1

a
+

1

b

)

.

This leads to

||ζ|a − |ζ|b| ≤

(

1

ε
|ζ|max(a,b)+ε +

1

e

(

1

a
+

1

b

))

|a − b| (3.9)

for every ζ ∈ Rn and a, ≥ 0.
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Next we apply (3.9) with ζ = ∇uj, a = pj − 2, and b = p − 2. This
implies

|I2| ≤ c |pj − p|

∫

ΩT

(1 + |∇uj|
max(pj−2,p−2)+ε) |∇uj| |∇uj −∇uk| dz.

In the same way as in the proof of Lemma 3.3, we deduce from Corol-
lary 3.2 and Theorem 2.10 that the integral on the right hand side is
uniformly bounded. Consequently, I2 → 0, as j → ∞. A similar rea-
soning implies that I3 tends to zero as k → ∞. From the elementary
inequality

22−p |a − b|p ≤ (|a|p−2 a − |b|p−2 b) · (a − b),

we conclude that
∫

ΩT

|∇uj −∇uk|
p dz ≤ cI1.

This fact together with (3.7) and (3.8) implies
∫

ΩT

|∇uj −∇uk|
p dz ≤ c(|I2| + |I3|).

The right hand side can be made arbitrary small by choosing j and k
large enough. This shows that (∇ui) is a Cauchy sequence in Lp(ΩT ),
and thus it converges. Since ui → u in Lp(ΩT ), we conclude that
∇ui → ∇u in Lp(ΩT ) as i → ∞.

Step 3: We complete the proof by showing that (∇ui) converges in
Lp+ε(ΩT ) for some ε > 0. The proof of this fact is rather standard.
First we remark that as (∇ui) converges in Lp(ΩT ), there exists a
subsequence that converges almost everywhere in ΩT . According to
Lemma 3.3, there exists M < ∞ such that

sup
i

∫

ΩT

|∇ui|
p+ε dz ≤ M.

This implies that ∇ui → ∇u in Lq(ΩT ) whenever q ∈ [p, p+ε). Indeed,
we have

∫

ΩT

|∇u −∇ui|
q dz =

∫

{|∇ui−∇u|>k}

|∇u −∇ui|
q dz

+

∫

{|∇ui−∇u|≤k}

|∇u −∇ui|
q dz

for every k = 1, 2, . . . By the Cavalieri principle, the first term on the
right hand side reads
∫

{|∇ui−∇u|>k}

|∇u −∇ui|
q dz = q

∫ ∞

k

λq−1 |{|∇ui −∇u| > λ}| dλ

+ kq |{|∇ui −∇u| > k}| .
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A standard weak type estimate implies

|{|∇ui −∇u| > λ}| ≤ λ−(p+ε)

∫

ΩT

|∇ui −∇u|p+ε dz

≤ 2Mλ−(p+ε)

and
|{|∇ui −∇u| > k}| ≤ 2Mk−(p+ε).

Consequently, as q < p + ε, we deduce
∫

{|∇ui−∇u|>k}

|∇u −∇ui|
q dz ≤

p + ε

p + ε − q
2Mkq−(p+ε).

This quantity can be made as small as we please by choosing k large
enough.

On the other hand, since

χ{|∇ui−∇u|≤k} |∇u −∇ui|
q ≤ kq

and ΩT is bounded, by Lebesgue’s dominated convergence theorem, we
may choose i large enough, so that

∫

{|∇ui−∇u|≤k}

|∇u −∇ui|
q dz

is as small as we please. This completes the proof. �

4. Properties of the limit function

In this section, we study the properties of the limit function u con-
structed in the previous section. It immediately follows from the strong
convergence that the function is a weak solution to the limiting equa-
tion.

Theorem 4.1. The limit function u given by Theorem 3.5 is a weak

solution to the p-parabolic equation in ΩT .

Proof. By Theorem 3.5, ui → u in Lp+ε(0, T ; W 1,p+ε(Ω)) as i → ∞. By
Hölder’s inequality, we have

∫

ΩT

(

|∇u|p−2 ∇u · ∇φ − u
∂φ

∂t

)

dz

= lim
i→∞

∫

ΩT

(

|∇ui|
pi−2 ∇ui · ∇φ − ui

∂φ

∂t

)

dz = 0

for every φ ∈ C∞
0 (ΩT ). This proves the claim. �

Next we show that the limit function takes the correct boundary and
initial values.

Theorem 4.2. The limit function u given by Theorem 3.5 is a weak

solution to the p-parabolic equation with the boundary and initial con-

ditions (2.8).
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Proof. Since ui → u in Lp(0, T ; W 1,p(Ω)) as i → ∞ and

ui(·, t) − ϕ(·, t) ∈ W 1,p
0 (Ω) (4.3)

for almost every t ∈ (0, T ), for i large enough, it follows that u takes
the correct lateral boundary values.

Next we show that u takes the correct initial values. To accomplish
this, we pass to limits in a particular order and, therefore, define a
two-parameter cutoff function by

χh,k
0,t2

(t) =



























0, t ≤ h,

(t − h)/h, h < t < 2h,

1, 2h < t < t2 − k,

(t2 − t)/k, t2 − k < t < t2,

0, t ≥ t2,

where 2h < t2 − k, t2 < T , and h, k > 0. Insert the test function

χh,k
0,t2

(ui − ϕ)

into the definition of the weak solution. Similarly as in the proof of
Lemma 3.1, we obtain

∣

∣

∣

∣

1

k

∫ t2

t2−k

∫

Ω

(ui − ϕ)2 dx dt −
1

h

∫ 2h

h

∫

Ω

(ui − ϕ)2 dx dt

∣

∣

∣

∣

≤ c

∫ t2

0

∫

Ω

|∇ui|
pi dx dt + c

∫ t2

0

∫

Ω

|ui − ϕ|pi dx dt

+ c

∫ t2

0

∫

Ω

∣

∣

∣

∣

∂ϕ

∂t

∣

∣

∣

∣

pi/(pi−1)

dz + c

∫ t2

0

∫

Ω

|∇ϕ|pi dx dt.

(4.4)

By the initial condition (2.8), the second term on the left hand side
tends to zero as h → 0. The convergence of the sequence (ui) in Lp(ΩT )
implies that the first term on the left hand side of (4.4) converges to

1

k

∫ t2

t2−k

∫

Ω

(u − ϕ)2 dx dt

as i → ∞. Estimate (3.4) and Proposition 1.2 in [20] imply that
u ∈ C((0, T ); L2(Ω)). From this it follows that, for every t2 ∈ (0, T ),
we have

1

k

∫ t2

t2−k

∫

Ω

(u − ϕ)2 dx dt →

∫

Ω

|u(x, t2) − ϕ(x, t2)|
2 dx

as k → 0. Furthermore, the terms on the right hand side of (4.4) are
uniformly bounded with respect to i due to Corollary 3.2. Combining
the facts, we obtain

∫

Ω

|u(x, t2) − ϕ(x, t2)|
2 dx → 0,

as t2 → 0. This proves that u satisfies the initial condition in (2.8).
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The solution to the p-parabolic equation with the boundary and
initial conditions (2.8) is unique, and thus subsequences in Theo-
rems 3.5 and 4.2 converge to this unique limit function u. Since every
subsequence of the original sequence contains such a converging sub-
sequence, it follows that also the original sequence (ui) converges to
u. �

Remark 4.5. By parabolic regularity theory ui, i = 1, 2, . . . , belong to
C1,α

loc (ΩT ), see [4]. A thorough analysis of constants in the regularity
theory shows that the sequences (ui) and (∇ui) are locally equicontin-
uous and, in addition, locally uniformly bounded. Hence by Ascoli’s
theorem, there exists a subsequence such that ui → u and ∇ui → ∇u
locally uniformly in ΩT as i → ∞. However, we do not need this
improvement here.

5. Optimality

Next we show that the uniform capacity density condition is essen-
tially the weakest possible condition for our stability results. Indeed,
it may happen that we do not have the higher integrability property of
the gradient or that the sequence converges to a wrong solution if the
complement does not satisfy the uniform capacity density condition.

5.1. The failure of higher integrability. We modify the elliptic
example given in Remark 3.3 of [8] to show that a weakening of the
capacity density condition implies the existence of a weak solution to
the p-parabolic equation such that

∫

ΩT

|∇u|p+ε dz = ∞

for every ε > 0. This is in strict contrast with our Lemma 3.3.
The idea is first to remove a carefully chosen small set of a ball in

Rn. The removed set is thick in the Wiener sense but not uniformly
p-thick. The solution for the p-parabolic equation will be a constant-
in-time extension of the elliptic solution for p-Laplace equation in the
remaining set. Now, the proof is based on the contradiction: If the
integral above would be finite, then we could extend u as a solution to
the whole space-time cylinder. But as the extension would have zero
lateral boundary values, a comparison with the Barenblatt solution
provides a contradiction.

To this end, let 2 ≤ p ≤ n and denote B = B1(0). Then there exists
a compact Cantor type set K ⊂ B such that

capp(K,B) > 0

and that the Hausdorff dimension of K is n − p. In particular, this
implies that

capq(K,B) = 0
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for every q < p. The set K cannot be uniformly p-thick, because this
would contradict the self-improving property of the uniform density
condition stated in Theorem 2.6. However, the set K can be con-
structed so that the Wiener integral diverges at every point, that is,

∫ 1

0

(

capp(K ∩ Br(x), B2r(x))

rn−p

)1/(p−1)
dr

r
= ∞

for every x ∈ K. Such a set can be constructed using a Cantor type
construction and the scaling properties for the capacity, see, for exam-
ple, Adams-Hedberg [1] and also (ii) in Theorem 2 of Section 4.7 in
Evans-Gariepy [5]. A similar set has also been considered in [3] and
[8].

Set Ω = B \K and let u ∈ W 1,p(Ω) be a weak solution to the elliptic
p-Laplace equation

div(|∇u|p−2 ∇u) = 0,

in Ω with the boundary values zero on ∂B and one on K. Since the
Wiener integral diverges, every x ∈ K is a regular point for the Dirichlet
problem and hence u(y) → 1 as y → x with y ∈ Ω. On the other hand,
every boundary point x ∈ ∂B is regular as well, and hence u(y) → 0
as y → x with y ∈ Ω. In particular, this implies that 0 < u < 1 in Ω
and u is not identically zero.

Since the Lebesgue measure of K is zero, the function u can be
extended to B so that the extension, still denoted by u, belongs to
W 1,p(B). Next we take the trivial extension in time and set u(x, t) =
u(x) for every t ∈ (0, T ). Clearly, the extended function u is a solution
of the p-parabolic equation in ΩT .

Striving for a contradiction, suppose that for some ε > 0 we have
∫

ΩT

|∇u|p+ε dz < ∞. (5.1)

We claim that, in this case, u is a weak solution to the p-parabolic
equation in the whole of BT = B × (0, T ). Since capq(K,B) = 0 for
every q < p, we may choose a sequence φi ∈ C∞

0 (B), 0 ≤ φi ≤ 1, φi = 1
in K such that

∫

B

|∇φi|
q dx → 0 (5.2)

as i → ∞. Again, we take the trivial extension of φi in time. Let
φ ∈ C∞

0 (BT ) and observe that (1 − φi)φ ∈ C∞
0 (ΩT ). Since u does not

depend on time, we have
∫

BT

u
∂φ

∂t
dz = 0.
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Furthermore, since u(·, t) is a solution to the elliptic p-Laplace equation
in Ω for every t ∈ (0, T ), we conclude that

∫

ΩT

|∇u|p−2 ∇u · ∇((1 − φi)φ) dz = 0

for every i = 1, 2, . . . Consequently,

−

∫

BT

u
∂φ

∂t
dz +

∫

BT

|∇u|p−2 ∇u · ∇φ dz =

∫

BT

|∇u|p−2 ∇u · ∇φ dz

=

∫

ΩT

|∇u|p−2 ∇u · ∇((1 − φi)φ) dz +

∫

BT

|∇u|p−2 ∇u · ∇(φiφ) dz

=

∫

BT

|∇u|p−2 ∇u · ∇(φiφ) dz.

Next we show that the last integral equals zero and hence u is a solution
to the p-parabolic equation in BT . By Hölder’s inequality, we have
∣

∣

∣

∣

∫

BT

|∇u|p−2 ∇u · ∇(φiφ) dz

∣

∣

∣

∣

=

(
∫

BT

|∇u|p+ε dz

)(p−1)/(p+ε)(∫

BT

|∇(φiφ)|(p+ε)/(1+ε) dz

)(1+ε)/(p+ε)

.

The first term on the right hand side is finite by assumption (5.1). It
follows by (5.2) that the right hand side tends to zero since (p+ε)/(1+
ε) < p. Thus, u is a nonzero solution to parabolic p-Laplace equation
in BT .

Recall the Barenblatt solution Bp : Rn+1
+ → [0,∞),

Bp(x, t) = t−n/λ

(

c −
p − 2

p
λ1/(1−p)

(

|x|

t1/λ

)p/(p−1))(p−1)/(p−2)

+

,

where λ = n(p − 2) + p, p > 2, and c > 0 is fixed below. By choosing
c, t0 > 0 large enough, we see that

Bp(x, t0 + t) ≥ u(x, t)

whenever (x, t) belongs to the parabolic boundary

(B × {0}) ∪ (∂B × [0, T ])

of BT . By the comparison principle, we have

u(x, t) ≤ Bp(x, t0 + t) ≤ c t−n/λ (5.3)

for every t ∈ (0, T ). This provides a contradiction since clearly u does
not satisfy this decay rate. Thus (5.1) cannot be true.
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5.2. The wrong limit function. Next we assume that pi → p− as
i → ∞ and modify the elliptic example in Section 7 of Lindqvist [14]
related to the theory of nonlinear eigenfunctions. Let K, B and ΩT be
as above. Choose φ ∈ C∞

0 (B) with φ = 1 in K. Again, we consider
the trivial extension of φ in time. Let uΩT

i and uBT

i be solutions to
the pi-parabolic equation with boundary and initial values φ in ΩT and
BT , respectively. Since capq(K, Ω) = 0 for every q < p, it follows that

uΩT

i = uBT

i in ΩT for every i = 1, 2, . . .
Somewhat unexpectedly, the corresponding solutions uΩT and uBT

for the parabolic p-Laplace equation are different functions in ΩT .
Indeed, due to the decay estimate (5.3), the function uBT tends to
zero as t grows, but clearly uΩT does not. The cylinder BT satis-
fies the uniform capacity density condition and thus uBT

i → uBT in
Lp+ε(0, T ; W 1,p+ε(B)) as i → ∞ by our Theorem 3.5. But now we
have

uΩT

i = uBT

i → uBT 6= uΩT

in Lp+ε(0, T ; W 1,p+ε(B)) as i → ∞. This shows that ΩT does not enjoy
the stability property.
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